Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors
Abstract
:1. Introduction
2. Methodology
2.1. Docking Study
2.2. QM/MM Procedure
2.3. Toxicity Testing and Absorption, Distribution, Metabolism, and Excretion (ADME) Testing
2.4. ADME Testing (Absorption, Distribution, Metabolism, and Excretion)
3. Results and Discussion
3.1. Docking Procedure
3.2. Mechanism Study
3.3. Design of New Ligands
3.4. Toxicity Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de OS Giacoppo, J.; de Lima, W.E.; Kuca, K.; da Cunha, E.F.; França, T.C.; Ramalho, T.D.C. Chemical warfare: Perspectives on reactivating the enzyme acetylcholinesterase inhibited by organophosphates. Mil. Med. Sci. Lett. 2014, 83, 165–177. [Google Scholar] [CrossRef]
- Sadik, O.A.; Land, W.H., Jr.; Wang, J. Targeting chemical and biological warfare agents at the molecular level. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2003, 15, 1149–1159. [Google Scholar] [CrossRef]
- Chauhan, S.; D’cruz, R.; Faruqi, S.; Singh, K.K.; Varma, S.; Singh, M.; Karthik, V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008, 26, 113–122. [Google Scholar] [CrossRef]
- França, T.C.C.; Silva, G.R.; De Castro, A.T. Chemical Defense: A new subject in the Chemical Teaching. Rev. Virtual De Química 2010, 2, 84–104. [Google Scholar] [CrossRef]
- Gravett, M.R.; Hopkins, F.B.; Self, A.J.; Webb, A.J.; Timperley, C.M.; Baker, M.J. Evidence of VX nerve agent use from contaminated white mustard plants. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140076. [Google Scholar] [CrossRef] [PubMed]
- El-Ebiary, A.A.; Elsharkawy, R.E.; Soliman, N.A.; Soliman, M.A.; Hashem, A.A. N-acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial. Basic Clin. Pharmacol. Toxicol. 2016, 119, 222–227. [Google Scholar] [CrossRef]
- Gautam, V.K.; Kamath, S.D. Study of Organophosphorus Compound Poisoning in a Tertiary Care Hospital and the Role of Peradeniya Organophosphorus Poisoning Scale as a Prognostic Marker of the Outcome. J. Assoc. Physicians India 2022, 70, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Terekhov, S.S.; Palikov, V.A.; Palikova, Y.A.; Dyachenko, I.A.; Shamborant, O.G.; Smirnov, I.V.; Masson, P.; Gabibov, A.G. Application of Tetrameric Recombinant Human Butyrylcholinesterase as a Biopharmaceutical for Amelioration of Symptoms of Acute Organophosphate Poisoning. Bull. Exp. Biol. Med. 2017, 163, 430–435. [Google Scholar] [CrossRef]
- Masson, P.; Nachon, F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. Blackwell Publ. Ltd. 2017, 142, 26–40. [Google Scholar] [CrossRef]
- Polisel, D.A.; de Castro, A.A.; Mancini, D.T.; da Cunha, E.F.; Franca, T.C.; Ramalho, T.C.; Kuca, K. Slight difference in the isomeric oximes K206 and K203 makes huge difference for the reactivation of organophosphorus-inhibited AChE: Theoretical and experimental aspects. Chem -Biol. Interact. 2019, 309, 108671. [Google Scholar] [CrossRef]
- Li, C.; Srivastava, R.K.; Athar, M. Biological and environmental hazards associated with exposure to chemical warfare agents: Arsenicals. Ann. N. Y. Acad. Sci. 2016, 1378, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.R.; Borges, I., Jr.; Figueroa-Villar, J.D.; Castro, A.T.D. Defesa química: Histórico, classificação dos agentes de guerra E ação dos neurotóxicos. Química Nova 2012, 35, 2083–2091. [Google Scholar] [CrossRef]
- Wilson, C.; Main, M.J.; Cooper, N.J.; Briggs, M.E.; Cooper, A.I.; Adams, D.J. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 2017, 8, 1914–1922. [Google Scholar] [CrossRef]
- Black, R.M.; Read, R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol. 2013, 87, 421–437. [Google Scholar] [CrossRef]
- José Filho, B.G.; Bruziquesi, C.G.; Rios, R.D.; Castro, A.A.; Victória, H.F.; Krambrock, K.; Mansur, A.A.; Mansur, H.S.; Siniterra, R.D.; Ramalho, T.C.; et al. Selective visible-light-driven toxicity breakdown of nerve agent simulant methyl paraoxon over a photoactive nanofabric. Appl. Catal. B Environ. 2021, 285, 119774. [Google Scholar] [CrossRef]
- Kassa, J.; Korabecny, J.; Nepovimova, E.; Jun, D. The influence of modulators of acetylcholinesterase on the resistance of mice against soman and on the effectiveness of antidotal treatment of soman poisoning in mice. J. Appl. Biomed. 2018, 16, 10–14. [Google Scholar] [CrossRef]
- An, Y.; Zhu, Y.; Yao, Y.; Liu, J. Is it possible to reverse aged acetylcholinesterase inhibited by organophosphorus compounds? Insight from the theoretical study. Phys. Chem. Chem. Phys. 2016, 18, 9838–9846. [Google Scholar] [CrossRef]
- Carletti, E.; Li, H.; Li, B.; Ekstrom, F.; Nicolet, Y.; Loiodice, M.; Gillon, E.; Froment, M.T.; Lockridge, O.; Schopfer, L.M.; et al. Aging of Cholinesterases Phosphylated by Tabun Proceeds through O-Dealkylation. J. Am. Chem. Soc. 2008, 130, 16011–16020. [Google Scholar] [CrossRef]
- Carletti, E.; Colletier, J.P.; Dupeux, F.; Trovaslet, M.; Masson, P.; Nachon, F. Structural evidence that human acetylcholinesterase inhibited by tabun ages through O-dealkylation. J. Med. Chem. 2010, 53, 4002–4008. [Google Scholar] [CrossRef]
- Franjesevic, A.J.; Sillart, S.B.; Beck, J.M.; Vyas, S.; Callam, C.S.; Hadad, C.M. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chem.-A Eur. J. 2019, 25, 5337–5371. [Google Scholar] [CrossRef]
- Yoder, R.J.; Zhuang, Q.; Beck, J.M.; Franjesevic, A.; Blanton, T.G.; Sillart, S.; Secor, T.; Guerra, L.; Brown, J.D.; Reid, C.; et al. Study of para-Quinone Methide Precursors toward the Realkylation of Aged Acetylcholinesterase. Acs Med. Chem. Lett. 2017, 8, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Young, A.; Callam, C.S.; McElroy, C.A.; Ekici, Ö.D.; Yoder, R.J.; Hadad, C.M. Efforts toward treatments against aging of organophosphorus-inhibited acetylcholinesterase. Ann. N. Y. Acad. Sci. Blackwell Publ. Inc. 2016, 1374, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.G.; Franjesevic, A.J.; Corrigan, T.S.; Coldren, W.H.; Dicken, R.; Sillart, S.; DeYong, A.; Yoshino, N.; Smith, J.; Fabry, S.; et al. Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. J. Med. Chem. 2018, 61, 7034–7042. [Google Scholar] [CrossRef] [PubMed]
- McHardy, S.F.; Wang, H.Y.L.; McCowen, S.V.; Valdez, M.C. Recent advances in acetylcholinesterase Inhibitors and Reactivators: An update on the patent literature (2012–2015). Expert Opin. Ther. Pat. 2017, 27, 455–476. [Google Scholar] [CrossRef] [PubMed]
- Biovia, D.S. Discovery Studio Modeling Environment. Dassault Syst. Release SanDiego 4 2023. Available online: https://3ds.com/products-services/biovia/products (accessed on 22 June 2023).
- Thomsen, R.; Christensen, M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Han, G.Y. Retracted Ionic liquid-functionalized graphene for fabricating an amperometric acetylcholinesterase biosensor (Retracted article. See vol. 138, pg. 7422, 2013). Analyst 2012, 137, 3160–3165. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, E.F.; Ramalho, T.C.; Reynolds, R.C. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with Mycobacterium tuberculosis and human dihydrofolate reductases. J. Biomol. Struct. Dyn. 2008, 25, 377–385. [Google Scholar] [CrossRef]
- Banerjee, P.; Ulker, O.C. Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicol. Mech. Methods 2022, 32, 542–548. [Google Scholar] [CrossRef]
- Arulanandam, C.D.; Hwang, J.S.; Rathinam, A.J.; Dahms, H.U. Evaluating different web applications to assess the toxicity of plasticizers. Sci. Rep. 2022, 12, 19684. [Google Scholar] [CrossRef]
- Luo, L.; Zhong, A.; Wang, Q.; Zheng, T. Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, ADMET, and Molecular Dynamics (MD) Simulation of Potential Inhibitors of PD-L1 from the Library of Marine Natural Products. Mar. Drugs 2021, 20, 29. [Google Scholar] [CrossRef]
- Fowler, S.; Brink, A.; Cleary, Y.; Günther, A.; Heinig, K.; Husser, C.; Kletzl, H.; Kratochwil, N.; Mueller, L.; Savage, M.; et al. Addressing Today’s Absorption, Distribution, Metabolism, and Excretion (ADME) Challenges in the Translation of In Vitro ADME Characteristics to Humans: A Case Study of the SMN2 RNA Splicing Modifier Risdiplam. Drug Metab. Dispos. 2022, 50, 65. [Google Scholar] [CrossRef] [PubMed]
- Sargsyan, K.; Grauffel, C.; Lim, C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.S.; Maulana, S.; Widodo, A.; Mukaddas, A.; Pitopang, R. Docking Study on Anti-HIV-1 Activity of Secondary Metabolites from Zingiberaceae Plants. J. Pharm. BioAllied Sci. 2020, 12, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Vankayala, S.L.; Warrensford, L.C.; Pittman, A.R.; Pollard, B.C.; Kearns, F.L.; Larkin, J.D.; Woodcock, H.L. CIFDock: A novel CHARMM-based flexible receptor-flexible ligand docking protocol. J. Comput. Chem. 2022, 43, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, I.V.; Patrizio, P. Development and Validation Molecular Docking Analysis of Human serum albumin (HSA). BioRxiv 2021. BioRxiv:2021.07.09.451789. Available online: http://biorxiv.org/content/early/2021/07/10/2021.07.09.451789.abstract (accessed on 26 August 2023).
- Bhardwaj, P.; Biswas, G.P.; Bhunia, B. Docking-based inverse virtual screening strategy for identification of novel protein targets for triclosan. Chemosphere 2019, 235, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Quinn, D.M.; Topczewski, J.; Yasapala, N.; Lodge, A. Why is aged acetylcholinesterase so difficult to reactivate? Molecules 2017, 22, 1464. [Google Scholar] [CrossRef] [PubMed]
- de Castro, A.A.; Assis, L.C.; Soares, F.V.; Kuca, K.; Polisel, D.A.; da Cunha, E.F.; Ramalho, T.C. Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016–2019). Biomolecules 2020, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- EA de Lima, W.; F Pereira, A.; A de Castro, A.; FF da Cunha, E.; C Ramalho, T. Flexibility in the Molecular Design of Acetylcholinesterase Reactivators: Probing Representative Conformations by Chemometric Techniques and Docking/QM Calculations. Lett. Drug Des. Discov. 2016, 13, 360–371. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Garrett, B.C.; Klippenstein, S.J. Current Status of Transition-State Theory. J. Phys. Chem. 1996, 100, 12771–12800. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed]
- Bakchi, B.; Krishna, A.D.; Sreecharan, E.; Ganesh, V.B.J.; Niharika, M.; Maharshi, S.; Puttagunta, S.B.; Sigalapalli, D.K.; Bhandare, R.R.; Shaik, A.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct. 2022, 1259, 132712. [Google Scholar] [CrossRef]
- Bragina, M.E.; Daina, A.; Perez, M.A.; Michielin, O.; Zoete, V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. Int. J. Mol. Sci. 2022, 23, 811. [Google Scholar] [CrossRef] [PubMed]
- Protti, Í.F.; Rodrigues, D.R.; Fonseca, S.K.; Alves, R.J.; de Oliveira, R.B.; Maltarollo, V.G. Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem 2021, 16, 1446–1456. [Google Scholar] [CrossRef]
Aged AchE | |||
---|---|---|---|
ΔE * (kcal mol−1) | Relative Resurrection ** (%) | H-Bond Energies (kcal mol−1) | |
Active ligand | −91.81 | - | −5.00 |
C1 | −88.00 | 0.50 | −4.99 |
C2 | −85.55 | 2.00 | 0.00 |
C3 | −89.18 | 9.50 | −2.50 |
C4 | −99.18 | 12.50 | −2.50 |
C5 | −86.19 | 4.00 | −2.49 |
C6 | −88.27 | 5.00 | −2.50 |
Ligand | Experimental (Relative Resurrection %) | ΔE * (kcal mol−1) | ΔΔE #b (kcal mol−1) | Frequency/cm−1 |
---|---|---|---|---|
C1 | 0.50 | −88.00 | 0.84 | i81.95 |
C2 | 2.00 | −85.55 | 0.00 | i109.60 |
C3 | 9.50 | −89.18 | 1.59 | i180.50 |
C4 | 12.50 | −99.18 | 0.11 | i89.77 |
C5 | 4.00 | −86.19 | 1.25 | i92.88 |
C6 | 5.00 | −88.27 | 0.29 | i95.75 |
Ligand | ΔE kcal mol−1 | ΔΔE (kcal mol−1) | % Resurrection | Frequency/cm−1 |
---|---|---|---|---|
C4 | −99.18 | 0.114 | 12.03 | i89.77 |
C4-1 | −98.84 | 2.540 | 6.55 | i149.08 |
C4-2 | −100.73 | 0.574 | 12.34 | i126.96 |
C4-3 | −101.56 | 1.003 | 12.11 | i177.40 |
C4-4 | −95.37 | 1.908 | 5.00 | i140.24 |
C4-5 | −81.962 | 0.099 | −2.31 | i102.14 |
C4-6 | −85.291 | 0.115 | 0.43 | i108.61 |
Endpoint | Target | C4 | C4-1 | C4-2 | C4-3 | C4-4 | C4-5 | C4-6 |
---|---|---|---|---|---|---|---|---|
Organ Toxicity | Hepatotoxicity | Inactive | Inactive | Inactive | Inactive | Active | Inactive | Inactive |
Toxicity EndPoints | Carcinogenicity | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive |
Immunotoxicity | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | |
Mutagenicity | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | |
Cytotoxicity | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | |
LD50 (mg/kg) | 195 mg/kg | 800 mg/kg | 837 mg/kg | 650 mg/kg | 1600 mg/kg | 195 mg/kg | 195 mg/kg | |
Toxicity | 3 | 4 | 4 | 4 | 4 | 3 | 3 | |
Tox21—Nuclear | Aryl hydrocarbon Receptor (AhR) Androgen Receptor (AR) | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive |
receptor signalling | ||||||||
pathways | ||||||||
Tox21—Stress response | Heat shock factor | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive | Inactive |
pathways | response element | |||||||
(HSE) |
Molecule | MW (g/mol) | Rotable Bonds | H-Bonds Aceptors | H-Bonds Donors | ESOL Log S | TPSA(Å2) | WLOGP | GI Absorption | Log Kp (cm/s) |
---|---|---|---|---|---|---|---|---|---|
C4 | 178.23 | 2 | 3 | 1 | −1.70 | 36.36 | 0.82 | High | −6.78 |
C4-1 | 174.20 | 2 | 2 | 1 | −1.90 | 38.05 | 1.64 | High | −6.74 |
C4-2 | 175.19 | 2 | 3 | 1 | −1.60 | 50.94 | 1.03 | High | −7.21 |
C4-3 | 175.19 | 2 | 3 | 1 | −1.70 | 50.94 | 1.03 | High | −7.06 |
C4-4 | 176.22 | 2 | 3 | 1 | −1.50 | 36.36 | 0.63 | High | −6.95 |
C4-5 | 194.23 | 2 | 4 | 2 | −1.5 | 56.59 | 0.56 | High | −7.13 |
C4-6 | 194.23 | 2 | 4 | 2 | −1.7 | 56.59 | 0.56 | High | −6.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, L.V.F.; Santos, T.M.R.; Tavares, C.A.; Rasouli, H.; Ramalho, T.C. Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors. Molecules 2024, 29, 3684. https://doi.org/10.3390/molecules29153684
Ferreira LVF, Santos TMR, Tavares CA, Rasouli H, Ramalho TC. Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors. Molecules. 2024; 29(15):3684. https://doi.org/10.3390/molecules29153684
Chicago/Turabian StyleFerreira, Leonardo V. F., Taináh M. R. Santos, Camila A. Tavares, Hassan Rasouli, and Teodorico C. Ramalho. 2024. "Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors" Molecules 29, no. 15: 3684. https://doi.org/10.3390/molecules29153684
APA StyleFerreira, L. V. F., Santos, T. M. R., Tavares, C. A., Rasouli, H., & Ramalho, T. C. (2024). Atomistic Origins of Resurrection of Aged Acetylcholinesterase by Quinone Methide Precursors. Molecules, 29(15), 3684. https://doi.org/10.3390/molecules29153684