Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.2. Raman Spectrometry
2.3. X-ray Diffraction
3. Material and Methods
4. Discussion
4.1. Production
4.2. Parametric Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillman, C.E.; Jayasuriya, A.C. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 130, 112466. [Google Scholar] [CrossRef]
- Haidar, Z.S. nanoBONE: Re-visiting Osseo-Recons-truction and -Repair... with a nanoTwist. J. Oral Res. 2021, 10, 1–6. [Google Scholar] [CrossRef]
- Zumarán, C.C.; Parra, M.V.; Olate, S.A.; Fernández, E.G.; Muñoz, F.T.; Haidar, Z.S. The 3 R’s for Platelet-Rich Fibrin: A “Super” Tri-Dimensional Biomaterial for Contemporary Naturally-Guided Oro-Maxillo-Facial Soft and Hard Tissue Repair, Reconstruction and Regeneration. Materials 2018, 11, 1293. [Google Scholar] [CrossRef] [PubMed]
- Haidar, Z.S.; Di-Silvio, L.; Noujeim, Z.E.F.; Davies, J.E.; Cuisinier, F.; Banerjee, A. Engineering Solutions for Cranio-Maxillo-Facial Rehabilitation and Oro-Dental Healthcare. J. Heal. Eng. 2019, 2019, 5387305. [Google Scholar] [CrossRef] [PubMed]
- Damsaz, M.; Castagnoli, C.Z.; Eshghpour, M.; Alamdari, D.H.; Alamdari, A.H.; Noujeim, Z.E.F.; Haidar, Z.S. Evidence-Based Clinical Efficacy of Leukocyte and Platelet-Rich Fibrin in Maxillary Sinus Floor Lift, Graft and Surgical Augmentation Procedures. Front. Surg. 2020, 7, 537138. [Google Scholar] [CrossRef] [PubMed]
- Fillingham, Y.; Jacobs, J. Bone grafts and their substitutes. Bone Jt. J. 2016, 98-B (1 Suppl. A), 6–9. [Google Scholar] [CrossRef]
- Gómez-Barrena, E.; Ehrnthaller, C. Long bone uninfected non-union: Grafting techniques. EFORT Open Rev. 2024, 9, 329–338. [Google Scholar] [CrossRef]
- Maria, O.M.; Heram, A.; Tran, S.D. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent. J. 2024, 36, 955–962. [Google Scholar] [CrossRef]
- Barreto, M.E.V.; Medeiros, R.P.; Shearer, A.; Fook, M.V.L.; Montazerian, M.; Mauro, J.C. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J. Funct. Biomater. 2022, 14, 23. [Google Scholar] [CrossRef]
- Seyhan, S.A.; Alkaya, D.B.; Cesur, S.; Oktar, F.N.; Gunduz, O. Preparation and characterization of pure natural hydroxyapatite derived from seashells for controlled drug delivery. J. Aust. Ceram. Soc. 2022, 58, 1231–1240. [Google Scholar] [CrossRef]
- Malde, M.K.; Graff, I.E.; Siljander-Rasi, H.; Venäläinen, E.; Julshamn, K.; Pedersen, J.I.; Valaja, J. ORIGINAL ARTICLE: Fish bones—a highly available calcium source for growing pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, e66–e76. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Liu, M.; Fan, F.; Yu, C.; Lu, W.; Du, M. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 706–712. [Google Scholar] [CrossRef]
- Venkatesan, J.; Ryu, B.; Sudha, P.N.; Kim, S.-K. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2012, 50, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.; Lowe, B.; Manivasagan, P.; Kang, K.-H.; Chalisserry, E.P.; Anil, S.; Kim, D.G.; Kim, S.-K. Isolation and Characterization of Nano-Hydroxyapatite from Salmon Fish Bone. Materials 2015, 8, 5426–5439. [Google Scholar] [CrossRef]
- Muñoz, F.; Haidar, Z.S.; Puigdollers, A.; Guerra, I.; Padilla, M.C.; Ortega, N.; García, M.J. A novel Chilean salmon fish backbone-based nanoHydroxyApatite functional biomaterial for potential use in bone tissue engineering. Front. Med. 2024, 11, 1330482. [Google Scholar] [CrossRef]
- Hoyer, B.; Bernhardt, A.; Heinemann, S.; Stachel, I.; Meyer, M.; Gelinsky, M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules 2012, 13, 1059–1066. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S.; Sinthusamran, S.; Sae-leaw, T.; Suzuki, N.; Kitani, Y.; Sookchoo, P. Effect of Alkaline Treatment on Characteristics of Bio-Calcium and Hydroxyapatite Powders Derived from Salmon Bone. Appl. Sci. 2020, 10, 4141. [Google Scholar] [CrossRef]
- Kotak, D.J.; Devarajan, P.V. Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomedicine 2020, 24, 102153. [Google Scholar] [CrossRef] [PubMed]
- Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. [Google Scholar] [CrossRef]
- Diez-Escudero, A.; Espanol, M.; Ginebra, M.P. High-aspect-ratio nanostructured hydroxyapatite: Towards new functionalities for a classical material. Chem. Sci. 2023, 15, 55–76. [Google Scholar] [CrossRef]
- Bas, M.; Daglilar, S.; Kuskonmaz, N.; Kalkandelen, C.; Erdemir, G.; Kuruca, S.E.; Tulyaganov, D.; Yoshioka, T.; Gunduz, O.; Ficai, D.; et al. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes. Int. J. Mol. Sci. 2020, 21, 8082. [Google Scholar] [CrossRef]
- Liou, S.-C.; Chen, S.-Y.; Lee, H.-Y.; Bow, J.-S. Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials 2004, 25, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Vu, A.A.; Burke, D.A.; Bandyopadhyay, A.; Bose, S. Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Addit. Manuf. 2021, 39, 101870. [Google Scholar] [CrossRef]
- Xu, J.L.; Khor, K.A.; Dong, Z.L.; Gu, Y.W.; Kumar, R.; Cheang, P. Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Mater. Sci. Eng. A 2004, 374, 101–108. [Google Scholar] [CrossRef]
- Terzioğlu, P.; Öğüt, H.; Kalemtaş, A. Natural calcium phosphates from fish bones and their potential biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 91, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Peng, C.; Zhou, X.; Chen, L.; Wang, W.; Zhang, Y.; Ma, P.X.; He, C. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon 2017, 116, 325–337. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Y.; Chen, S.; Liu, Y.; Liu, Z.; Bai, J. Nano-Hydroxyapatite Bone Scaffolds with Different Porous Structures Processed by Digital Light Processing 3D Printing. Int. J. Bioprint 2022, 8, 502. [Google Scholar] [CrossRef] [PubMed]
- Haidar, Z.S. Biomechanics and Functional Tissue Engineering; IntechOpen: London, UK, 2021; pp. 1–268. [Google Scholar]
- Jawadi, Z.; Yang, C.; Haidar, Z.S.; Santa Maria, P.L.; Massa, S. Bio-Inspired Muco-Adhesive Polymers for Drug Delivery Applications. Polymers 2022, 14, 5459. [Google Scholar] [CrossRef]
- Mo, X.; Zhang, D.; Liu, K.; Zhao, X.; Li, X.; Wang, W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 1291. [Google Scholar] [CrossRef]
- Nam, P.V.; Nguyen, V.H.; Trang, S.T. Properties of hydroxyapatites prepared from different fish bones: A comparative study. Ceram. Int. 2019, 45, 20141–20147. [Google Scholar] [CrossRef]
- Jindapon, N.; Klinmalai, P.; Surayot, U.; Tanadchangsaeng, N.; Pichaiaukrit, W.; Phimolsiripol, Y.; Vichasilp, C.; Wangtueai, S. Preparation, Characterization, and Biological Properties of Hydroxyapatite from Bigeye Snapper (Priancanthus tayenus) Bone. Int. J. Mol. Sci. 2023, 24, 2776. [Google Scholar] [CrossRef] [PubMed]
Raman 1 Pattern | Raman 1 Sample | Raman 2 Pattern | Raman 2 Sample | HORIBA Scientific Raman Database * |
---|---|---|---|---|
307,572 | - | 307,572 | - | δ(CC) aliphatic chains |
- | 269,532 | - | 269,532 | δ(CC) aliphatic chains |
- | 292,969 | - | 292,969 | υ(Se-Se) |
- | 313,404 | - | 313,404 | υ(Se-Se) |
428,881 | - | 428,881 | - | υ(S-S) |
- | 431,74 | - | 431,74 | υ(S-S) |
448,8075 | - | 448,8075 | - | υ(Si-O-Si) |
499,951 | - | 499,951 | - | υ(Si-O-Si) |
- | 502,777 | - | 502,77 | υ(Si-O-Si) |
580,40886 | 581,35 | 589,707 | 581,35 | υ(C-Cl) |
614,708 | - | - | 623,019 | υ(C-I) |
727,278 | - | - | 759,819 | υ(C-S) aliphatic |
961,748 | 961,748 | 961,748 | 961,748 | ν 1 (PO4 3−)/(A/E2) |
1049,81 | - | 1049,81 | - | υ(C=S) |
1074,87223 | 1071,03918 | 1074,87223 | 1070,33 | υ(C=S) |
- | 1244,80409 | - | 1244,23 | υ(C=S) |
JCPDS 74-0565 * | Shi et al. [12] Natural HA | HA Sigma Aldrich | Salmon Fish Bone Bio-Ceramic |
---|---|---|---|
- | - | 10.8 | 10.43 |
25.882 | 25.845 | 25.81 | 25.9 |
- | - | 28.08 | 28.37 |
- | - | 28.89 | 28.5 |
- | - | 29.64 | 29.16 |
31.765 | 31.792 | 31.73 | 31.6 |
32.194 | 32.142 | 32.13 | - |
32.896 | 32.935 | 32.86 | - |
34.062 | 34.055 | 34 | - |
39.79 | 39.816 | 39.74 | 39.46 |
- | - | 45.25 | 45.41 |
46.693 | 46.698 | 46.61 | 46.72 |
- | - | 48.01 | 48.04 |
49.489 | 49.496 | 49.39 | 49.42 |
50.474 | 50.568 | 50.42 | - |
- | - | 51.21 | 51.41 |
53.218 | 53.183 | 53.1 | 53.27 |
- | - | 57.8 | 56.43 |
- | - | 62.93 | 63.84 |
- | - | 66.26 | 66.17 |
- | - | 75.49 | 75.25 |
HA | Extraction and/or Production Method | Main Characteristics | Main Effects in Pre-Clinical Studies |
---|---|---|---|
Human-derived | Auto-/Allo-graft obtained from human donor bone, typically through demineralization, sterilization, and sometimes freeze-drying to produce a bone graft material. |
| in vitro: Supports robust cell attachment and differentiation, often better than synthetic or animal-derived HA due to its bioactive matrix. in vivo: Excellent biocompatibility and osteointegration, with reduced risk of immune rejection. Yet, availability and ethical considerations limit its use. |
Synthetic | Synthesized through chemical precipitation, sol-gel processes, hydrothermal methods, and other wet chemical techniques. |
| in vitro: Excellent biocompatibility, supports cell attachment and proliferation. Bioactivity can vary depending on the crystallinity and surface area. in vivo: Often shows good integration with host tissue, but may have slower resorption rates compared to natural HA. Absence of organic components may reduce its osteoinductive potential. |
Bovine-derived | Derived from bovine bone through calcination or enzymatic treatment to remove organic components while preserving the mineral phase. |
| in vitro: Promotes cell attachment and differentiation. Natural porosity enhances nutrient exchange. in vivo: Shows good osteoconductivity and integration, but there may be concerns regarding disease transmission and immune response, although these are typically minimal after proper processing. |
Porcine-derived | Similar to bovine HA, obtained through thermal or chemical processing of porcine bone to isolate the mineral phase. |
| in vitro: Supports cellular activities, such as adhesion, proliferation, and differentiation. in vivo: Demonstrates good biocompatibility and osteoconductivity, but similar to bovine HA, it may present a risk of immunogenicity or disease transmission. |
Fish-Derived | Extracted from fish bones (e.g., Chilean salmon) through processes, such as alkaline hydrolysis, calcination, or enzymatic treatment. |
| in vitro: Excellent biocompatibility, promoting cell adhesion and proliferation. The nano-scale structure may enhance bioactivity and osteoinductive potential. in vivo: Demonstrates promising osteoconductivity and integration with host tissue. The sustainable sourcing from fish waste offers an eco-friendly alternative to traditional sources. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz, F.; Haidar, Z.S.; Puigdollers, A.; Guerra, I.; Padilla, M.C.; Ortega, N.; Balcells, M.; García, M.J. Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process. Molecules 2024, 29, 4002. https://doi.org/10.3390/molecules29174002
Muñoz F, Haidar ZS, Puigdollers A, Guerra I, Padilla MC, Ortega N, Balcells M, García MJ. Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process. Molecules. 2024; 29(17):4002. https://doi.org/10.3390/molecules29174002
Chicago/Turabian StyleMuñoz, Francisco, Ziyad S. Haidar, Andreu Puigdollers, Ignacio Guerra, María Cristina Padilla, Nicole Ortega, Mercedes Balcells, and María José García. 2024. "Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process" Molecules 29, no. 17: 4002. https://doi.org/10.3390/molecules29174002
APA StyleMuñoz, F., Haidar, Z. S., Puigdollers, A., Guerra, I., Padilla, M. C., Ortega, N., Balcells, M., & García, M. J. (2024). Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process. Molecules, 29(17), 4002. https://doi.org/10.3390/molecules29174002