Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5,6)-Fullerenes C52–C70
Abstract
:1. Introduction
2. Computational Details
- The number of Kekulé structures of B is provided by .
- The number of Clar covers of B is provided by .
- The Clar number of B is provided by .
- The number of Clar formulas of B is provided by .
- The ZZ polynomial is a generating function for the sequence of Clar covers of different orders.
3. Results
3.1. Correlation of the Kekulé Count and Clar Count with the Total Energies of Fullerene Isomers
3.2. Correlation between the Clar Number and Total Energy of Fullerene Isomers
3.3. Correlation between Clar and Kekulé Counts and Relation to Isomer Stability
3.4. Does the Most Stable Isomer Maximize the Kekulé Count among the Isomers with the Maximal Value of Clar Number?
3.5. ZZ Polynomials Can Be Used as Alternative Unique Labels for Discriminating between Fullerene Isomers
3.6. Pauling Bond Orders in Fullerenes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DFTB | Density-Functional Tight-Binding method |
DFT | Density Functional Theory |
HOMO | Highest Occupied Molecular Orbital |
LUMO | Lowest Unoccupied Molecular Orbital |
SK file | Slater–Koster file |
IPR | Isolated Pentagon Rule |
Clar number | |
Clar count | |
Kekulé count | |
ZZ polynomial | Zhang–Zhang polynomial (aka Clar covering polynomial) |
References
- Coolsaet, K.; D’hondt, S.; Goedgebeur, J. House of Graphs 2.0: A database of interesting graphs and more. Discr. Appl. Math. 2023, 325, 97–107. [Google Scholar]
- Manolopoulos, D.E.; May, J.C.; Down, S.E. Theoretical studies of the fullerenes: C34 to C70. Chem. Phys. Lett. 1991, 181, 105–111. [Google Scholar] [CrossRef]
- Fowler, P.W.; Manolopoulos, D.E. An Atlas of Fullerenes; Dover: Mineola, NY, USA, 2006. [Google Scholar]
- Manolopoulos, D.E.; Fowler, P.W. A fullerene without a spiral. Chem. Phys. Lett. 1993, 204, 1–7. [Google Scholar] [CrossRef]
- Brinkmann, G.; Goedgebeur, J.; McKay, B.D. The smallest fullerene without a spiral. Chem. Phys. Lett. 2012, 522, 54–55. [Google Scholar] [CrossRef]
- Brinkmann, G.; Dress, A.W. A Constructive Enumeration of Fullerenes. J. Algorithms 1997, 23, 345–358. [Google Scholar] [CrossRef]
- Brinkmann, G.; Dress, A.W. PentHex Puzzles: A Reliable and Efficient Top-Down Approach to Fullerene-Structure Enumeration. Adv. Appl. Math. 1998, 21, 473–480. [Google Scholar] [CrossRef]
- Kroto, H.W. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–531. [Google Scholar] [CrossRef]
- Kroto, H.W. Space, stars, C60, and soot. Science 1988, 242, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Manolopoulos, D.E.; Fowler, P.W.; Taylor, R.; Kroto, H.W.; Walton, D.R.M. An end to the search for the ground state of C84? J. Chem. Soc. Faraday Trans. 1992, 88, 3117–3118. [Google Scholar] [CrossRef]
- Kietzmann, H.; Rochow, R.; Ganteför, G.; Eberhardt, W.; Vietze, K.; Seifert, G.; Fowler, P.W. Electronic structure of small fullerenes: Evidence for the high stability of C32. Phys. Rev. Lett. 1998, 81, 5378–5381. [Google Scholar] [CrossRef]
- Piskoti, C.; Yarger, J.; Zettl, A. C36, a new carbon solid. Nature 1998, 393, 771–774. [Google Scholar] [CrossRef]
- Zhu, W.; Miser, D.E.; Chan, W.G.; Hajaligol, M.R. Characterization of combustion fullerene soot, C60, and mixed fullerene. Carbon 2004, 42, 1463–1471. [Google Scholar] [CrossRef]
- Tan, Y.Z.; Xie, S.Y.; Huang, R.B.; Zheng, L.S. The stabilization of fused-pentagon fullerene molecules. Nat. Chem. 2009, 1, 450–460. [Google Scholar] [CrossRef]
- Fedorov, A.S.; Fedorov, D.A.; Kozubov, A.A.; Avramov, P.V.; Nishimura, Y.; Irle, S.; Witek, H.A. Relative isomer abundance of fullerenes and carbon nanotubes correlates with kinetic stability. Phys. Rev. Lett. 2011, 107, 175506, Erratum in Phys. Rev. Lett. 2012, 108, 249902. [Google Scholar] [CrossRef]
- Witek, H.A.; Irle, S. Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature. Carbon 2016, 100, 484–491. [Google Scholar] [CrossRef]
- Fowler, P.W. Systematics of Fullerenes and Related Clusters. Philos. Trans. R. Soc. A 1993, 243, 39–52. [Google Scholar]
- Díaz-Tendero, S.; Alcamí, M.; Martín, F. Fullerene C50: Sphericity takes over, not strain. Chem. Phys. Lett. 2005, 407, 153–158. [Google Scholar] [CrossRef]
- Díaz-Tendero, S.; Alcamí, M.; Martín, F. Theoretical study of ionization potentials and dissociation energies of fullerenes (n=50–60, q=0, 1 and 2). JCP 2003, 119, 5545–5557. [Google Scholar] [CrossRef]
- Alcamí, M.; Sánchez, G.; Díaz-Tendero, S.; Wang, Y.; Martín, F. Structural patterns in fullerenes showing adjacent pentagons: C20 to C72. J. Nanosci. Nanotechnol. 2007, 7, 1329–1338. [Google Scholar] [CrossRef]
- Austin, S.J.; Fowler, P.W.; Manolopoulos, D.E.; Orlandi, G.; Zerbetto, F. Structural Motifs and the Stability of Fullerenes. J. Phys. Chem. 1995, 99, 8076–8081. [Google Scholar] [CrossRef]
- Sure, R.; Hansen, A.; Schwerdtfeger, P.; Grimme, S. Comprehensive theoretical study of all 1812 C60 isomers. Phys. Chem. Chem. Phys. 2017, 19, 14296–14305. [Google Scholar] [CrossRef]
- Chen, Z.C.; Tan, Y.Z.; Xie, S.Y. Fullerenes Violating the Isolated Pentagon Rule. In Handbook of Fullerene Science and Technology; Lu, X., Akasaka, T., Slanina, Z., Eds.; Springer Nature: Singapore, 2022; pp. 181–217. [Google Scholar]
- Poater, J.; Fradera, X.; Duran, M.; Solá, M. An insight into the local aromaticities of polycyclic aromatic hydrocarbons and fullerenes. Chem. Eur. J. 2003, 9, 1113–1122. [Google Scholar] [CrossRef]
- Chen, Z.; King, R.B. Spherical Aromaticity: Recent Work on Fullerenes, Polyhedral Boranes, and Related Structures. Chem. Rev. 2005, 105, 3613–3642. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J.I.; Corminboeuf, C.; Bohmann, J.; Lu, X.; Hirsch, A.; von Rague Schleyer, P. Is C60 buckminsterfullerene aromatic? Phys. Chem. Chem. Phys. 2012, 14, 14886–14891. [Google Scholar] [CrossRef]
- Matías, A.S.; Havenith, R.W.A.; Alcamí, M.; Ceulemans, A. Is C50 a superaromat? Evidence from electronic structure and ring current calculations. Phys. Chem. Chem. Phys. 2016, 18, 11653–11660. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, Z. Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes. Chem. Rev. 2005, 105, 3643–3696. [Google Scholar]
- Randić, M.; Balaban, A.T. Local aromaticity and aromatic sextet theory beyond Clar. Int. J. Quantum Chem. 2018, 118, e25657. [Google Scholar] [CrossRef]
- Klein, D.J.; Schmalz, T.G.; Hite, G.E.; Seitz, W.A. Resonance in C60 Buckminsterfullerene. J. Am. Chem. Soc. 1986, 108, 1301–1302. [Google Scholar] [CrossRef]
- Aihara, J.I. Topological resonance energies of fullerenes and their molecular ions. J. Mol. Struct. 1994, 311, 1–8. [Google Scholar]
- Aihara, J.I. Bond Resonance Energy and Verification of the Isolated Pentagon Rule. J. Am. Chem. Soc. 1995, 117, 4130–4136. [Google Scholar] [CrossRef]
- Babić, D.; Ori, O. Matching polynomial and topological resonance energy of C70. Chem. Phys. Lett. 1995, 234, 240–244. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, Z.; Lin, C.; Zhang, Q. Qualitatively graph-theoretical study on stability and formation of fullerenes and nanotubes. Sc. China Ser. B-Chem. 2003, 46, 513–520. [Google Scholar] [CrossRef]
- Austin, S.J.; Fowler, P.W.; Hansen, P.; Manolopoulos, D.E.; Zheng, M. Fullerene isomers of C60. Kekulé counts versus stability. Chem. Phys. Lett. 1994, 228, 478–484. [Google Scholar] [CrossRef]
- Vukičević, D.; Kroto, H.W.; Randić, M. Atlas of Kekulé Valence Structures of Buckminsterfullerene. Croat. Chem. Acta 2005, 78, 223–234. [Google Scholar]
- Došlić, T. Fullerene graphs with exponentially many perfect matchings. J. Math. Chem. 2007, 41, 183–192. [Google Scholar] [CrossRef]
- Došlić, T. Leapfrog fullerenes have many perfect matchings. J. Math. Chem. 2008, 44, 1–4. [Google Scholar] [CrossRef]
- Došlić, T. Finding more matchings in leapfrog fullerenes. J. Math. Chem. 2009, 45, 1130–1136. [Google Scholar] [CrossRef]
- Kardoš, F.; Král, D.; Miškufa, J.; Sereni, J.S. Fullerene graphs have exponentially many perfect matchings. J. Math. Chem. 2009, 46, 443–447. [Google Scholar] [CrossRef]
- Graver, J.E. Kekulé structures and the face independence number of a fullerene. Eur. J. Combin. 2007, 28, 1115–1130. [Google Scholar] [CrossRef]
- Rogers, K.M.; Fowler, P.W. Leapfrog fullerenes, Hückel bond order and Kekulé structures. J. Chem. Soc. Perkin Trans. 2001, 2, 18–22. [Google Scholar] [CrossRef]
- El-Basil, S. Clar sextet theory of buckminsterfullerene (C60). J. Mol. Struct. Theochem 1993, 531, 9–21. [Google Scholar] [CrossRef]
- Carr, J.A.; Wang, X.; Ye, D. Packing resonant hexagons in fullerenes. Discret. Optim. 2014, 13, 49–54. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H. The Clar number of fullerenes on surfaces. MATCH Commun. Math. Comput. Chem. 2014, 72, 411–426. [Google Scholar]
- Gao, Y.; Li, Q.; Zhang, H. Fullerenes with the maximum Clar number. Discret. Appl. Math. 2016, 202, 58–69. [Google Scholar] [CrossRef]
- Ahmadi, M.B.; Farhadi, E.; Khorasani, V.A. On computing the Clar number of a fullerene using optimization techniques. MATCH Commun. Math. Comput. Chem. 2016, 75, 695–701. [Google Scholar]
- Zhang, H.; Ye, D. An Upper Bound for the Clar Number of Fullerene Graphs. J. Math. Chem. 2007, 41, 123–133. [Google Scholar] [CrossRef]
- Ye, D.; Zhang, H. Extremal fullerene graphs with the maximum Clar number. Discret. Appl. Math. 2009, 157, 3152–3173. [Google Scholar] [CrossRef]
- Hartung, E. Fullerenes with complete Clar structure. Discret. Appl. Math. 2013, 161, 2952–2957. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, H. Counting Clar structures of (4,6)-fullerenes. Appl. Math. Comput. 2019, 346, 559–574. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H. Clar Structure and Fries Set of Fullerenes and (4,6)-Fullerenes on Surfaces. J. Appl. Math. 2014, 2014, 196792. [Google Scholar] [CrossRef]
- Klein, D.J.; Balaban, A.T. Clarology for conjugated carbon nano-structures: Molecules, polymers, graphene, defected graphene, fractal benzenoids, fullerenes, nano-tubes, nano-cones, nano-tori, etc. Open Org. Chem. J. 2011, 5, 27–61. [Google Scholar] [CrossRef] [PubMed]
- Graver, J.E.; Hartung, E.J. The Clar and Fries structures of a fullerene I. Discr. Appl. Math. 2016, 215, 112–125. [Google Scholar] [CrossRef]
- Fowler, P.W.; Myrvold, W.; Vandenberg, R.L.; Hartung, E.J.; Graver, J.E. Clar and Fries structures for fullerenes. Art Discret. Appl. Math. 2022. accepted. [Google Scholar] [CrossRef]
- Manolopoulos, D.E.; Fowler, P.W. Molecular graphs, point groups, and fullerenes. J. Chem. Phys. 1992, 96, 7603–7614. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, D.; Shiu, W.C. Forcing matching numbers of fullerene graphs. Discret. Appl. Math. 2010, 158, 573–582. [Google Scholar] [CrossRef]
- Tratnik, N.; Žigert Pleteršek, P. Resonance graphs of fullerenes. Ars Math. Contemp. 2016, 11, 425–435. [Google Scholar] [CrossRef]
- Cvetković, D.; Stevanović, D. Spectral moments of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2004, 50, 62–72. [Google Scholar]
- Marušič, D. Hamilton cycles and paths in fullerenes. J. Chem. Inf. Model. 2007, 47, 732–736. [Google Scholar] [CrossRef]
- Kutnar, K.; Marušič, D. On cyclic edge-connectivity of fullerenes. Discret. Appl. Math. 2008, 156, 1661–1669. [Google Scholar] [CrossRef]
- Randić, M.; Kroto, H.W.; Vukičević, D. Numerical Kekulé structures of fullerenes and partitioning of π-electrons to pentagonal and hexagonal rings. J. Chem. Inf. Model. 2007, 47, 897–904. [Google Scholar] [CrossRef]
- Balaban, A.T.; Liu, X.; Klein, D.J.; Babics, D.; Schmalz, T.G.; Seitz, W.A.; Randić, M. Graph Invariants for Fullerenes. J. Chem. Inf. Comput. Sci. 1995, 35, 396–404. [Google Scholar] [CrossRef]
- Andova, V.; Došlić, T.; Krnc, M.; Lužar, B.; Škrekovski, R. On the diameter and some related invariants of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2012, 68, 109–130. [Google Scholar]
- Yang, Q.; Zhang, H.; Lin, Y. On the anti-forcing number of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2015, 74, 673–692. [Google Scholar]
- Yang, Q.; Ye, D.; Zhang, H.; Lin, Y. On the anti-Kekulé number of fullerenes. MATCH Commun. Math. Comput. Chem. 2012, 67, 281–288. [Google Scholar]
- Ghorbani, M.; Dehmer, M.; Zangi, S. On Certain Aspects of Graph Entropies of Fullerenes. MATCH Commun. Math. Comput. Chem. 2019, 81, 163–174. [Google Scholar]
- Fajtlowicz, S.; Larson, C. Graph-theoretic independence as a predictor of fullerene stability. Chem. Phys. Lett. 2003, 377, 485–490. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H. The isolated-pentagon rule and nice substructures in fullerenes. Ars Math. Contemp. 2018, 15, 487–497. [Google Scholar] [CrossRef]
- Réti, T.; László, I. On the Combinatorial Characterization of Fullerene Graphs. Acta Polytech. Hung. 2009, 6, 85–93. [Google Scholar]
- Zhang, H.; Ye, D.; Liu, Y. A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of C60. J. Math. Chem. 2010, 48, 733–740. [Google Scholar] [CrossRef]
- Clar, E. The Aromatic Sextet; Wiley: London, UK, 1972. [Google Scholar]
- Witek, H.A.; Kang, J.S. ZZ polynomials for isomers of (5,6)-fullerenes Cn with n = 20–50. Symmetry 2020, 12, 1483. [Google Scholar] [CrossRef]
- Shao, N.; Gao, Y.; Yoo, S.; An, W.; Zeng, X.C. Search for Lowest-Energy Fullerenes: C98 to C110. J. Phys. Chem. A 2006, 110, 7672–7676. [Google Scholar] [CrossRef] [PubMed]
- Shao, N.; Gao, Y.; Zeng, X.C. Search for Lowest-Energy Fullerenes 2: C38 to C80 and C112 to C120. J. Phys. Chem. C 2007, 111, 17671–17677. [Google Scholar] [CrossRef]
- Zhao, X. On the Structure and Relative Stability of C50 Fullerenes. J. Phys. Chem. B 2005, 109, 5267–5272. [Google Scholar] [CrossRef]
- Cui, Y.H.; Chen, D.L.; Tian, W.Q.; Feng, J.K. Structures, Stabilities, and Electronic and Optical Properties of C62 Fullerene Isomers. J. Phys. Chem. A 2007, 111, 7933–7939. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.; Karton, A. Computational insights into the singlet–triplet energy gaps, ionization energies, and electron affinities for a diverse set of 812 small fullerenes (C20–C50). Phys. Chem. Chem. Phys. 2023, 25, 10899–10906. [Google Scholar] [CrossRef] [PubMed]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. [Google Scholar] [CrossRef]
- Spiegelman, F.; Tarrat, N.; Cuny, J.; Dontot, L.; Posenitskiy, E.; Martí, C.; Simon, A.; Rapacioli, M. Density-functional tight-binding: Basic concepts and applications to molecules and clusters. Adv. Phys. X 2020, 5, 1710252. [Google Scholar] [CrossRef]
- Koskinen, P.; Mäkinen, V. Density-functional tight-binding for beginners. Comput. Mater. Sci. 2009, 47, 237–253. [Google Scholar] [CrossRef]
- Elstner, M.; Seifert, G. Density functional tight binding. Philos. Trans. Royal Soc. A 2014, 372, 20120483. [Google Scholar] [CrossRef]
- Zheng, G.; Irle, S.; Morokuma, K. Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers. Chem. Phys. Lett. 2005, 412, 210–216. [Google Scholar] [CrossRef]
- Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M.Y.; Dumitricǎ, T.; Dominguez, A.; et al. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 2020, 152, 124101. [Google Scholar] [CrossRef]
- Witek, H.A.; Irle, S.; Zheng, G.; de Jong, W.A.; Morokuma, K. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: Vibrational spectra and electronic structure of C28, C60, and C70. J. Chem. Phys. 2006, 125, 214706. [Google Scholar] [CrossRef]
- Małolepsza, E.; Witek, H.A.; Irle, S. Comparison of Geometric, Electronic, and Vibrational Properties for Isomers of small fullerenes C20–C36. J. Phys. Chem. A 2007, 111, 6649–6657. [Google Scholar] [CrossRef] [PubMed]
- Małolepsza, E.; Lee, Y.P.; Witek, H.A.; Irle, S.; Lin, C.F.; Hsieh, H.M. Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagon-bearing isomers of fullerenes C38, C40, and C42. Int. J. Quantum Chem. 2009, 109, 1999–2011. [Google Scholar] [CrossRef]
- Bersuker, I.B. Pseudo-Jahn–Teller Effect—A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids. Chem. Rev. 2013, 113, 1351–1390. [Google Scholar] [CrossRef]
- Chancey, C.C.; O’Brien, M.C.M. The Jahn-Teller Effect in C60 and Other Icosahedral Complexes; Princeton University Press: Princeton, NJ, USA, 1998. [Google Scholar]
- Canton, S.E.; Yencha, A.J.; Kukk, E.; Bozek, J.D.; Lopes, M.C.A.; Snell, G.; Berrah, N. Experimental Evidence of a Dynamic Jahn-Teller Effect in . Phys. Rev. Lett. 2002, 89, 045502. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Niwa, Y.; Iwahara, N.; Sato, T.; Chibotaru, L.F. Quadratic Jahn-Teller effect of fullerene anions. Phys. Rev. B 2018, 98, 035402. [Google Scholar] [CrossRef]
- Stück, D.; Baker, T.A.; Zimmerman, P.; Kurlancheek, W.; Head-Gordon, M. On the nature of electron correlation in C60. J. Chem. Phys. 2011, 135, 194306. [Google Scholar] [CrossRef]
- Lee, J.; Head-Gordon, M. Distinguishing artificial and essential symmetry breaking in a single determinant: Approach and application to the C60, C36, and C20 fullerenes. Phys. Chem. Chem. Phys. 2019, 21, 4763–4778. [Google Scholar] [CrossRef]
- Wang, Z.; Lian, K.; Pan, S.; Fan, X. A path from Ih to C1 symmetry for C20 cage molecule. J. Comput. Chem. 2005, 26, 1279–1283. [Google Scholar] [CrossRef]
- Cleland, D.M.; Fletcher, E.K.; Kuperman, A.; Per, M.C. Electron correlation effects in isomers of C20. J. Phys. Mater. 2020, 3, 025006. [Google Scholar]
- Fowler, P.W.; Mitchell, D.; Zerbetto, F. C36: The Best Fullerene for Covalent Bonding. J. Am. Chem. Soc. 1999, 121, 3218–3219. [Google Scholar] [CrossRef]
- Kim, K.; Han, Y.K.; Jung, J. Basis set effects on relative energies and HOMO–LUMO energy gaps of fullerene C36. Theor. Chem. Acc. 2005, 113, 233–237. [Google Scholar] [CrossRef]
- Krivnov, V.Y.; Shamovsky, I.L.; Tornau, E.E.; Rosengren, A. Electronic correlation effects in a fullerene molecule studied by the variational Monte Carlo method. Phys. Rev. B 1994, 50, 12144–12151. [Google Scholar] [CrossRef] [PubMed]
- Varganov, S.A.; Avramov, P.V.; Ovchinnikov, S.G.; Gordon, M.S. A study of the isomers of C36 fullerence using single and multiference MP2 perturbation theory. CPL 2002, 362, 380–386. [Google Scholar] [CrossRef]
- Zhang, H.P.; Zhang, F.J. The Clar covering polynomial of hexagonal systems I. Discret. Appl. Math. 1996, 69, 147–167. [Google Scholar] [CrossRef]
- Zhang, H. The Clar covering polynomial of hexagonal systems with an application to chromatic polynomials. Discret. Math. 1997, 172, 163–173. [Google Scholar] [CrossRef]
- Gutman, I.; Furtula, B.; Balaban, A.T. Algorithm for simultaneous calculations of Kekulé and Clar structure counts, and Clar number of benzenoid molecules. Polycyc. Arom. Comp. 2006, 26, 17–35. [Google Scholar] [CrossRef]
- Chou, C.P.; Witek, H.A. An algorithm and FORTRAN program for automatic computation of the Zhang-Zhang polynomial of benzenoids. MATCH Commun. Math. Comput. Chem. 2012, 68, 3–30. [Google Scholar]
- Chou, C.P.; Li, Y.; Witek, H.A. Zhang-Zhang polynomials of various classes of benzenoid systems. MATCH Commun. Math. Comput. Chem. 2012, 68, 31–64. [Google Scholar]
- Chou, C.P.; Witek, H.A. ZZDecomposer: A graphical toolkit for analyzing the Zhang-Zhang polynomials of benzenoid structures. MATCH Commun. Math. Comput. Chem. 2014, 71, 741–764. [Google Scholar]
- Chou, C.P.; Witek, H.A. Determination of Zhang-Zhang Polynomials for Various Classes of Benzenoid Systems: Non-Heuristic Approach. MATCH Commun. Math. Comput. Chem. 2014, 72, 75–104. [Google Scholar]
- Berli, M.; Tratnik, N.; Žigert Pleteršek, P. Equivalence of Zhang-Zhang Polynomial and Cube Polynomial for Spherical Benzenoid Systems. MATCH Commun. Math. Comput. Chem. 2015, 73, 443–456. [Google Scholar]
- Langner, J.; Witek, H.A. Interface theory of benzenoids. MATCH Commun. Math. Comput. Chem. 2020, 84, 143–176. [Google Scholar]
- Langner, J.; Witek, H.A. Interface theory of benzenoids: Basic applications. MATCH Commun. Math. Comput. Chem. 2020, 84, 177–215. [Google Scholar]
- Langner, J.; Witek, H.A. Extended strict order polynomial of a poset and fixed elements of linear extensions. Australas. J. Comb. 2021, 81, 187–207. [Google Scholar]
- Langner, J.; Witek, H.A. ZZ polynomials of regular m-tier benzenoid strips as extended strict order polynomials of associated posets. Part 1. Proof of equivalence. MATCH Commun. Math. Comput. Chem. 2022, 87, 585–620. [Google Scholar] [CrossRef]
- Langner, J.; Witek, H.A. ZZ polynomials of regular m-tier benzenoid strips as extended strict order polynomials of associated posets. Part 2. Guide to practical computations. MATCH Commun. Math. Comput. Chem. 2022, 88, 109–130. [Google Scholar] [CrossRef]
- Langner, J.; Witek, H.A. ZZ polynomials of regular m-tier benzenoid strips as extended strict order polynomials of associated posets. Part 3. Compilation of results for m = 1–6. MATCH Commun. Math. Comput. Chem. 2022, 88, 747–765. [Google Scholar] [CrossRef]
- Podeszwa, R.; Witek, H.A. ZZPolyCalc: An open-source code with fragment caching for determination of Zhang-Zhang polynomials of carbon nanostructures. Comp. Phys. Comm. 2024, 301, 109210. [Google Scholar] [CrossRef]
- Podeszwa, R.; Witek, H.A. ZZPolyCalc: Code for ZZ Polynomials, 2024. Fortran 2008 Code in GitHub Repository. Available online: https://github.com/quantumint/zzpolycalc (accessed on 12 August 2024).
- Chou, C.P.; Witek, H.A. ZZDecomposer. 2017. Available online: https://bitbucket.org/solccp/zzdecomposer_binary/downloads/ZZDecomposer_0.8.2.0.exe (accessed on 12 August 2024).
- Chen, H.; Chou, C.P.; Witek, H.A. ZZDecomposer. 2019. Available online: https://bitbucket.org/peggydbc1217/zzdecomposer_hsi/downloads/ZZDecomposer.1.6.zip (accessed on 12 August 2024).
- Schwerdtfeger, P.; Wirz, L.; Avery, J. Program Fullerene: A software package for constructing and analyzing structures of regular fullerenes. J. Comput. Chem. 2013, 34, 1508–1526. [Google Scholar] [CrossRef]
- Wu, Z.C.; Jelski, D.A.; George, T.F. Vibrational motions of buckminsterfullerene. Chem. Phys. Lett. 1987, 137, 291–294. [Google Scholar] [CrossRef]
- Tutte, W.T. How to Draw a Graph. Proc. Lond. Math. Soc. 1963, s3-13, 743–767. [Google Scholar] [CrossRef]
- Cioslowski, J. Note on the asymptotic isomer count of large fullerenes. J. Math. Chem. 2014, 52, 1–5. [Google Scholar] [CrossRef]
- Rukhovich, A.D. On the growth rate of the number of fullerenes. Russ. Math. Surv. 2018, 73, 734–736. [Google Scholar] [CrossRef]
- Pauling, L.; Brockway, L.O.; Beach, J.Y. The Dependence of Interatomic Distance on Single Bond-Double Bond Resonance. J. Am. Chem. Soc. 1935, 57, 2705–2709. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, USA, 1940; p. 142. [Google Scholar]
- Herndon, W.C. Resonance theory and the enumeration of Kekulé structures. J. Chem. Educ. 1974, 51, 10–15. [Google Scholar] [CrossRef]
- Herndon, W.C. Resonance theory. VI. Bond orders. J. Am. Chem. Soc. 1974, 96, 7605–7614. [Google Scholar] [CrossRef]
- Herndon, W.C.; Párkányi, C. π bond orders and bond lengths. J. Chem. Educ. 1976, 53, 689–692. [Google Scholar] [CrossRef]
- Randić, M. Graph Theoretical Derivation of Pauling Bond Orders. Croat. Chem. Acta 1975, 47, 71–78. [Google Scholar]
- Pauling, L. Bond numbers and bond lengths in tetrabenzo[de,no,st,c1d1]heptacene and other condensed aromatic hydrocarbons: A valence-bond treatment. Acta Cryst. 1980, B36, 1898–1901. [Google Scholar] [CrossRef]
- Sedlar, J.; Anđelić, I.; Gutman, I.; Vukičević, D.; Graovac, A. Vindicating the Pauling-bond-order concept. Chem. Phys. Lett. 2006, 427, 418–420. [Google Scholar] [CrossRef]
- Kiralj, R.; Ferreira, M.M.C. Predicting Bond Lengths in Planar Benzenoid Polycyclic Aromatic Hydrocarbons: A Chemometric Approach. J. Chem. Inf. Comput. Sci. 2002, 42, 508–523. [Google Scholar] [CrossRef]
- Dias, J.R. Valence-Bond Determination of Bond Lengths of Polycyclic Aromatic Hydrocarbons: Comparisons with Recent Experimental and Ab Initio Results. J. Phys. Chem. A 2011, 115, 13619–13627. [Google Scholar] [CrossRef]
- Radenković, S.; Gutman, I.; Đorđević, S. Strain in strain-free benzenoid hydrocarbons: The case of phenanthrene. Chem. Phys. Lett. 2015, 625, 69–72. [Google Scholar] [CrossRef]
- Narita, S.; Morikawa, T.; Shibuya, T. Linear relationship between the bond lengths and the Pauling bond orders in fullerene molecules. J. Mol. Struct. Theochem 2000, 532, 37–40. [Google Scholar] [CrossRef]
- Randić, M. Novel insight into Clar’s aromatic π-sextets. Chem. Phys. Lett. 2014, 601, 1–5. [Google Scholar] [CrossRef]
- Gutman, I.; Turković, N.; Jovičić, J. Cyclic Conjugation in Benzo-Annelated Perylenes. How Empty is the “Empty” Ring? Monatsh. Chem. 2004, 135, 1389–1394. [Google Scholar] [CrossRef]
- Gutman, I.; Marković, S.; Jeremić, S. A Case of Breakdown of the Kekulé–Structure Model. Polycyc. Arom. Comp. 2010, 30, 240–246. [Google Scholar] [CrossRef]
- Vukičević, D.; Đurđević, J.; Gutman, I. Limitations of Pauling Bond Order Concept. Polycyc. Arom. Comp. 2012, 32, 36–47. [Google Scholar] [CrossRef]
- Radenković, S.; Bultinck, P.; Gutman, I.; Đurđević, J. On induced current density in the perylene/bisanthrene homologous series. Chem. Phys. Lett. 2012, 552, 151–155. [Google Scholar] [CrossRef]
- Radenković, S.; Gutman, I.; Antić, M. A case of breakdown of the Pauling bond orders. Chem. Phys. Lett. 2014, 614, 104–109. [Google Scholar] [CrossRef]
- Paulus, B. Electronic and structural properties of the cage-like molecules C20 to C36. Phys. Chem. Chem. Phys. 2003, 5, 3364–3367. [Google Scholar] [CrossRef]
Fullerene | ||||||
---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | |
C52 | 116 (27%) | 254 (58%) | 67 (15%) | |||
C54 | 35 ( 6%) | 452 (78%) | 86 (15%) | 7 ( 1%) | ||
C56 | 32 ( 3%) | 453 (49%) | 439 (48%) | |||
C58 | 2 ( 0%) | 506 (42%) | 597 (50%) | 100 ( 8%) | ||
C60 | 6 ( 0%) | 290 (16%) | 1316 (73%) | 182 (10%) | 18 ( 1%) | |
C62 | 1 ( 0%) | 198 ( 8%) | 1468 (62%) | 718 (30%) | ||
C64 | 53 ( 1%) | 1937 (56%) | 1280 (37%) | 195 ( 6%) | ||
C66 | 33 ( 1%) | 1342 (30%) | 2817 (63%) | 275 ( 6%) | 11 (0%) | |
C68 | 1 ( 0%) | 8 ( 0%) | 1109 (18%) | 3806 (60%) | 1408 (22%) | |
C70 | 8 ( 0%) | 412 ( 5%) | 5186 (64%) | 2276 (28%) | 267 (3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witek, H.A.; Podeszwa, R. Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5,6)-Fullerenes C52–C70. Molecules 2024, 29, 4013. https://doi.org/10.3390/molecules29174013
Witek HA, Podeszwa R. Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5,6)-Fullerenes C52–C70. Molecules. 2024; 29(17):4013. https://doi.org/10.3390/molecules29174013
Chicago/Turabian StyleWitek, Henryk A., and Rafał Podeszwa. 2024. "Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5,6)-Fullerenes C52–C70" Molecules 29, no. 17: 4013. https://doi.org/10.3390/molecules29174013
APA StyleWitek, H. A., & Podeszwa, R. (2024). Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5,6)-Fullerenes C52–C70. Molecules, 29(17), 4013. https://doi.org/10.3390/molecules29174013