Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product
Abstract
:1. Introduction
2. Synthesis and Application of Molecularly Imprinted Microspheres (MIMs) from Natural Product
3. Radical Polymerization-Based Synthesis of Molecularly Imprinted Microspheres
3.1. Controlled/Living Radical Precipitation Polymerization (CRPP)
3.1.1. Atom Transfer Radical Precipitation Polymerization (ATRPP)
3.1.2. Iniferter-Induced “Living” Radical Precipitation Polymerization (ILRPP)
3.1.3. Reversible Addition–Fragmentation Chain Transfer Precipitation Polymerization (RAFTPP)
3.2. Suspension Polymerization
3.3. Precipitation Polymerization
3.4. Pickering Emulsion Polymerization
4. Factors That Affect the Performance of Molecularly Imprinted Microspheres (MIMs)
4.1. Functional Monomers
4.2. Type of Crosslinker
4.3. Initiator
4.4. Temperature
4.5. Stirring Speed
4.6. Particle Size
4.7. pH
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stéphane, F.F.Y.; Jules, B.K.J.; Batiha, G.E.-S.; Ali, I.; Bruno, L.N. Extraction of bioactive compounds from medicinal plants and herbs. Nat. Med. Plants 2021, 2021, 1–39. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635–642. [Google Scholar] [CrossRef]
- Silveira, D.; Prieto, J.M.; Freitas, M.M.; Mazzari, A.L. Herbal medicine and public healthcare: Current and future challenges. Nat. Prod. Source Mol. Ther. Potential Res. Dev. Chall. Perspect. 2018, 495–515. [Google Scholar]
- Tewari, D.; Atanasov, A.G.; Semwal, P.; Wang, D. Natural products and their applications. Curr. Res. Biotechnol. 2021, 3, 82–83. [Google Scholar] [CrossRef]
- Patel, K.; Panchal, N.; Ingle, P. Techniques Adopted for Extraction of Natural Products. Int. J. Adv. Res. Chem. Sci. 2019, 6, 1–12. [Google Scholar]
- Enioutina, E.Y.; Salis, E.R.; Job, K.M.; Gubarev, M.I.; Krepkova, L.V.; Sherwin, C.M. Herbal Medicines: Challenges in the modern world. Part 5. status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev. Clin. Pharmacol. 2017, 10, 327–338. [Google Scholar] [CrossRef]
- Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 2016, 21, 204–207. [Google Scholar] [CrossRef]
- Kretchy, I.A.; Koduah, A.; Opuni, K.F.; Agyabeng, K.; Ohene-Agyei, T.; Boafo, E.A.; Ntow, P.O. Prevalence, patterns and beliefs about the use of herbal medicinal products in Ghana: A multi-centre community-based cross-sectional study. Trop. Med. Int. Health 2021, 26, 410–420. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Alotiby, A.A.; Al-Harbi, L.N. Prevalence of using herbs and natural products as a protective measure during the COVID-19 pandemic among the Saudi population: An online cross-sectional survey. Saudi Pharm. J. 2021, 29, 410–417. [Google Scholar] [CrossRef]
- Zeng, L.-R.; Zhang, T.; Wang, H.-J.; Zhong, K.; Shao, L.-L.; Zhang, G.-J.; Yasui, H. The influence of Shanghanlun on Japanese Kampo medicine. World J. Tradit. Chin. Med. 2022, 8, 436–445. [Google Scholar]
- Motoo, Y.; Yukawa, K.; Arai, I.; Hisamura, K.; Tsutani, K. Use of complementary and alternative medicine in Japan: A cross-sectional internet survey using the Japanese version of the International Complementary and Alternative Medicine Questionnaire. JMA J. 2019, 2, 35–46. [Google Scholar]
- Rashrash, M.; Schommer, J.C.; Brown, L.M. Prevalence and predictors of herbal medicine use among adults in the United States. J. Patient Exp. 2017, 4, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Heimann, R.B. Biomaterials–Characteristics, History, Applications. In Materials for Medical Application, 1st ed.; Deutsche Nationalbibliothek; Walter de Gruyter GmbH: Berlin, Germany; Walter de Gruyter GmbH: Boston, MA, USA, 2020. [Google Scholar]
- Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014, 31, 1612–1661. [Google Scholar] [CrossRef]
- Xu, Z.; Eichler, B.; Klausner, E.A.; Duffy-Matzner, J.; Zheng, W. Lead/drug discovery from natural resources. Molecules 2022, 27, 8280. [Google Scholar] [CrossRef]
- Li, Z.; Chen, K.; Rose, P.; Zhu, Y.Z. Natural products in drug discovery and development: Synthesis and medicinal perspective of leonurine. Front. Chem. 2022, 10, 1036329. [Google Scholar] [CrossRef]
- Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protoc. Pharmacol. 2009, 46, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Ciências 2019, 91, e20190105. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Petrovic, S.; Bita, B.; Barbinta-Patrascu, M.-E. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int. J. Mol. Sci. 2024, 25, 5842. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, S.K.; Kant, C.; Verma, H.; Kumar, D.; Singh, P.P.; Modi, A.; Droby, S.; Kesawat, M.S.; Alavilli, H. Microbial biosurfactant: A new frontier for sustainable agriculture and pharmaceutical industries. Antioxidants 2021, 10, 1472. [Google Scholar] [CrossRef]
- Oña, G.; Bouso, J.C. Therapeutic potential of natural psychoactive drugs for central nervous system disorders: A perspective from polypharmacology. Curr. Med. Chem. 2021, 28, 53–68. [Google Scholar] [CrossRef]
- Montanheiro, T.L.d.A.; Schatkoski, V.M.; de Menezes, B.R.C.; Pereira, R.M.; Ribas, R.G. Recent progress on polymer scaffolds production: Methods, main results, advantages and disadvantages. Express Polym. Lett. 2022, 16, 197–219. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Nabavi, S.; Behzad, S. Herbal drugs and natural products in the light of nanotechnology and nanomedicine for developing drug formulations. Mini Rev. Med. Chem. 2021, 21, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Li, W.; Liang, A.; Lu, Z.; Xie, Y. Application of Molecular Imprinting Technique in Separation and Detection of Natural Products. Eng. Proc. 2023, 49, 1. [Google Scholar] [CrossRef]
- Ye, K.; Xu, S.; Zhou, Q.; Wang, S.; Xu, Z.; Liu, Z. Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants. Polymers 2023, 15, 2107. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, M.; Fu, Q.; Wang, L.; Wang, D.; Zhang, K.; Xia, Z.; Gao, D. Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines. J. Chromatogr. B 2018, 1097, 1–9. [Google Scholar] [CrossRef]
- Arabi, M.; Ghaedi, M.; Ostovan, A. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples. J. Chromatogr. B 2017, 1048, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Nematollahzadeh, A. Molecularly imprinted ultrafiltration polysulfone membrane with specific nano-cavities for selective separation and enrichment of paclitaxel from plant extract. React. Funct. Polym. 2018, 126, 9–19. [Google Scholar] [CrossRef]
- Gomes, C.; Sadoyan, G.; Dias, R.C.; Costa, M.R.P. Development of molecularly imprinted polymers to target polyphenols present in plant extracts. Processes 2017, 5, 72. [Google Scholar] [CrossRef]
- Henry, N.; Favetta, P.; Delépée, R.; Seigneuret, J.M.; Agrofoglio, L. Synthesis of a molecularly imprinted polymer to isolate glucosamine from plant extracts by an ionic–non-covalent dual approach. Int. J. Cosmet. Sci. 2015, 37, 196–206. [Google Scholar] [CrossRef]
- Machyňáková, A.; Hroboňová, K. Preparation and application of magnetic molecularly imprinted polymers for the selective extraction of coumarins from food and plant samples. Anal. Methods 2017, 9, 2168–2176. [Google Scholar] [CrossRef]
- Xie, X.; Wei, F.; Chen, L.; Wang, S. Preparation of molecularly imprinted polymers based on magnetic nanoparticles for the selective extraction of protocatechuic acid from plant extracts. J. Sep. Sci. 2015, 38, 1046–1052. [Google Scholar] [CrossRef]
- Murdaya, N.; Triadenda, A.L.; Rahayu, D.; Hasanah, A.N. A review: Using multiple templates for molecular imprinted polymer: Is it good? Polymers 2022, 14, 4441. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, Q.; Lu, H.; Hu, B.; Xie, Y.; Yu, G. Glucose-directed synthesis of Pt-Cu alloy nanowires networks and their electro-catalytic performance for ethylene glycol oxidation. J. Alloys Compd. 2017, 727, 475–483. [Google Scholar] [CrossRef]
- He, J.-X.; Pan, H.-Y.; Xu, L.; Tang, R.-Y. Application of molecularly imprinted polymers for the separation and detection of aflatoxin. J. Chem. Res. 2021, 45, 400–410. [Google Scholar] [CrossRef]
- Orowitz, T.E.; Ana Sombo, P.P.A.A.; Rahayu, D.; Hasanah, A.N. Microsphere polymers in molecular imprinting: Current and future perspectives. Molecules 2020, 25, 3256. [Google Scholar] [CrossRef]
- Díaz-Álvarez, M.; Turiel, E.; Martín-Esteban, A. Recent advances and future trends in molecularly imprinted polymers-based sample preparation. J. Sep. Sci. 2023, 46, 2300157. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Zhang, W.; Ma, X.; Zhu, Y.; Zhao, X.; Fu, Y. Synthesis and characterization of molecularly imprinted polymer microspheres functionalized with POSS. Appl. Surf. Sci. 2020, 511, 145506. [Google Scholar] [CrossRef]
- Liang, W.; Hu, H.; Guo, P.; Ma, Y.; Li, P.; Zheng, W.; Zhang, M. Combining pickering emulsion polymerization with molecular imprinting to prepare polymer microspheres for selective solid-phase extraction of malachite green. Polymers 2017, 9, 344. [Google Scholar] [CrossRef] [PubMed]
- Saralidze, K.; Koole, L.H.; Knetsch, M.L. Polymeric microspheres for medical applications. Materials 2010, 3, 3537–3564. [Google Scholar] [CrossRef]
- Gritskova, I.A.; Prokopov, N.I.; Ezhova, A.A.; Chalykh, A.E.; Gusev, S.A.; Levachev, S.M.; Zubov, V.P.; Gomzyak, V.I.; Skopintsev, I.V.; Stuzhuk, A.N. New Approaches to the Synthesis and Stabilization of Polymer Microspheres with a Narrow Size Distribution. Polymers 2023, 15, 2464. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Kılıç, S.; Esen, C.; Denizli, A. Molecularly imprinted polymer-based sensors for protein detection. Polymers 2023, 15, 629. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Susanti, I. Molecularly imprinted polymers for pharmaceutical impurities: Design and synthesis methods. Polymers 2023, 15, 3401. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, W. Surface molecular imprinting on polystyrene resin for selective adsorption of 4-hydroxybenzoic acid. Chemosphere 2021, 269, 128762. [Google Scholar] [CrossRef] [PubMed]
- El-Schich, Z.; Zhang, Y.; Feith, M.; Beyer, S.; Sternbæk, L.; Ohlsson, L.; Stollenwerk, M.; Wingren, A.G. Molecularly imprinted polymers in biological applications. Biotechniques 2020, 69, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yu, H.; Chen, H.; Huang, Y.; Bakunina, I.; de Sousa, D.P.; Sun, M.; Zhang, J. Application of molecular imprinting polymers in separation of active compounds from plants. Fitoterapia 2023, 164, 105383. [Google Scholar] [CrossRef]
- Qronfla, M.M.; Jamoussi, B.; Chakroun, R. Synthesis and Characterization of a New Molecularly Imprinted Polymer for Selective Extraction of Mandelic Acid Metabolite from Human Urine as a Biomarker of Environmental and Occupational Exposures to Styrene. Polymers 2023, 15, 2398. [Google Scholar] [CrossRef] [PubMed]
- Turiel, E.; Esteban, A.M. Molecularly imprinted polymers. In Solid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 215–233. [Google Scholar]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: A review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, S.; Bhawani, S.A.; Shafqat, S.R. Synthesis and characterization of molecular imprinting polymer for the removal of 2-phenylphenol from spiked blood serum and river water. Chem. Biol. Technol. Agric. 2019, 6, 15–61. [Google Scholar] [CrossRef]
- Susanti, I.; Mutakin, M.; Hasanah, A.N. Factors affecting the analytical performance of molecularly imprinted mesoporous silica. Polym. Adv. Technol. 2022, 33, 469–483. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Elaine, A.A.; Krisyanto, S.I.; Hasanah, A.N. Dual-functional monomer MIPs and their comparison to mono-functional monomer MIPs for SPE and as sensors. Polymers 2022, 14, 3498. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef] [PubMed]
- Baker, Z.K.; Sardari, S. Molecularly imprinted polymer (MIP) applications in natural product studies based on medicinal plant and secondary metabolite analysis. Iran. Biomed. J. 2021, 25, 68. [Google Scholar]
- Karazan, Z.M.; Roushani, M. Synthesis Methods and Strategies for MIPs. In Molecularly Imprinted Polymers as Artificial Antibodies for the Environmental Health: A Step Towards Achieving the Sustainable Development Goals; Springer: Berlin/Heidelberg, Germany, 2024; pp. 31–52. [Google Scholar]
- Liu, S.; Pan, J.; Zhu, H.; Pan, G.; Qiu, F.; Meng, M.; Yao, J.; Yuan, D. Graphene oxide based molecularly imprinted polymers with double recognition abilities: The combination of covalent boronic acid and traditional non-covalent monomers. Chem. Eng. J. 2016, 290, 220–231. [Google Scholar] [CrossRef]
- Hashim, S.N.; Boysen, R.I.; Schwarz, L.J.; Danylec, B.; Hearn, M.T. A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers. J. Chromatogr. A 2014, 1359, 35–43. [Google Scholar] [CrossRef]
- Shariati, R.; Rezaei, B.; Jamei, H.R.; Ensafi, A.A. Application of coated green source carbon dots with silica molecularly imprinted polymers as a fluorescence probe for selective and sensitive determination of phenobarbital. Talanta 2019, 194, 143–149. [Google Scholar] [CrossRef]
- Díaz-Álvarez, M.; Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of thiabendazole and carbendazim from orange samples. Anal. Chim. Acta 2019, 1045, 117–122. [Google Scholar] [CrossRef]
- Abbasi Ghaeni, F.; Karimi, G.; Mohsenzadeh, M.S.; Nazarzadeh, M.; Motamedshariaty, V.S.; Mohajeri, S.A. Preparation of dual-template molecularly imprinted nanoparticles for organophosphate pesticides and their application as selective sorbents for water treatment. Sep. Sci. Technol. 2018, 53, 2517–2526. [Google Scholar] [CrossRef]
- Boulanouar, S.; Combès, A.; Mezzache, S.; Pichon, V. Synthesis and application of molecularly imprinted silica for the selective extraction of some polar organophosphorus pesticides from almond oil. Anal. Chim. Acta 2018, 1018, 35–44. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.; Ma, S.; Bo, C.; Ou, J.; Gong, B. Recent application of molecular imprinting technique in food safety. J. Chromatogr. A 2021, 1657, 462579. [Google Scholar] [CrossRef]
- Wang, L.; Dong, B.; Xu, X.; Wang, Y. Molybdophosphate derived MoP based electrocatalyst as cathode for Sn–H+ battery to generate H2 and electricity simultaneously. J. Solid State Chem. 2019, 277, 602–610. [Google Scholar] [CrossRef]
- Cengiz, N.; Guclu, G.; Kelebek, H.; Capanoglu, E.; Selli, S. Application of molecularly imprinted polymers for the detection of volatile and off-odor compounds in food matrices. ACS Omega 2022, 7, 15258–15266. [Google Scholar] [CrossRef]
- Takeuchi, T.; Sunayama, H. Beyond natural antibodies–a new generation of synthetic antibodies created by post-imprinting modification of molecularly imprinted polymers. Chem. Commun. 2018, 54, 6243–6251. [Google Scholar] [CrossRef]
- Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J. 2021, 145, 110231. [Google Scholar] [CrossRef]
- Nasraoui, C.; Jaoued-Grayaa, N.; Vanoye, L.; Chevalier, Y.; Hbaieb, S. Development of molecularly imprinted polymer for the selective recognition of the weakly interacting fenamiphos molecule. Eur. Polym. J. 2022, 177, 111441. [Google Scholar] [CrossRef]
- Fu, X.; Yang, Q.; Zhou, Q.; Lin, Q.; Wang, C. Template-monomer interaction in molecular imprinting: Is the strongest the best? Open J. Org. Polym. Mater. 2015, 5, 58. [Google Scholar] [CrossRef]
- Ishak, N.; Ahmad, M.N.; Nasir, A.M.; Islam, A. Computational modelling and synthesis of molecular imprinted polymer for recognition of nitrate ion. Malays. J Anal Sci 2015, 19, 866–873. [Google Scholar]
- Kang, M.S.; Cho, E.; Choi, H.E.; Amri, C.; Lee, J.-H.; Kim, K.S. Molecularly imprinted polymers (MIPs): Emerging biomaterials for cancer theragnostic applications. Biomater. Res. 2023, 27, 45. [Google Scholar] [CrossRef]
- Wu, X.; Du, J.; Li, M.; Wu, L.; Han, C.; Su, F. Recent advances in green reagents for molecularly imprinted polymers. RSC Adv. 2018, 8, 311–327. [Google Scholar] [CrossRef]
- Elhachem, M.; Bou-Maroun, E.; Abboud, M.; Cayot, P.; Maroun, R.G. Optimization of a molecularly imprinted polymer synthesis for a rapid detection of caffeic acid in wine. Foods 2023, 12, 1660. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Soni, D.; Pratiwi, R.; Rahayu, D.; Megantara, S.; Mutakin. Synthesis of diazepam-imprinted polymers with two functional monomers in chloroform using a bulk polymerization method. J. Chem. 2020, 2020, 7282415. [Google Scholar] [CrossRef]
- Pratiwi, R.; Megantara, S.; Rahayu, D.; Pitaloka, I.; Hasanah, A.N. Comparison of bulk and precipitation polymerization method of synthesis molecular imprinted solid phase extraction for atenolol using methacrylic acid. J. Young Pharm. 2019, 11, 12. [Google Scholar] [CrossRef]
- Ariani, M.D.; Zuhrotun, A.; Manesiotis, P.; Hasanah, A.N. Magnetic molecularly imprinted polymers: An update on their use in the separation of active compounds from natural products. Polymers 2022, 14, 1389. [Google Scholar] [CrossRef]
- Zamruddin, N.M.; Herman, H.; Rijai, L.; Hasanah, A.N. Factors affecting the analytical performance of magnetic molecularly imprinted polymers. Polymers 2022, 14, 3008. [Google Scholar] [CrossRef]
- Wei, M.; Geng, X.; Liu, Y.; Long, H.; Du, J. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer for determination of luteolin. J. Electroanal. Chem. 2019, 842, 184–192. [Google Scholar] [CrossRef]
- He, Y.; Hong, S.; Wang, M.; Wang, J.; Abd El-Aty, A.; Hacimuftuoglu, A.; Khan, M.; She, Y. Development of fluorescent lateral flow test strips based on an electrospun molecularly imprinted membrane for detection of triazophos residues in tap water. New J. Chem. 2020, 44, 6026–6036. [Google Scholar] [CrossRef]
- Gavrilă, A.-M.; Stoica, E.-B.; Iordache, T.-V.; Sârbu, A. Modern and dedicated methods for producing molecularly imprinted polymer layers in sensing applications. Appl. Sci. 2022, 12, 3080. [Google Scholar] [CrossRef]
- Chauhan, A.; Bhatia, T.; Singh, A.; Saxena, P.N.; Kesavchandran, C.; Mudiam, M.K.R. Application of nano-sized multi-template imprinted polymer for simultaneous extraction of polycyclic aromatic hydrocarbon metabolites in urine samples followed by ultra-high performance liquid chromatographic analysis. J. Chromatogr. B 2015, 985, 110–118. [Google Scholar] [CrossRef]
- Liang, W.; Hu, H.; Zhong, W.; Zhang, M.; Ma, Y.; Guo, P.; Xin, M.; Yu, M.; Lin, H. Functionalization of molecularly imprinted polymer microspheres for the highly selective removal of contaminants from aqueous solutions and the analysis of food-grade fish samples. Polymers 2018, 10, 1130. [Google Scholar] [CrossRef]
- Renkecz, T.; Horvath, V. Preparation of molecularly imprinted microspheres by precipitation polymerization. Synth. Antibodies Methods Protoc. 2017, 1575, 341–352. [Google Scholar] [CrossRef]
- Delafresnaye, L.; Feist, F.; Hooker, J.P.; Barner-Kowollik, C. Microspheres from light—A sustainable materials platform. Nat. Commun. 2022, 13, 5132. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Harwansh, R.K.; Bhattacharyya, S. Bioavailability of herbal products: Approach toward improved pharmacokinetics. In Evidence-Based Validation of Herbal Medicine; Elsevier: Amsterdam, The Netherlands, 2015; pp. 217–245. [Google Scholar]
- Zhu, Y.; Jiang, D.; Sun, D.; Yan, Y.; Li, C. Fabrication of magnetic imprinted sorbents prepared by Pickering emulsion polymerization for adsorption of erythromycin from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 3570–3579. [Google Scholar] [CrossRef]
- Gan, M.; Pan, J.; Zhang, Y.; Dai, X.; Yin, Y.; Qu, Q.; Yan, Y. Molecularly imprinted polymers derived from lignin-based Pickering emulsions and their selectively adsorption of lambda-cyhalothrin. Chem. Eng. J. 2014, 257, 317–327. [Google Scholar] [CrossRef]
- Ravi, S.; Peh, K.; Darwis, Y.; Murthy, B.K.; Singh, T.R.R.; Mallikarjun, C. Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system. Indian J. Pharm. Sci. 2008, 70, 303. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Yun, Y.; Li, Q.; Huang, Z.; Liang, Z. Preparation and characterization of monodisperse molecularly imprinted polymer microspheres by precipitation polymerization for kaempferol. Des. Monomers Polym. 2017, 20, 201–209. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Li, S.; Li, Y.; Zhang, M.; Li, Y.; Tian, W.; Liu, J.; Tang, S.; Li, B. Study on dicyandiamide-imprinted polymers with computer-aided design. Int. J. Mol. Sci. 2016, 17, 1750. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Xie, X.; Xue, Z.; Fliedel, C.; Poli, R. FeBr2-Catalyzed bulk ATRP promoted by simple inorganic salts. Macromolecules 2019, 52, 5366–5376. [Google Scholar] [CrossRef]
- Janczura, M.; Luliński, P.; Sobiech, M. Imprinting technology for effective sorbent fabrication: Current state-of-art and future prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef]
- Bukka, V.R.; Sarin, P. Effects of Particle Size Reduction on the Pore Structure and Accessibility in Natural Porous Materials. In Energy Fuels; ACS Publications: Washington, DC, USA, 2024. [Google Scholar]
- Li, X.; Li, L.; Wang, D.; Zhang, J.; Yi, K.; Su, Y.; Luo, J.; Deng, X.; Deng, F. Fabrication of polymeric microspheres for biomedical applications. Mater. Horiz. 2024. [Google Scholar] [CrossRef]
- Ibadat, N.F.; Ongkudon, C.M.; Saallah, S.; Misson, M. Synthesis and characterization of polymeric microspheres template for a homogeneous and porous monolith. Polymers 2021, 13, 3639. [Google Scholar] [CrossRef]
- Ma, W.; Row, K.H. Solid-phase extraction of catechins from green tea with deep eutectic solvent immobilized magnetic molybdenum disulfide molecularly imprinted polymer. Molecules 2020, 25, 280. [Google Scholar] [CrossRef]
- Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem. 2017, 8, 666–673. [Google Scholar] [CrossRef]
- Fresco-Cala, B.; Batista, A.D.; Cárdenas, S. Molecularly imprinted polymer micro-and nano-particles: A review. Molecules 2020, 25, 4740. [Google Scholar] [CrossRef] [PubMed]
- Gkika, D.A.; Tolkou, A.K.; Lambropoulou, D.A.; Bikiaris, D.N.; Kokkinos, P.; Kalavrouziotis, I.K.; Kyzas, G.Z. Application of molecularly imprinted polymers (MIPs) as environmental separation tools. RSC Appl. Polym. 2024, 2, 127–148. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.; Wang, Y. Optimization of Preparation Method of Molecularly Imprinted Microspheres by Uniform Design. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Wuhan, Hubei, China, 22–23 January 2020; p. 012032. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Q.; Qiu, J.; Wang, Z.; Yang, X. Synthesis of a magnetic micelle molecularly imprinted polymers to selective adsorption of rutin from Sophora japonica. J. Chromatogr. B 2023, 1214, 123492. [Google Scholar] [CrossRef] [PubMed]
- Mallya, A.N.; Ramamurthy, P.C. Design and fabrication of a highly stable polymer carbon nanotube nanocomposite chemiresistive sensor for nitrate ion detection in water. ECS J. Solid State Sci. Technol. 2018, 7, Q3054. [Google Scholar] [CrossRef]
- Prajapati, D.G.; Kandasubramanian, B. Progress in the development of intrinsically conducting polymer composites as biosensors. Macromol. Chem. Phys. 2019, 220, 1800561. [Google Scholar] [CrossRef]
- Wang, H.-S.; Song, M.; Hang, T.-J. Functional interfaces constructed by controlled/living radical polymerization for analytical chemistry. ACS Appl. Mater. Interfaces 2016, 8, 2881–2898. [Google Scholar] [CrossRef]
- Cai, J.; Chen, T.; Xu, Y.; Wei, S.; Huang, W.; Liu, R.; Liu, J. A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes. Biosens. Bioelectron. 2019, 124, 15–24. [Google Scholar] [CrossRef]
- Kidakova, A.; Reut, J.; Rappich, J.; Öpik, A.; Syritski, V. Preparation of a surface-grafted protein-selective polymer film by combined use of controlled/living radical photopolymerization and microcontact imprinting. React. Funct. Polym. 2018, 125, 47–56. [Google Scholar] [CrossRef]
- Nawaz, M.; Baloch, M.K.; Price, G.J.; Ud-Din, I.; El-Mossalamy, E.-S.E.-B. Synthesis, association and surface morphology of poly (ethylene oxide)-polystyrene block copolymer. J. Polym. Res. 2013, 20, 1–8. [Google Scholar] [CrossRef]
- McClelland, K.P.; Clemons, T.D.; Stupp, S.I.; Weiss, E.A. Semiconductor quantum dots are efficient and recyclable photocatalysts for aqueous PET-RAFT polymerization. ACS Macro Lett. 2019, 9, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.R.; Qin, K.P.; Johnson, J.A. Visible-light-mediated, additive-free, and open-to-air controlled radical polymerization of acrylates and acrylamides. Polym. Chem. 2019, 10, 1585–1590. [Google Scholar] [CrossRef]
- Datta, L.P.; De, D.; Ghosh, U.; Das, T.K. RAFT derived fatty acid based stimuli responsive fluorescent block copolymers as DNA sensor and cargo delivery agent. Polymer 2018, 138, 103–112. [Google Scholar] [CrossRef]
- Martínez, I.V.; Ek, J.I.; Ahn, E.C.; Sustaita, A.O. Molecularly imprinted polymers via reversible addition–fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Adv. 2022, 12, 9186–9201. [Google Scholar] [CrossRef]
- Elacqua, E.; Croom, A.; Manning, K.B.; Pomarico, S.K.; Lye, D.; Young, L.; Weck, M. Supramolecular Diblock Copolymers Featuring Well-defined Telechelic Building Blocks. Angew. Chem. 2016, 128, 16105–16110. [Google Scholar] [CrossRef]
- Lv, C.; He, C.; Pan, X. Oxygen-initiated and regulated controlled radical polymerization under ambient conditions. Angew. Chem. 2018, 130, 9574–9577. [Google Scholar] [CrossRef]
- He, J.-Y.; Lu, M. Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of acrylonitrile in miniemulsion. J. Macromol. Sci. Part A 2019, 56, 443–449. [Google Scholar] [CrossRef]
- Taheri Kal-Kashvandi, A.; Heravi, M.M.; Ahmadi, S.; Hosseinnejad, T. Copper nanoparticles in polyvinyl alcohol–acrylic acid matrix: An efficient heterogeneous catalyst for the regioselective synthesis of 1, 4-disubstituted 1, 2, 3-triazoles via click reaction. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1457–1467. [Google Scholar] [CrossRef]
- Alipour, S.; Azar, P.A.; Husain, S.W.; Rajabi, H.R. Synthesis, characterization and application of spherical and uniform molecularly imprinted polymeric nanobeads as efficient sorbent for selective extraction of rosmarinic acid from plant matrix. J. Mater. Res. Technol. 2021, 12, 2298–2306. [Google Scholar] [CrossRef]
- Pardeshi, S.; Dhodapkar, R.; Kumar, A. Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis. Food Chem. 2014, 146, 385–393. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, R.; Gou, Q.; Lai, J.; Li, X. Precipitation polymerization: A powerful tool for preparation of uniform polymer particles. Polymers 2022, 14, 1851. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhou, Z.; Zou, Y.; Wei, X.; Dai, X.; Li, C.; Yan, Y. Surface imprinted core-shell nanorod with ultrathin water-compatible polymer brushes for specific recognition and adsorption of sulfamethazine in water medium. J. Appl. Polym. Sci. 2014, 131, 40854. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, L.; Cai, R.; Chen, H. A sensitive and selective molecularly imprinted sensor combined with magnetic molecularly imprinted solid phase extraction for determination of dibutyl phthalate. Biosens. Bioelectron. 2013, 49, 367–373. [Google Scholar] [CrossRef]
- Han, W.; Gao, L.; Li, X.; Wang, L.; Yan, Y.; Che, G.; Hu, B.; Lin, X.; Song, M. A fluorescent molecularly imprinted polymer sensor synthesized by atom transfer radical precipitation polymerization for determination of ultra trace fenvalerate in the environment. RSC Adv. 2016, 6, 81346–81353. [Google Scholar] [CrossRef]
- Zou, T.; Zhou, Z.; Dai, J.; Gao, L.; Wei, X.; Li, C.; Guan, W.; Yan, Y. Preparation of silica-based surface-imprinted core–shell nanoadsorbents for the selective recognition of sulfamethazine via reverse atom transfer radical precipitation polymerization. J. Polym. Res. 2014, 21, 1–12. [Google Scholar] [CrossRef]
- Pu, H.; Xu, L. Molecularly imprinted nanoparticles synthesized by electrochemically mediated atom transfer radical precipitation polymerization. Macromol. Chem. Phys. 2022, 223, 2100478. [Google Scholar] [CrossRef]
- Dadashi-Silab, S.; Matyjaszewski, K. Iron catalysts in atom transfer radical polymerization. Molecules 2020, 25, 1648. [Google Scholar] [CrossRef]
- Poli, R.; Shaver, M.P. Atom transfer radical polymerization (ATRP) and organometallic mediated radical polymerization (OMRP) of styrene mediated by diaminobis (phenolato) iron (II) complexes: A DFT study. Inorg. Chem. 2014, 53, 7580–7590. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, P.V.; Oliveira, A.S.; Ribeiro, J.P.; Castilho, A.; Serra, A.C.; Coelho, J.F. Pushing the limits of robust and eco-friendly ATRP processes: Untreated water as the solvent. Polym. Chem. 2019, 10, 938–944. [Google Scholar] [CrossRef]
- Fu, L.; Simakova, A.; Fantin, M.; Wang, Y.; Matyjaszewski, K. Direct ATRP of methacrylic acid with iron-porphyrin based catalysts. ACS Macro Lett. 2018, 7, 26–30. [Google Scholar] [CrossRef]
- Layadi, A.; Kessel, B.; Yan, W.; Romio, M.; Spencer, N.D.; Zenobi-Wong, M.; Matyjaszewski, K.; Benetti, E.M. Oxygen tolerant and cytocompatible Iron (0)-mediated ATRP enables the controlled growth of polymer brushes from mammalian cell cultures. J. Am. Chem. Soc. 2020, 142, 3158–3164. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kwak, S.; Yang, S.; Koh, W.-G.; Joung, Y.K. Durable and dense zwitterionic polymer brushes initiated from Surface-Segregated cyclic initiator via atom transfer radical polymerization. Chem. Eng. J. 2024, 496, 153849. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Li, J.; Ren, Q.; Wang, C.; Xu, Z. Low concentration limitations of catalyst and conventional free radical polymerization in ICAR ATRP of butyl methacrylate with PMDETA as the ligand. J. Macromol. Sci. Part A 2015, 52, 609–616. [Google Scholar] [CrossRef]
- Su, X.; Jessop, P.G.; Cunningham, M.F. ATRP catalyst removal and ligand recycling using CO2-switchable materials. Macromolecules 2018, 51, 8156–8164. [Google Scholar] [CrossRef]
- Gao, X.; Hu, X.; Guan, P.; Du, C.; Ding, S.; Zhang, X.; Li, B.; Wei, X.; Song, R. Synthesis of core–shell imprinting polymers with uniform thin imprinting layer via iniferter-induced radical polymerization for the selective recognition of thymopentin in aqueous solution. RSC Adv. 2016, 6, 110019–110031. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, D.; Zhang, K.; Yin, X.-S.; Yang, W.-Z. Narrow-disperse highly cross-linked “living” polymer microspheres by two-stage precipitation polymerization. Chin. J. Polym. Sci. 2015, 33, 422–432. [Google Scholar] [CrossRef]
- Bicak, T.C.; Cormack, P.A.; Walker, C. Synthesis of uniform polymer microspheres with “living” character using ppm levels of copper catalyst: ARGET atom transfer radical precipitation polymerisation. React. Funct. Polym. 2021, 163, 104891. [Google Scholar] [CrossRef]
- Zhang, H. Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers. Eur. Polym. J. 2013, 49, 579–600. [Google Scholar] [CrossRef]
- Song, R.; Hu, X.; Guan, P.; Li, J.; Zhao, N.; Wang, Q. Molecularly imprinted solid-phase extraction of glutathione from urine samples. Mater. Sci. Eng. C 2014, 44, 69–75. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Ma, F.; Zhang, Y.; Guo, X.; Zhang, H. Efficient synthesis of monodisperse, highly crosslinked, and “living” functional polymer microspheres by the ambient temperature iniferter-induced “living” radical precipitation polymerization. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 1983–1998. [Google Scholar] [CrossRef]
- Su, L.; Guo, X.; Han, S. Preparation and evaluation of vanillin molecularly imprinted polymer microspheres by reversible addition–fragmentation chain transfer precipitation polymerization. Anal. Methods 2014, 6, 2512–2517. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, R.; Tang, J.; Zhu, Q.; Li, X.; Xiong, Y.; Wu, X. Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I. Talanta 2017, 162, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Li, C.; Chang, J.; Zhou, H.; Wang, D.; Sun, J.; Liu, T.; Peng, H.; Wang, Q.; Li, Y. Advances and prospects of RAFT polymerization-derived nanomaterials in MRI-assisted biomedical applications. Prog. Polym. Sci. 2023, 146, 101739. [Google Scholar] [CrossRef]
- Su, L.; Li, J.; Han, S. Controllable Preparation and Application of Quercetin Molecularly Imprinted Polymer. Russ. J. Appl. Chem. 2019, 92, 972–981. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, Y.; Jiao, Y.; Zhang, H. Narrow or monodisperse, physically cross-linked, and “living” spherical polymer particles by one-stage RAFT precipitation polymerization. Macromolecules 2018, 52, 143–156. [Google Scholar] [CrossRef]
- Li, Y.; Qian, X.; Tan, X.; Liu, X.; Li, Y.; Ming, D.; Zhang, L.; Yang, Y. Hydrophilic polymer-brush functional fluorescent nanoparticles to suppress nonspecific interactions and enhance quantum yield for targeted cell imaging. ACS Appl. Polym. Mater. 2020, 2, 2238–2245. [Google Scholar] [CrossRef]
- Chaudhary, V.; Sharma, S. Suspension polymerization technique: Parameters affecting polymer properties and application in oxidation reactions. J. Polym. Res. 2019, 26, 102. [Google Scholar] [CrossRef]
- Liu, X.; Wu, F.; Au, C.; Tao, Q.; Pi, M.; Zhang, W. Synthesis of molecularly imprinted polymer by suspension polymerization for selective extraction of p-hydroxybenzoic acid from water. J. Appl. Polym. Sci. 2019, 136, 46984. [Google Scholar] [CrossRef]
- Bárkányi, Á.; Németh, S.; Lakatos, B.G. Three-scale Modeling and Simulation of a Batch Suspension Polymerization Vinyl Chloride Reactor. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014; Volume 33, pp. 229–234. [Google Scholar]
- Zhu, S.; Hamielec, A. Polymerization Kinetic Modeling and Macromolecular Reaction Engineering; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Kang, X.; Deng, L.; Quan, T.; Gao, M.; Zhang, K.; Xia, Z.; Gao, D. Selective extraction of quinolizidine alkaloids from Sophora flavescens Aiton root using tailor-made deep eutectic solvents and magnetic molecularly imprinted polymers. Sep. Purif. Technol. 2021, 261, 118282. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, X.; Zhang, M.; Lin, Y.; Lan, H.; Li, X.; Wu, Q.; He, J. Boronate affinity-based surface molecularly imprinted polymer microspheres using polyethyleneimine/dopamine coating for efficient selective recognition and separation of Ginsenoside Rb1. React. Funct. Polym. 2024, 194, 105780. [Google Scholar] [CrossRef]
- Ma, X.; Lin, H.; He, Y.; She, Y.; Wang, M.; Abd El-Aty, A.; Afifi, N.A.; Han, J.; Zhou, X.; Wang, J. Magnetic molecularly imprinted polymers doped with graphene oxide for the selective recognition and extraction of four flavonoids from Rhododendron species. J. Chromatogr. A 2019, 1598, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, X.; Lin, H.; Abd El-Aty, A.; Rabah, T.; Liu, X.; Yu, Z.; Yong, Y.; Ju, X.; She, Y. Magnetic molecularly imprinted specific solid-phase extraction for determination of dihydroquercetin from Larix griffithiana using HPLC. J. Sep. Sci. 2020, 43, 2301–2310. [Google Scholar] [CrossRef] [PubMed]
- Hasanah, A.N.; Fauzi, D.; Witka, B.Z.; Rahayu, D.; Pratiwi, R. Molecular imprinted polymer for ethylmorphine with methacrylic acid and acrylamide as functional monomer in butanol using two polymerization method. Mediterr. J. Chem. 2020, 10, 277–288. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Dwi Utari, T.N.; Pratiwi, R. Synthesis of Atenolol-Imprinted Polymers with Methyl Methacrylate as Functional Monomer in Propanol Using Bulk and Precipitation Polymerization Method. J. Anal. Methods Chem. 2019, 2019, 9853620. [Google Scholar] [CrossRef]
- Ramadhan, S.; Fauzi, D.; Witka, B.; Hasanah, D.R.A. Methyl methacrylate as functional monomer for ethylmorphine-imprinted polymers in butanol using bulk and precipitation polymerization. Rasayan J. Chem. 2021, 14, 424–432. [Google Scholar] [CrossRef]
- Roland, R.M.; Bhawani, S.A.; Ibrahim, M.N.M. Synthesis of molecularly imprinted polymer by precipitation polymerization for the removal of ametryn. BMC Chem. 2023, 17, 165. [Google Scholar] [CrossRef]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef]
- Kamaruzaman, S.; Nasir, N.M.; Mohd Faudzi, S.M.; Yahaya, N.; Mohamad Hanapi, N.S.; Wan Ibrahim, W.N. Solid-phase extraction of active compounds from natural products by molecularly imprinted polymers: Synthesis and extraction parameters. Polymers 2021, 13, 3780. [Google Scholar] [CrossRef]
- Di, R.; Zhang, Y.; Wu, Z.; Liu, W.; Yang, C. Foam fractionation for the recovery of proanthocyanidin from Camellia seed shells using molecular imprinting chitosan nanoparticles as collector. J. Mol. Liq. 2020, 302, 112523. [Google Scholar] [CrossRef]
- Tabaraki, R.; Sadeghinejad, N. Preparation and application of magnetic molecularly imprinted polymers for rutin determination in green tea. Chem. Pap. 2020, 74, 1937–1944. [Google Scholar] [CrossRef]
- Chen, F.-F.; Xie, X.-Y.; Shi, Y.-P. Magnetic molecularly imprinted polymer for the detection of rhaponticin in Chinese patent medicines. J. Chromatogr. A 2012, 1252, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.-H.; Xu, R.; Yuan, G.-L.; Lu, H.; Gu, B.-R.; Xie, H.-P. Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Anal. Chim. Acta 2010, 675, 64–70. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An overview of Pickering emulsions: Solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 2017, 8, 235054. [Google Scholar] [CrossRef]
- Matos, M.; Laca, A.; Rea, F.; Iglesias, O.; Rayner, M.; Gutiérrez, G. O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation. J. Food Eng. 2018, 222, 207–217. [Google Scholar] [CrossRef]
- Yousufi, M.M.; Dzulkarnain, I.b.; Elhaj, M.E.M.; Ahmed, S. A perspective on the prospect of Pickering emulsion in reservoir conformance control with insight into the influential parameters and characterization techniques. Processes 2023, 11, 2672. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, G.; Li, J.; Feng, Y.; Zhang, L.; Peng, Y.; Tang, Y.; Wang, L. Eco-friendly Pickering emulsion stabilized by silica nanoparticles dispersed with high-molecular-weight amphiphilic alginate derivatives. ACS Sustain. Chem. Eng. 2018, 6, 4105–4114. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Z.; Li, Y.; Deng, Y. Magnetic nano-Fe3O4 stabilized Pickering emulsion liquid membrane for selective extraction and separation. Chem. Eng. J. 2016, 288, 305–311. [Google Scholar] [CrossRef]
- Leclercq, L.; Nardello-Rataj, V. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery. Eur. J. Pharm. Sci. 2016, 82, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Liu, K.; Zheng, Q.; Yao, L.; Xu, Y. A review of preparation and tribological applications of pickering emulsion. J. Tribol. 2022, 144, 011902. [Google Scholar] [CrossRef]
- Razavipanah, I.; Alipour, E.; Deiminiat, B.; Rounaghi, G.H. A novel electrochemical imprinted sensor for ultrasensitive detection of the new psychoactive substance “Mephedrone”. Biosens. Bioelectron. 2018, 119, 163–169. [Google Scholar] [CrossRef]
- Kunath, S.; Panagiotopoulou, M.; Maximilien, J.; Marchyk, N.; Sänger, J.; Haupt, K. Cell and Tissue Imaging with Molecularly Imprinted Polymers as Plastic Antibody Mimics. Adv. Healthc. Mater. 2015, 4, 1322–1326. [Google Scholar] [CrossRef]
- Çimen, D.; Bereli, N.; Kartal, F.; Denizli, A. Molecularly imprinted polymer-based quartz crystal microbalance sensor for the clinical detection of insulin. Mol. Imprinted Polym. Methods Protoc. 2021, 97, 209–222. [Google Scholar]
- Shen, X.; Svensson Bonde, J.; Kamra, T.; Bülow, L.; Leo, J.C.; Linke, D.; Ye, L. Bacterial imprinting at Pickering emulsion interfaces. Angew. Chem. Int. Ed. 2014, 53, 10687–10690. [Google Scholar] [CrossRef] [PubMed]
- Wongkongkatep, P.; Manopwisedjaroen, K.; Tiposoth, P.; Archakunakorn, S.; Pongtharangkul, T.; Suphantharika, M.; Honda, K.; Hamachi, I.; Wongkongkatep, J. Bacteria interface pickering emulsions stabilized by self-assembled bacteria–chitosan network. Langmuir 2012, 28, 5729–5736. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Ju, Z.; Niu, L.; Gong, Z.; Xu, Z. Molecularly imprinted polymers fabricated by Pickering emulsion polymerization for the selective adsorption and separation of quercetin from Spina Gleditsiae. New J. Chem. 2019, 43, 14747–14755. [Google Scholar] [CrossRef]
- Zhou, T.; Shen, X.; Chaudhary, S.; Ye, L. Molecularly imprinted polymer beads prepared by pickering emulsion polymerization for steroid recognition. J. Appl. Polym. Sci. 2014, 131, 39606. [Google Scholar] [CrossRef]
- Vega-Jiménez, A.L.; Vázquez-Olmos, A.R.; Acosta-Gío, E.; Álvarez-Pérez, M.A. In vitro antimicrobial activity evaluation of metal oxide nanoparticles. Nanoemulsions Prop. Fabr. Appl 2019, 1–18. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Włoch, M.; Datta, J. Synthesis and polymerisation techniques of molecularly imprinted polymers. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 86, pp. 17–40. [Google Scholar]
- Urriza-Arsuaga, I.; Guadaño-Sánchez, M.; Urraca, J.L. Current trends in molecular imprinting: Strategies, applications and determination of target molecules in Spain. Int. J. Mol. Sci. 2023, 24, 1915. [Google Scholar] [CrossRef]
- Surikumaran, H.; Mohamad, S.; Sarih, N.M. Molecular imprinted polymer of methacrylic acid functionalised β-cyclodextrin for selective removal of 2, 4-dichlorophenol. Int. J. Mol. Sci. 2014, 15, 6111–6136. [Google Scholar] [CrossRef]
- Rado, R.; Lazár, M. Role of the source of free radicals in crosslinking of polyethylene. J. Polym. Sci. 1961, 53, 67–74. [Google Scholar] [CrossRef]
- Irvine, G.; Dawson, F.; George, A.; Kopeć, M. Are polymer gels synthesized by free radical polymerization with cleavable crosslinkers really degradable? Eur. Polym. J. 2024, 213, 113089. [Google Scholar] [CrossRef]
- Zhao, X.; Pei, W.; Guo, R.; Li, X. Selective adsorption and purification of the acteoside in cistanche tubulosa by molecularly imprinted polymers. Front. Chem. 2020, 7, 903. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zhou, L.-D.; Jiang, Z.-F.; Ma, R.-R.; He, J.-Y.; Xia, Z.-N.; Zhang, Q.-H.; Wang, C.-Z.; Yuan, C.-S. Selective separation and inexpensive purification of paclitaxel based on molecularly imprinted polymers modified with ternary deep eutectic solvents. J. Pharm. Biomed. Anal. 2021, 192, 113661. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Geng, J.; Lu, Y.; Zhao, Y.; Bai, B. Impacts of crosslinker concentration on nanogel properties and enhanced oil recovery capability. Fuel 2020, 267, 117098. [Google Scholar] [CrossRef]
- Mueller, A. A note about crosslinking density in imprinting polymerization. Molecules 2021, 26, 5139. [Google Scholar] [CrossRef]
- Liu, R.; Poma, A. Advances in molecularly imprinted polymers as drug delivery systems. Molecules 2021, 26, 3589. [Google Scholar] [CrossRef]
- Garcia-Soto, M.J.; Haupt, K.; Gonzato, C. Synthesis of molecularly imprinted polymers by photo-iniferter polymerization under visible light. Polym. Chem. 2017, 8, 4830–4834. [Google Scholar] [CrossRef]
- Sikiti, P.; Msagati, T.A.; Mamba, B.B.; Mishra, A.K. Synthesis and characterization of molecularly imprinted polymers for the remediation of PCBs and dioxins in aqueous environments. J. Environ. Health Sci. Eng. 2014, 12, 1–8. [Google Scholar] [CrossRef]
- Salian, V.D.; Vaughan, A.D.; Byrne, M.E. The role of living/controlled radical polymerization in the formation of improved imprinted polymers. J. Mol. Recognit. 2012, 25, 361–369. [Google Scholar] [CrossRef]
- Panagiotopoulou, M.; Beyazit, S.; Nestora, S.; Haupt, K.; Bui, B.T.S. Initiator-free synthesis of molecularly imprinted polymers by polymerization of self-initiated monomers. Polymer 2015, 66, 43–51. [Google Scholar] [CrossRef]
- Voyta, G. Scaling of a Suspension Polymerization Process; Worcester Polytechnic Institute: Worcester, MA, USA, 2012. [Google Scholar]
- Marinho, R.; Horiuchi, L.; Pires, C.A. Effect of stirring speed on conversion and time to particle stabilization of poly (vinyl chloride) produced by suspension polymerization process at the beginning of reaction. Braz. J. Chem. Eng. 2018, 35, 631–640. [Google Scholar] [CrossRef]
- Refaat, D.; Aggour, M.G.; Farghali, A.A.; Mahajan, R.; Wiklander, J.G.; Nicholls, I.A.; Piletsky, S.A. Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies—Synthesis and applications. Int. J. Mol. Sci. 2019, 20, 6304. [Google Scholar] [CrossRef] [PubMed]
MIPs | MIMs | Ref. |
---|---|---|
MIPs are crosslinked polymer networks with specific recognition sites designed to bind to a target molecule. | MIMs are smaller spherical particles with selective binding sites for specific target molecules. | [44,57,93,101,102,103] |
They are typically in the form of bulk materials or thin films. | Microspheres are often used in applications where size and shape are necessary, such as drug delivery systems or bioseparation processes. | |
Microspheres have a more uniform size distribution compared to bulk MIPs. | ||
These polymers are usually synthesized in bulk and ground into small particles for various applications. | These microspheres are synthesized using techniques such as suspension polymerization or emulsion polymerization. | |
MIPs can be used in chromatography, sensors, drug delivery, and separation processes. | Microspheres are advantageous in applications where precise control over the size and shape of the imprinted material is crucial. | |
The particle distribution in MIPs is often varied, which can lead to clumping and other issues. | Particle distribution in MIMs occurs evenly so that they have a uniform size, which ranges from 0.1 to 100 μm, depending on the MIM method used. |
Advantages | Disadvantages | Ref. |
---|---|---|
MIMs exhibit consistent particle distribution and size, enabling stable performance, high affinity, and reproducibility. This uniformity also impacts applications such as chromatography and drug delivery. | MIM synthesis can be more complex and requires precise control over polymerization conditions. | [44,91,103,106,107,108,109] |
MIMs provide high specificity for target molecules due to more uniform and accessible binding sites, enhancing recognition and effective binding. | MIM production in more advanced methods such as CRRP tends to require higher costs and more sophisticated techniques. | |
MIMs are more stable and less prone to degradation over time. | Non-specific interactions may occur due to the uniform structure, potentially interfering with the specific binding of target molecules. | |
The surface area of MIMs can be predicted and optimized for specific applications. Controlling this surface area is crucial for reactions and interactions occurring on the polymer surface. | Although MIMs are reusable, their performance may degrade over several cycles, requiring careful regeneration and optimization. | |
The uniform microsphere structure allows for better control over the creation and accessibility of binding sites, which is essential for achieving high selectivity and specificity in molecular recognition. | Although uniform MIMs offer better control over binding sites, microspheres may still have limited accessibility for certain target molecules, especially if the binding sites are deeply embedded in the polymer matrix. |
Natural Product | Sample | Analyte | Monomer; Crosslinker; Initiator; Template | Yield/Purity (Y%/P%) And Adsorption Capacity (AC) | % Recovery | Ref. |
---|---|---|---|---|---|---|
Polyphenol | Emblica officinalis | Gallic acid | Acrylic acid (AA); EGDMA; AIBN; gallic acid | P: 75–83% AC: N/A | 96–98% | [126] |
Salvia officinalis | Salvia Officinalis Rosmarinic acid | Methacrylic acid (MAA); EGDMA; AIBN; rosmarinic acid | P: N/A AC: N/A | 77.80% | [125] |
Natural Product | Sample | Analyte | Monomer; Crosslinker; Initiator; Template | Yield/Purity (Y%/P%) And Adsorption Capacity (AC) | % Recovery | Ref. |
---|---|---|---|---|---|---|
Aristolochic acids | Aristolochia manshuriensis | Aristolochic acid I (AAI) | Acrylic; EGDMA; AIBN; aristolochic acid I | P: N/A AC: 2.72 mg/g | 91.50% | [148] |
Natural Product | Sample | Analyte | Monomer; Crosslinker; Initiator; Template | Yield/Purity (Y%/P%) And Adsorption Capacity (AC) | % Recovery | Ref. |
---|---|---|---|---|---|---|
Alkaloid | Sophora flavescens Root | Quinolizidine alkaloids | Acrylamide 1.0 mmol; EGDMA 4.0 mmol; AIBN 0.3 mmol; oxymatrine 0.2 mmol | Y: 80.21–89.15% and 85.33–95.28% AC: 110.8(oxymatrine) and 63.4 mg/g (matrine) | Oxymatrine (80.21–89.15%) and matrine (85.33–95.28%) | [157] |
Ginsenoside | American ginseng | Ginsenoside Rb1 | Methyl methacrylate and 4-vinylphenyl boronic pinacol ester (4-VBPE); EGDMA; 2,2′-Azobis (2,4-dimethyl) valeronitrile (ABVN); ginsenoside Rb1 | Y: N/A AC: 81.45 μmol/g | 92.39% | [158] |
Flavonoid | Rhododendron species | Farrerol, taxifoli, kaempferol, hyperin | 4-Vinylpyridine 4.0 mmol; EGDMA 20 mmol; AIBN 0.1 mmol; farrerol 0.1 mmol | Y: N/A AC: 10.04–20.66 mg/g | Farrerol (80.12–105.46%, taxifolin (82.02–95.41%), kaempferol (75.08–89.05%), hyperin (64.04–78.03%) | [159] |
Flavonoid | Larix griffithiana | Dihydro-quercetin | 4-Viniylpyridine 0.065 mmol; EGDMA 0.41 mmol; AIBN 0.15 mmol; dihydroquercetin 0.016 mmol | Y: N/A AC: 77.72 mg/g | 74.64–101.80% | [160] |
Polyphenol | Homalomena occulta, Cynomorium songaricum | Protocatechuic acid (PA) | Acrylamide 5.0 mmol; EGDMA 30.0 mmol; AIBN 0.6 mmol; PA 1.0 mmol | Y: 86.3–122% AC: N/A | 86.3–102.2% | [40] |
Natural Product | Sample | Analyte | Monomer; Crosslinker; Initiator; Template | Yield/Purity (Y%/P%) And Adsorption Capacity (AC) | % Recovery | Ref. |
---|---|---|---|---|---|---|
Polyphenol | Salvia officinalis | Rosmarinic acid | Methacrylic acid (MAA); EGDMA; AIBN; rosmarinic acid | P: N/A AC: N/A | 77.80% | [125] |
Bioflavonoid | Camellia oleifera | Proanthocyanidin | Acrylamide; TRIM; AIBN; proanthocyanidin | P: 70.95%, Y: 83.25% AC: 76 mg/g | 10.34 ± 2.11% and 85.24 ± 3.05% | [167] |
Flavonoid | Rhododendron species | Rutin | Methacrylic acid 4.0 mmol; EGDMA 25.0 mmol; AIBN 1.0 mmol; rutin 0.5 mmol | P: N/A AC: 2.43 mg/g | 105.98% | [168] |
Glycoside | Chinese patent medicines | Rhaponticin | Acrylamide 6.0 mmol; EGDMA 30.0 mmol; AIBN 0.6 mmol; rhaponticin 1.0 mmol | Y: 77.82–91.00% AC: N/A | 77.82–91.00% | [169] |
Polyphenol | Traditional Chinese Medicine (TCM) | Chlorogenic acid | Methacrylic acid 3.0 mmol; TRIM 5.0 mmol; AIBN 0.15 mmol; chlorogenic acid 0.25 mmol | P: N/A AC: 14.3–23.67 µmol/g | 78.85% | [170] |
Natural Product | Sample | Analyte | Monomer; Crosslinker; Initiator; Template | Yield/Purity (Y%/P%) And Adsorption Capacity (AC) | %Recovery | Ref. |
---|---|---|---|---|---|---|
Flavonoid | Spina gledittsiae | Quercetin | 4-VP; divinylbenzene (DVB); AIBN; quercetin | P: N/A AC: 521 µg/g | N/A | [183] |
Steroid | Steroid | 17-β-estradiol | MAA; EGDMA; AIBN; 17-β-estradiol | P: N/A AC: N/A | N/A | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahadi, H.M.; Fardhan, F.M.; Rahayu, D.; Pratiwi, R.; Hasanah, A.N. Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product. Molecules 2024, 29, 4043. https://doi.org/10.3390/molecules29174043
Ahadi HM, Fardhan FM, Rahayu D, Pratiwi R, Hasanah AN. Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product. Molecules. 2024; 29(17):4043. https://doi.org/10.3390/molecules29174043
Chicago/Turabian StyleAhadi, Husna Muharram, Firghi Muhammad Fardhan, Driyanti Rahayu, Rimadani Pratiwi, and Aliya Nur Hasanah. 2024. "Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product" Molecules 29, no. 17: 4043. https://doi.org/10.3390/molecules29174043
APA StyleAhadi, H. M., Fardhan, F. M., Rahayu, D., Pratiwi, R., & Hasanah, A. N. (2024). Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product. Molecules, 29(17), 4043. https://doi.org/10.3390/molecules29174043