Salvia elegans Vahl Counteracting Metabolic Syndrome and Depression in Mice on a High-Fat Diet
Abstract
:1. Introduction
2. Results
2.1. HPLC Chromatographic Profile of the SeHA Extract and the SeFAc Fraction
2.2. Chemical Composition of the SeF3 Fraction by GS-MS
2.3. Effect of S. elegans in FST and on Serum Corticosterone Concentration
2.4. Effect of S. elegans on MetS-Associated Parameters in HFD Mice
2.5. S. elegans Effects on Different Organ Cytokines in Mice with MetS-Induced HFD
2.5.1. Kidneys
Left Kidney
Right Kidney
2.5.2. Fat Tissue
2.5.3. Brain
2.5.4. Spleen
3. Discussion
4. Materials and Methods
4.1. Obtaining Plant Material, Hydroalcoholic Extract (SeHA) and Fractions SeF1, SeF2, and SeF3
4.2. HPLC Analysis of the Extract and Fraction
4.3. SeF3 GC-MS Analysis
4.4. Treatments
4.5. Animals
4.6. Experimental Design
- (1)
- Healthy mice only consumed the standard diet—StD;
- (2)
- Obese group, with only a high-fat diet [VEH];
- (3)
- Antihypertensive control group, with a high-fat diet and Telmisartan [TEL, 10 mg/kg];
- (4)
- Antidepressive control group, with high-fat diet and Imipramine [IMI, 10 mg/kg];
- (5)
- Antidiabetic control group antidiabetic, with a high-fat diet and Glibenclamide/Metformine [G/M, 1/100 mg/kg];
- (6)
- Antihypercholesteremic control group, with a high-fat diet and Pravastatin [PRV, 2.0 mg/kg];
- (7)
- Experimental group, with a high-fat diet and SeHA 100 mg/kg;
- (8)
- Experimental group, with a high-fat diet and SeFAc 50 mg/kg;
- (9)
- Experimental group, with a high-fat diet and SeF3 10 mg/kg.
4.7. Forced Swimming Test (FST)
4.8. Measuring Blood Pressure
4.9. Determination of Body Density
4.10. Determination of Fasting Glucose
4.11. Insulin Tolerance Curve
4.12. Plasmatic Cholesterol and Triglyceride
4.13. Corticosterone Determination
4.14. Quantification of Quantification of Cytokines in Kidneys, Adipose Tissue, Brain, and Spleen
4.15. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Depression: Fact Sheet. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 16 August 2023).
- World Health Organization. Hypertension: Fact Sheet. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 30 July 2023).
- World Health Organization. Obesity and Overweight: Fact Sheet 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 23 April 2023).
- Najafi, N.; Mehri, S.; Ghasemzadeh-Rahbardar, M.; Hosseinzadeh, H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother. Res. 2022, 36, 2300–2323. [Google Scholar] [CrossRef]
- Bruehl, H.; Rueger, M.; Dziobek, I. Hypothalamic-pituitary-adrenal axis dysregulation and memory impairments in type 2 diabetes. J. Clin. Endocrinol. Metab. 2007, 92, 2439–2445. [Google Scholar] [CrossRef]
- Ouakinin, S.R.S.; Barreira, D.P.; Gois, C.J. Depression and obesity: Integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways. Front. Endocrinol. 2018, 9, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Rydén, M.; Arner, P. Tumor necrosis factor-α in human adipose tissue-from signaling mechanisms to clinical implications. J. Intern. Med. 2007, 262, 431–438. [Google Scholar] [CrossRef]
- Harsanyi, S.; Kupcova, I.; Danisovic, L.; Klein, M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int. J. Mol. Sci. 2022, 24, 578. [Google Scholar] [CrossRef]
- Bonilla-Jaime, H.; Sánchez-Salcedo, J.A.; Estevez-Cabrera, M.M.; Molina-Jiménez, T.; Cortes-Altamirano, J.L.; Alfaro-Rodríguez, A. Depression and Pain: Use of Antidepressants. Curr. Neuropharmacol. 2022, 20, 384–402. [Google Scholar] [CrossRef] [PubMed]
- Rochlani, Y.; Venkata-Pothineni, N.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef]
- Akaberi, M.; Iranshani, M.; Mehri, S. Molecular signaling pathways behind the biological effects of Salvia species dieterpenes in neuropharmacology and cardiology. Phytother. Res. 2016, 30, 378–893. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, A.; Camacho, R.; Chino, S.; Jacquez, P.; López, M. Herbario Medicinal del Instituto Mexicano del Seguro Social. Información Etnobotánica; Instituto Mexicano del Seguro Social Mexico: Mexico City, Mexico, 1994; pp. 159–245. [Google Scholar]
- Lim, T.K. Salvia elegans. In Edible Medicinal and Non Medicinal Plants; Springer: Dordrecht, Germany, 2014; pp. 202–206. [Google Scholar]
- Herrera-Ruiz, M.; García, Y.; Mora, S.; Díaz, G.; Viana, S.; Tortoriello, J.; Ramírez, G. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J. Ethnopharmacol. 2006, 107, 53–58. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Jiménez-Ferrer, E.; González-Cortazar, M.; Roman-Ramos, R.; Tortoriello, J.; Vargas-Villa, T.; Herrera-Ruiz, M. Antidepressant and anxiolytic compounds isolated from Salvia elegans interact with serotonergic drugs. Naunyn Schmiedeberg’s Arch. Pharmacol. 2021, 394, 2419–2428. [Google Scholar] [CrossRef]
- Jiménez-Ferrer, E.; Hernández-Badillo, F.; González-Cortazar, M.; Tortoriello, J.; Herrera- Ruiz, M. Antihypertensive activity of Salvia elegans Valh. (Lamiaceae): ACE inhibition and angiotensin II antagonism. J. Ethnopharmacol. 2010, 130, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Román, A.S.; González-Cortazar, M.; Trejo-Tapia, G.; Herrera-Ruiz, M.; Zamilpa, A.; Sanchéz-Mendoza, E.; De la Cruz-Sánchez, N.G.; Jiménez-Ferrer, E. Angiotensin-converting enzyme inhibitors from Salvia elegans Vahl. Nat. Prod. Res. 2021, 29, 5344–5349. [Google Scholar] [CrossRef]
- Mora, S.; Millán, R.; Lungenstrass, H.; Díaz-Véliz, G.; Morán, J.A.; Herrera-Ruiz, M.; Tortoriello, J. The hydroalcoholic extract of Salvia elegans induces anxiolytic- and antidepressant-like effects in rats. J. Ethnopharmacol. 2006, 106, 76–81. [Google Scholar] [CrossRef]
- González-Cortazar, M.; Maldonado-Abarca, A.M.; Jiménez-Ferrer, E.; Marquina, S.; Ventura-Zapata, E.; Zamilpa, A.; Tortoriello, J.; Herrera-Ruiz, M. Isosakuranetina- 5-O- rutinoside: A new flavanone with antidepressant activity isolated from Salvia elegans Vahl. Molecules 2013, 18, 13260–13270. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, Q.; Wan, R.; Kalavagunta, P.K.; Liu, L.; Lv, W.; Qiao, T.; Shang, J.; Wu, H. Selective inhibition of intestinal 5-HT improves neurobehavioral abnormalities caused by high-fat diet mice. Metab. Brain. Dis. 2019, 34, 747–761. [Google Scholar] [CrossRef]
- Rogóz, Z.; Budziszewska, B.; Kubera, M.; Basta-Kaim, A.; Jaworska-Feil, L.; Skuza, G.; Lasoń, W. Effect of combined treatment with imipramine and metyrapone on the immobility time, the activity of hypothalamo-pituitary-adrenocortical axis and immunological parameters in the forced swimming test in the rat. J. Physiol. Pharmacol. 2005, 56, 49–61. [Google Scholar]
- Pasquali, R.; Vicennati, V.; Cacciari, M.; Pagotto, U. The hypothalamic– pituitary–adrenal axis in obesity and the metabolic syndrome. Ann. N. Y. Acad. Sci. 2006, 1083, 111–128. [Google Scholar] [CrossRef]
- Pereira, O.R.; Catarino, M.D.; Alfonso, A.F.; Silva, A.M.S.; Cardoso, S.M. Salvia elegans, Salvia greggii and Salvia officinalis Decoctions: Antioxidant Activities and Inhibition of Carbohydrate and Lipid Metabolic Enzymes. Molecules 2018, 23, 3169–3186. [Google Scholar] [CrossRef]
- Mueller, M.; Lukas, B.; Novak, J.; Simoncini, T.; Genazzani, A.R.; Janqbauer, A. Oregano: A source for peroxisome proliferator-activated receptor gamma antagonists. J. Agric. Food Chem. 2008, 56, 11621–11630. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Tsuji, M.; Inazu, M.; Egashira, T.; Matsumiya, T. Rosmarinic Acid and Caffeic Acid Produce Antidepressive-Like Effect in the Forced Swimming Test in Mice. Eur. J. Pharmacol. 2002, 449, 261–267. [Google Scholar] [CrossRef]
- McCue, P.; Shetty, K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr. 2004, 13, 101–106. [Google Scholar]
- Koga, K.; Shibata, H.; Yoshino, K.; Nomoto, K. Effects of 50% ethanol extract from rosemary (Rosmarinus officinalis) on R-glucosidase inhibitory activity and the elevation of plasma glucose level in rats, and its active compound. J. Food Sci. 2006, 71, S507S512. [Google Scholar] [CrossRef]
- Bocco, B.M.; Fernandes, G.W.; Lorena, F.B.; Cysneiros, R.M.; Christoffolete, M.A.; Grecco, S.S.; Lancellotti, C.L.; Romoff, P.; Lago, J.H.; Bianco, A.C.; et al. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice. Braz. J. Med. Biol. Res. 2016, 49, e5003–e5009. [Google Scholar] [CrossRef]
- Baek, Y.; Lee, M.N.; Wu, D.; Pae, M.J. Luteolin reduces adipose tissue macrophage inflammation and insulin resistance in postmenopausal obese mice. Nutr. Biochem. 2019, 71, 72–81. [Google Scholar] [CrossRef]
- Kojima, Y.; Honda, C.; Kobayashi, I.; Katsuta, R.; Masumura, S.; Wagatsuma, I.; Takehisa, M.; Shindo, H.; Hosaka, M.; Nukada, T.; et al. Trans-glycosylation forms novel glycoside Ethyl-α-Maltoside and Ethyl α- Isomaltoside in sake during the brewing process by α-glucosidase A of Aspergillus oryzae. J. Agric. Food Chem. 2020, 68, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Mishima, T.; Hayakawa, T.; Ozeki, K.; Tsuge, H. Ethyl alpha-D-glucoside Was Absorbed in Small Intestine and Excreted in Urine as Intact Form. Nutrition 2005, 21, 525–529. [Google Scholar] [CrossRef]
- Mishima, T.; Katayama, Y.; Takagi, Y.; Ozeki, K.; Hayakawa, T.; Tsuge, H. Ethyl alpha-D-glucoside Increases Urine Volume and Causes Renal Morphologic Changes in Rats. J. Nutr. Sci. Vitaminol. 2005, 51, 22–26. [Google Scholar] [CrossRef]
- Duke, J.A. GC-MS Analysis of some bioactive constituents of Mussaenda frondosa Linn. In Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants; CRC Press: Boca Raton, FL, USA, 1992; pp. 325–357. [Google Scholar]
- Duke, J.A. GC- MS Analysis of Bioactive Components of Feronia elephantum Correa (Rutaceae). In Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants; CRC Press: Boca Raton, FL, USA, 1992; pp. 247–283. [Google Scholar]
- Mirko-Bunzel, M.; Ralph, J.; Lu, F.; Hatfield, R.; Steinhart, H. Lignins and Ferulate−Coniferyl Alcohol Cross-Coupling Products in Cereal Grains. J. Agric. Food Chem. 2004, 52, 6496–6502. [Google Scholar] [CrossRef]
- Jong, A.; Plat, J.; Mensink, R.P. Metabolic effects of plant sterols and stanols (review). J. Nutr. Biochem. 2003, 14, 362–369. [Google Scholar] [CrossRef]
- Tanaka, M.; Misawa, E.; Ito, Y.; Habara, N.; Nomaguchi, K.; Yamada, M. Identification of five phytosterols from Aloe vera gel as antidiabetic compounds. Biol. Pharm. Bull. 2006, 29, 1418–1422. [Google Scholar] [CrossRef]
- Alexander-Lindo, R.L.; Morrison, E.Y.; Nair, M.G. Hypoglycemic effect of stigmast-4-en-3-one and its corresponding alcohol from the bark of Anacardium occidentale (cashew). Phytother. Res. 2004, 18, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Wasan, K.M.; Zamfir, C.; Pritchard, P.H.; Pederson, R.A. Influence of phytostanol phosphoryl ascorbate (FM-VP4) on insulin resistance, hyperglycemia, plasma lipid levels, and gastrointestinal absorption of exogenous cholesterol in Zucker (fa/fa) fatty and lean rats. J. Pharm. 2003, 92, 281–288. [Google Scholar] [CrossRef]
- Zhao, D.; Zheng, L.; Ling, Q.; Shuran, W.; Liping, G.; Yanan, X.; Jianhui, C. Structural Features and Potent Antidepressant Effects of Total Sterols and β-Sitosterol Extracted from Sargassum horneri. Mar. Drugs. 2016, 14, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Fulton, S. Diet-induced obesity promotes depressive-like behavior that is associated with neural adaptations in brain reward circuitry. Int. J. Obes. 2013, 37, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Ruanpang, J.; Pleumsamran, A.; Pleumsamran, J.; Mingmalaira, S. Effect of a High-Fat Diet and Cholesterol Levels on Depression-like Behavior in Mice. CMU J. Nat. Sci. 2018, 17, 161–173. [Google Scholar] [CrossRef]
- Tannenbaum, B.M.; Brindley, D.N.; Tannenbaum, G.S.; Dallman, M.F.; McArthur, M.D.; Meaney, M.J. High-fat feeding alters both basal and stress-induced hypothalamic pituitary-adrenal activity in the rat. Am. Physiol. Soc. 1997, 273, E1168–E1177. [Google Scholar] [CrossRef] [PubMed]
- Barriga, C.; Martin, M.I.; Tabla, R.; Ortega, E.; Rodriguez, A.B. Circadian rhythm of melatonin, corticosterone and phagocytosis: Effect of stress. J. Pineal Res. 2001, 30, 180–187. [Google Scholar] [CrossRef]
- Lebeck, J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J. Mol. Endocrinol. 2014, 52, R165–R178. [Google Scholar] [CrossRef]
- Mahendran, Y.; Cederberg, H.; Vangipurapu, J.; Kangas, A.J.; Soininen, P.; Kuusisto, J.; Uusitupa, M.; Ala-Korpela, M.; Laakso, M. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care 2013, 36, 3732–3738. [Google Scholar] [CrossRef]
- Jin, E.S.; Malloy, C.R.; Sharma, G.; Finn, E.; Fuller, K.N.; Reyes, Y.G.; Lovell, M.A.; Derderian, S.C.; Schoen, J.A.; Inge, T.H.; et al. Glycerol as a precursor for hepatic de novo glutathione synthesis in human liver. Redox. Biol. 2023, 63, 102749. [Google Scholar] [CrossRef]
- Lieder, B.; Hans, J.; Hentschel, F.; Geissler, K.; Ley, J. Biological evaluation of natural and synthesized homovanillic acid esters as inhibitors of intestinal fatty acid uptake in differentiated Caco-2 cells. Molecules 2019, 24, 3599. [Google Scholar] [CrossRef]
- Capuron, L.; Su, S.; Miller, A.H.; Bremner, J.D.; Goldberg, J.; Vogt, G.J.; Maisano, C.; Jones, L.; Murrah, N.V. Depressive symptoms and metabolic syndrome: Is inflammation the underlying link? Biol. Psychiatry 2008, 64, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Cathomas, F.; Russo, S.J. Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology (Bethesda) 2019, 34, 123–133. [Google Scholar] [CrossRef]
- Lamas, O.; Martínez, J.A.; Marti, A. Decreased splenic mRNA expression levels of TNF-alpha and IL-6 in diet-induced obese animals. J. Physiol. Biochem. 2004, 60, 279–283. [Google Scholar] [CrossRef]
- Esposito, K.; Pontillo, A.; Giugliano, F.; Giugliano, G.; Marfella, R. Association of low interleukin-10 levels with the metabolic syndrome in obese women. J. Clin. Endocrinol. Metab. 2003, 88, 1055–1058. [Google Scholar] [CrossRef]
- De Souza, C.T.; Araujo, E.P.; Bordin, S.; Ashimine, R.; Zollner, R.L. Consumption of a fat-rich diet activates a proinflamatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005, 146, 4192–4199. [Google Scholar] [CrossRef]
- Gotoh, K.; Inoue, M.; Masaki, T.; Chiba, S.; Shimasaki, T.; Ando, H.; Fujiwara, K.; Katsuragi, I.; Kakuma, T.; Seike, M.; et al. A Novel Anti-Inflammatory Role for Spleen-Derived interleukin-10 in Obesity-Induced Hypothalamic Inflammation. J. Neurochem. 2012, 120, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Spoto, B.; Zoccali, C. Spleen IL-10, a key player in obesity-driven renal risk. Nephrol. Dial. Transplant. 2013, 28, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
Compound Name | Molecular Weight (a.m.u.) | RT (min) | Concentration (% of Total) |
---|---|---|---|
Glycerol (Glycerine) | 92.09 | 7.29 | 33.4 |
Ethyl α-d-glucopyranoside | 208.21 | 15.826 | 21.36 |
Methyl homovanillate | 196.07 | 16.83 | 2.97 |
Coniferol | 180.20 | 16.982 | 5.96 |
Campesterol acetate | 382 | 31.33 | 6.39 |
Stigmasterol acetate | 454.7 | 31.75 | 4.20 |
Treatments | Weigh Gain (Velocity g/Days) | Blood Pressure (mmHg) | Other Parameters Measured at Week 12 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Week 12 | Week 8 | Week 12 | Glucose (mg/dL) | Triglycerides (mg/dL) | Cholesterol (mg/dL) | Insulin Tolerance Curve (AUC) | Adiposity Index (%) | |||
SBP | DBP | SBP | DBP | |||||||
StD | 0.196 ± 0.01 * | 99 ± 17 * | 59 ± 7 * | 93 ± 14 * | 60 ± 7.3 * | 80 ± 15 * | 29 ± 11 * | 156 ± 34 * | 5383 ± 1695 * | 0.4 ± 0.2 * |
VEH | 0.240 ± 0.017 & | 147 ± 17 & | 80 ± 15 & | 146 ± 13 & | 78 ± 8 & | 115 ± 9 & | 63 ± 12 & | 248 ± 14.0 & | 16,633 ± 2094 & | 1.5 ± 0.6 & |
IMI | 0.161 ± 0.031 * | 140 ± 37 & | 79 ± 7 & | 139 ± 29 & | 70 ± 8.6 | 106 ± 20 & | 36 ± 15 * | 233 ± 57 & | 7835 ± 4517 * & | 1.3 ± 0.26 & |
G/M | 0.155 ± 0.024 * | 121 ± 36 & | 67 ± 7 * | 101 ± 19 * | 63 ± 11 | 85.6 ± 19.5 * | 26 ± 12 * | 185 ± 57 | 8388 ± 1047 * & | 1.31 ± 0.3 & |
PRV | 0.165 ± 0.02 * | 143 ± 33 & | 65 ± 9 * | 123 ± 13 & | 67 ± 11 | 97.1 ± 13.4 * | 21 ± 13 * | 165 ± 52 * | 13,131 ± 1363 * & | 0.68 ± 0.12 * |
TEL | 0.189 ± 0.03 * | 99 ± 18 * | 60 ± 6 * | 100 ± 16 * | 62 ± 4.5 * | 149 ± 22 * & | 27 ± 13 * | 174 ± 50 * | 3423 ± 435 * & | 2.1 ± 0.58 & |
SeHA 100 | 0.215 ± 0.032 & | 107 ± 18 * | 60 ± 5.8 * | 105 ± 19.8 * | 60 ± 8.0 * | 96 ± 17.7 & | 50.75 ± 9.6 & | 160 ± 43.7 * | 11,709 ± 1639 * & | 1.67 ± 0.25 & |
SeFAc 50 | 0.149 ± 0.020 * | 106 ± 22.8 * | 59 ± 6.5 * | 110 ± 22.1 * & | 60 ± 3.4 * | 96 ± 8.8 & | 44.34 ± 9.13 * | 137.02 ± 55 * | 11,729 ± 2764 * | 1.58 ± 0.28 & |
SeF3 10 | 0.168 ± 0.064 * | 103 ± 19.6 * | 61 ± 4.7 * | 102 ± 16.0 * | 62 ± 7.9 * | 84 ± 12.7 * | 7.72 ± 4.8 * & | 188.87 ± 8.9 * | 8655.5 ± 2880 * | 0.77 ± 0.13 * |
Organ | Treatment (mg/kg) | TNF-α | IL-1β | IL-6 | IL-10 |
---|---|---|---|---|---|
(pg/mg prot) | |||||
Left kidney | StD | 150.13 ± 38.02 * | 22,648.7 ± 2092.5 * | 491.18 ± 31.34 * | 1682.7 ± 26.5 * |
VEH | 2502.07 ± 15.73 | 57,756.3 ± 625.2 | 1130.42 ± 72.1 | 4150.8 ± 743 | |
IMI 1.0 | 328.35 ± 10.55 * | 13,679.9 ± 1536.8 * | 561.4 ± 297.0 * | 1524.7 ± 87.1 * | |
G/M (1/100) | 550.79 ± 35.08 * | 28,849.6 ± 4688.2 * | 706.7 ± 101.5 * | 2346.2 ± 233.9 * | |
PRAV 2.0 | 571.03 ± 89.58 * | 21,883.3 ± 18.8 * | 547.2 ± 125.5 * | 2859.1 ± 232.3 * | |
TEL 10 | 213.80 ± 83 * | 18,914.03 ± 2950 * | 435.9 ± 92.2 * | 3134.1 ± 358.9 | |
SeHA 100 | 1977.9 ± 457.4 | 36,147.7 ± 2629.9 * | 1046.16 ± 520.1 | 5398.7 ± 208.3 * | |
SeFAc 50 | 182.52 ± 76.5 * | 15,396.0 ± 668.1 * | 2267.1 ± 426.0 * | 2267.1 ± 426.0 * | |
SeF3 10 | 172.62 ± 37.1 * | 387.14 ± 60.9 * | 387.1 ± 60.9 * | 1504.4 ± 6.4 * | |
Right kidney | StD | 59.86 ± 9.29 * | 21,618.1 ± 2908.5 * | 799.24 ± 114.9 * | 2232.6 ± 129.1 * |
VEH | 107.06 ± 3.02 | 39,068.8 ± 3099.5 | 1261.90 ± 78.40 | 3899.7 ± 113.8 | |
IMI 1.0 | 150.82 ± 21.14 * | 10,978.5 ± 986.4 * | 463.61 ± 163.9 * | 2432.08 ± 157.1 * | |
G/M (1/100) | 642.32 ± 79.5 * | 24,799.4 ± 3321.4 * | 803.8 ± 94.5 * | 3250.62 ± 682.2 | |
PRAV 2.0 | 467.69 ± 120.0 * | 34,178.6 ± 1866.2 | 777.5 ± 50.8 * | 4853.4 ± 365.1 * | |
TEL 10 | 222.14 ± 7.56 * | 17,041.9 ± 1440 * | 440.60 ± 61.62 * | 2407.19 ± 88.6 * | |
SeHA 100 | 206.66 ± 77.5 * | 32,445 ± 2966.0 * | 1286.9 ± 43.9 | 3668.1 ± 146.0 | |
SeFAc 50 | 393.9 ± 17.7 * | 31,371.8 ± 942 * | 1184.39 ± 195.2 | 3505.5 ± 198.3 * | |
SeF3 10 | 74.10 ± 24.5 * | 24,913.0 ± 4098.3 * | 1069.7 ± 14.9 * | 3442.4 ± 116.7 * |
Organ | Treatment (mg/kg) | TNF-α | IL-1β | IL-6 | IL-10 |
---|---|---|---|---|---|
(pg/mg prot) | |||||
White fat tissue | StD | 282.98 ± 18.04 * | 21,283.3 ± 1084.1 * | 869.13 ± 47.84 * | 468.8 ± 33.8 * |
VEH | 2641.4 ± 556.5 | 85,245.4 ± 4433 | 1522.5 ± 361.5 | 1578.7 ± 37.27 | |
IMI 1.0 | 1419.68 ± 20.42 * | 53,589 ± 6303.2 * | 707.1 ± 107.4 * | 2480.9 ± 402.5 * | |
G/M (1/100) | 2400.8 ± 222.2 | 36,109.3 ± 4369.6 * | 1753.2 ± 131.7 | 1265.51 ± 214.5 | |
PRAV 2.0 | 1448.5 ± 408.05 * | 68,698.3 ± 20,143 | 1772.19 ± 147.2 | 1831.9 ± 391.5 | |
TEL 10 | 192.33 ± 12.17 * | 34,745 ± 5161 * | 834.1 ± 9.0 * | 2203.7 ± 140 * | |
SeHA 100 | 1087.9 ± 89.36 * | 39,222.7 ± 4145.6 * | 1494.41 ± 104.2 | 1333.7 ± 43.2 | |
SeFAc 50 | 1308.2 ± 45.34 * | 54,865 ± 1486.5 * | 692.42 ± 192.6 * | 344.8 ± 49.3 * | |
SeF3 10 | 953.05 ± 22.7 * | 36,919.7 ± 9986 * | 674.2 ± 75.9 * | 1880.2 ± 623.5 |
Organ | Treatment (mg/kg) | TNF-α | IL-1β | IL-6 | IL-10 |
---|---|---|---|---|---|
(pg/mg prot) | |||||
Brain | StD | 603.15 ± 38.07 * | 1779.7 ± 22.9 * | 274.3 ± 59.3 * | 940.1 ± 128.5 * |
VEH | 884.16 ± 27.87 | 2455.3 ± 332.1 | 494.51 ± 40.10 | 430.6 ± 167 | |
IMI 1.0 | 211.83 ± 19.83 * | 3576.2 ± 1257 | 245.0 ± 25.7 * | 871.7 ± 68.0 * | |
G/M (1/100) | 766.71 ± 125.46 | 3619.0 ± 215.6 * | 214.7 ± 6.3 * | 397.26 ± 79.4 | |
PRAV 2.0 | 344.09 ± 75.1 * | 1824.8 ± 213.9 * | 222.41 ± 5.63 * | 456.5 ± 158.4 | |
TEL 10 | 63.03 ± 7.83 * | 4531.7 ± 137.8 * | 273.4 ± 40 * | 930.9 ± 35.2 * | |
SeHA 100 | 763.75 ± 58.45 * | 2106.7 ± 848 | 238.45 ± 21.17 * | 895.8 ± 151.4 * | |
SeFAc 50 | 1284.69 ± 130.1 * | 3033.2 ± 509.2 | 280.2 ± 45 * | 929.8 ± 118.9 * | |
SeF3 10 | 1032.01 ± 239.02 | 3204.0 ± 506.0 | 305.4 ± 67.4 * | 609.1 ± 55.9 * |
Organ | Treatment (mg/kg) | TNF-α | IL-1β | IL-6 | IL-10 |
---|---|---|---|---|---|
(pg/mg prot) | |||||
Spleen | StD | 731.70 ± 41.09 * | 24,613.9 ± 826.6 * | 796.80 ± 30.34 * | 1499.4 ± 3.3 * |
VEH | 299.75 ± 64.9 | 12,326.3 ± 581.2 | 215.51 ± 12.59 | 201.60 ± 48.8 | |
IMI 1.0 | 123.29 ± 7.4 * | 7072.7 ± 1246 * | 337.53 ± 35.18 * | 976.2 ± 22.9 * | |
G/M (1/100) | 1265.98 ± 90.4 * | 14,151.6 ± 686.4 * | 444.12 ± 9.41 * | 1510.5 ± 40.8 * | |
PRAV 2.0 | 365.5 ± 79 | 11,152.3 ± 1968 | 424.35 ± 20.88 * | 1270.3 ± 195.6 * | |
TEL 10 | 1920 ± 218.2 * | 6582.1 ± 145.2 * | 492.62 ± 21.94 * | 991.4 ± 65.2 * | |
SeHA 100 | 331.5 ± 28.4 | 10,250.3 ± 2215.0 | 205.6 ± 31.3 | 411.1 ± 2.05 * | |
SeFAc 50 | 242.1 ± 1.3 | 11,127.4 ± 1808 | 224.69 ± 12.1 | 519.6 ± 96.0 * | |
SeF3 10 | 212.89 ± 56.7 | 6660.4 ± 607.5 * | 221.31 ± 93.3 | 636.8 ± 37.0 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Hernández, G.B.; Jiménez-Ferrer, E.; González-Cortazar, M.; Alejandro, Z.; Monterrosas-Brisson, N.; Herrera-Ruiz, M. Salvia elegans Vahl Counteracting Metabolic Syndrome and Depression in Mice on a High-Fat Diet. Molecules 2024, 29, 4070. https://doi.org/10.3390/molecules29174070
Martínez-Hernández GB, Jiménez-Ferrer E, González-Cortazar M, Alejandro Z, Monterrosas-Brisson N, Herrera-Ruiz M. Salvia elegans Vahl Counteracting Metabolic Syndrome and Depression in Mice on a High-Fat Diet. Molecules. 2024; 29(17):4070. https://doi.org/10.3390/molecules29174070
Chicago/Turabian StyleMartínez-Hernández, Gabriela Belen, Enrique Jiménez-Ferrer, Manases González-Cortazar, Zamilpa Alejandro, Nayeli Monterrosas-Brisson, and Maribel Herrera-Ruiz. 2024. "Salvia elegans Vahl Counteracting Metabolic Syndrome and Depression in Mice on a High-Fat Diet" Molecules 29, no. 17: 4070. https://doi.org/10.3390/molecules29174070
APA StyleMartínez-Hernández, G. B., Jiménez-Ferrer, E., González-Cortazar, M., Alejandro, Z., Monterrosas-Brisson, N., & Herrera-Ruiz, M. (2024). Salvia elegans Vahl Counteracting Metabolic Syndrome and Depression in Mice on a High-Fat Diet. Molecules, 29(17), 4070. https://doi.org/10.3390/molecules29174070