Ordered Mesoporous Carbon as Adsorbent for the Removal of a Triphenylmethane Dye from Its Aqueous Solutions
Abstract
:1. Introduction
2. Results
2.1. Characterisation of the Metal and Halide Free OMC
2.1.1. Fourier-Transform Infrared Spectroscopy and X-ray Diffraction
2.1.2. Electron Microscopy
2.1.3. Nitrogen Gas Physisorption
2.1.4. Interpretation of Characterization Results
2.2. Batch Adsorption Studies
2.2.1. Preliminary Tests under Batch Conditions
Effect of Solution pH
Effect of Adsorbent Dosage
Effect of Dye Concentration
Effect of Contact Time
2.2.2. Isotherms Investigations
Langmuir Isotherm and Thermodynamic Parameters
Freundlich Isotherm
Temkin Isotherm
Dubinin–Radushkevitch (D-R) Isotherm
2.2.3. Adsorption Kinetics
Reaction Mechanism Explication
- I.
- External Transport < Internal Transport (film diffusion is rate limiting);
- II.
- External Transport > Internal Transport (particle diffusion is rate limiting);
- III.
- External Transport ≈ Internal Transport, where adsorption is not feasible at a significant rate due to the formation of a liquid film over the sorbent particles.
2.2.4. Comparative Batch Adsorption
2.3. Continuous Adsorption/Desorption in a Fixed Bed Column
2.3.1. Dye Adsorption in OMC Fixed Bed Column
2.3.2. Regeneration of Column and Dye Recovery
2.3.3. Determination of Column Efficiency
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Metal and Halide Free OMC
3.3. Materials Characterisation
3.4. Instruments for Adsorption Experiments
3.5. Adsorption Batch Experiments
3.6. Fixed Bed Column Operations
3.6.1. Dye Adsorption in OMC Fixed Bed Column
3.6.2. Desorption of Column and Dye Retrieval
3.6.3. Determination of Column Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karri, R.R.; Ravindran, G.; Dehghani, M.H. Wastewater–Sources, Toxicity, and Their Consequences to Human Health: Soft Computing Techniques in Solid Waste and Wastewater Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–33. [Google Scholar]
- Slama, H.B.; Bouket, A.C.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Silini, H.C.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Javid, M.; Sharma, M. Impact of Textile Dyes on Human Health and Environment. In Impact of Textile Dyes on Public Health and the Environment; Ahmad, K., Jangid, N.K., Bhat, A.R., Eds.; IGI Global: Hershey, PA, USA, 2020; Volume 8, pp. 162–169. [Google Scholar]
- Islam, M.-T.; Islam, T.; Islam, T.; Repon, M.-R. Synthetic dyes for textile colouration: Process, factors and environmental impact. Text. Leather Rev. 2022, 5, 327–373. [Google Scholar] [CrossRef]
- Filipkowska, U.; Klimiuk, E.; Grabowski, S.; Siedlecka, E. Adsorption of reactive dyes by modified chitin from aqueous solutions. Pol. J. Environ. Stud. 2022, 11, 315–323. [Google Scholar]
- Patel, A.; Soni, S.; Mittal, J.; Mittal, A. Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome. Desalination Water Treat. 2021, 220, 342–352. [Google Scholar] [CrossRef]
- Rahmat, M.; Rehman, A.; Rahmat, S.; Bhatti, H.N.; Iqbal, M.; Khan, W.S.; Bajwa, S.Z.; Rahmat, R.; Nazir, A. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Technol. 2019, 8, 5149–5159. [Google Scholar] [CrossRef]
- Sofija, A.; Zupančič, G.; Hawlina, M. The effect of gentian violet on human anterior lens epithelial cells. Curr. Eye Res. 2014, 39, 1020–1025. [Google Scholar]
- Shabna, S.; Singh, C.J.C.; Dhas, S.D.S.J.; Jeyakumar, S.C.; Biju, C.S. An overview of prominent factors influencing the photocatalytic degradation of cationic crystal violet dye employing diverse nanostructured materials. J. Chem. Technol. Biotechnol. 2024, 99, 1027–1055. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Hosseini, S.H.; Seidi, F.; Soleyman, R. Magnetic removal of crystal violet from aqueous solutions using polysaccharide–based magnetic nanocomposite hydrogels. Polym. Int. 2013, 62, 1038–1044. [Google Scholar] [CrossRef]
- Docampo, R.; Moreno, S.N.J. The metabolism and mode of action of gentian violet. Drug Metab. Rev. 1990, 22, 161–178. [Google Scholar] [CrossRef]
- Au, W.; Butler, M.A.; Bloom, S.E.; Matney, T.S. Further study of the genetic toxicity of gentian violet. Mutat. Res./Genet. Toxicol. 1979, 66, 103–112. [Google Scholar] [CrossRef]
- Takeshi, H.; Ohori, M.; Kashima, T.; Yamamoto, H.; Tachibana, M. Chemical cystitis due to crystal violet dye: A case report. J. Med. Case Rep. 2013, 7, 145. [Google Scholar]
- Ruhma, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state–of–the–art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar]
- Allen, S.J.; Koumanova, B. Decolourisation of water/wastewater using adsorption. J. Univ. Chem. Technol. Metall. 2005, 40, 175–192. [Google Scholar]
- Ioannis, A.; Mittal, A.; Usman, M.; Mittal, J.; Yu, G.; Delgado, A.N.; Kornaros, M. A review on halloysite-based adsorbents to remove pollutants in water and wastewater. J. Mol. Liq. 2018, 269, 855–868. [Google Scholar]
- Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem. 2017, 10 (Suppl. S2), S3381–S3393. [Google Scholar] [CrossRef]
- Mittal, A.; Jain, R.; Mittal, J.; Shrivastava, M. Adsorptive removal of hazardous dye quinoline yellow from wastewater using coconut-husk as potential adsorbent. Fresenius Environ. Bull. 2010, 19, 1171–1179. [Google Scholar]
- Ong, S.T.; Lee, C.K.; Zainal, Z. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresour. Technol. 2007, 98, 2792–2799. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, R.; Baskar, C.; Chung, W.J. Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 2010, 259, 249–257. [Google Scholar] [CrossRef]
- Garg, V.K.; Gupta, R.; Yadav, A.B.; Kumar, R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. Technol. 2003, 89, 121–124. [Google Scholar] [CrossRef]
- Deniz, F. Dye removal by almond shell residues: Studies on biosorption performance and process design. Mater. Sci. Eng. C 2013, 33, 2821–2826. [Google Scholar] [CrossRef]
- Nassar, M.M.; Magdy, Y.H. Removal of different basic dyes from aqueous solutions by adsorption on palm–fruit bunch particles. Chem. Eng. J. 1997, 66, 223–226. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, N.K.; Gera, P. Removal of color from pulp and paper mill wastewater–methods and techniques–A review. J. Environ. Manag. 2021, 298, 113527. [Google Scholar] [CrossRef] [PubMed]
- Hasani, N.; Selimi, T.; Mele, A.; Thaçi, V.; Halili, J.; Berisha, A.; Sadiku, M. Theoretical, equilibrium, kinetics and thermodynamic investigations of Methylene Blue adsorption onto lignite coal. Molecules 2022, 27, 1856. [Google Scholar] [CrossRef]
- Mittal, A.; Teotia, M.; Soni, R.K.; Mittal, J. Applications of egg shell and egg shell membrane as adsorbent: A review. J. Mol. Liq. 2016, 223, 376–387. [Google Scholar] [CrossRef]
- Mittal, J.; Mittal, A. Hen feather, A remarkable adsorbent for dye removal. In Green Chemistry for Dyes Removal from Wastewater; Sharma, S.K., Ed.; Scrivener Publishing LLC.: Austin, TX, USA, 2015; pp. 409–457. [Google Scholar]
- Mittal, J.; Jhare, D.; Vardhan, H.; Mittal, A. Utilization of bottom ash as a low-cost sorbent for the removal and recovery of a toxic halogen containing dye Eosin Yellow. Desalination Water Treat. 2014, 52, 4508–4519. [Google Scholar] [CrossRef]
- Mittal, A.; Jhare, D.; Mittal, J. Adsorption of hazardous dye Eosin Yellow from aqueous solution waste material de–oiled soya: Isotherm, kinetics and bulk removal. J. Mol. Liq. 2013, 179, 133–140. [Google Scholar] [CrossRef]
- Kim, D.J.; Lee, H.I.; Yie, J.E.; Kim, S.-J.; Kim, J.M. Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan. Carbon 2005, 43, 1868–1873. [Google Scholar] [CrossRef]
- Lu, A.-H.; Spliethoff, B.; Schuth, F. Aqueous synthesis of ordered mesoporous carbon via self–assembly catalyzed by amino acid. Chem. Mater. 2008, 20, 5314–5319. [Google Scholar] [CrossRef]
- Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Cheng, L.; Feng, D.; Wu, Z.; Chen, Z.; Wan, Y.; Stein, A.; et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic–organic self-assembly. Chem. Mater. 2006, 18, 4447–4464. [Google Scholar] [CrossRef]
- Liang, C.; Li, Z.; Dai, S. Mesoporous Carbon Materials: Synthesis and Modification. Angew. Chem. 2008, 47, 3696–3717. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Y.; Yan, C.; Jiang, W.; Chang, C. The Langmuir monolayer adsorption model of organic matter into effective pores in activated carbon. J. Colloid Interface Sci. 2013, 389, 213–219. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A.K. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): Evaluation of kinetic, equilibrium and thermodynamic models. Sep. Purif. Technol. 2006, 51, 165–172. [Google Scholar] [CrossRef]
- Hatch, C.D.; Wiese, J.S.; Crane, C.C.; Harris, K.J.; Kloss, H.G.; Baltrusaitis, J. Water adsorption on clay minerals as a function of relative humidity: Application of BET and Freundlich adsorption models. Am. Chem. Soc. 2012, 28, 1790–1803. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. URSS 1940, 12, 327–356. [Google Scholar]
- Hu, Q.; Zhang, Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. J. Mol. Liq. 2019, 277, 646–648. [Google Scholar] [CrossRef]
- Hutson, N.D.; Yang, R.T. Theoretical basis for the Dubinin-Radushkevitch (DR) adsorption isotherm equation. Adsorption 1997, 3, 189–195. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Wong, Y.C.; Szeto, Y.S.; Cheung, W.H.; McKay, G. Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan. J. Appl. Polym. Sci. 2004, 92, 1633–1645. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The sorption of lead(II) ions on peat. Water Res. 1999, 33, 578–584. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Plazinski, W.; Rudzinski, W. Kinetics of adsorption at solid/solution interfaces controlled by intraparticle diffusion: A theoretical analysis. J. Phys. Chem. C 2009, 113, 12495–12501. [Google Scholar] [CrossRef]
- de Luna, M.D.G.; Samaniego, M.L.; Ong, D.C.; Wan, M.W.; Lu, M.C. Kinetics of sulfur removal in high shear mixing-assisted oxidative-adsorptive desulfurization of diesel. J. Clean. Prod. 2018, 178, 468–475. [Google Scholar] [CrossRef]
- Boyd, G.E.; Adamson, A.W.; Meyers, L.S. The exchange adsorption of ions from aqueous solution by organic zeolites II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef]
- Reichenberg, D. Properties of Ion–Exchange Resins in Relation to their Structure. III. Kinetics of Exchange. Am. Chem. Soc. 1953, 75, 589–597. [Google Scholar]
- Crank, J. The Mathematics of Diffusion; Clarenden Press: Oxford, UK, 1956. [Google Scholar]
- Fabryantya, R.; Valenciaa, C.; Soetaredjoa, F.E.; Putrob, J.N.; Santosoa, S.P.; Kurniawanb, A.; Jub, Y.H.; Ismadjia, S. Removal of Crystal Violet dye by adsorption using bentonite—Alginate composite. J. Environ. Chem. Eng. 2017, 5, 5677–5687. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resour.-Effic. Technol. 2017, 3, 71–77. [Google Scholar]
- Mittal, J.; Ahmad, R.; Ejaz, M.O.; Mariyam, A.; Mittal, A. A novel, eco-friendly bio-nanocomposite (Alg-Cst/Kal) for the adsorptive removal of Crystal Violet dye from its aqueous solutions. Int. J. Phytoremed. 2022, 24, 796–807. [Google Scholar] [CrossRef]
- Homagai, P.L.; Poudel, R.; Poudel, S.; Bhattarai, A. Adsorption and removal of Crystal Violet dye from aqueous solution by modified rice husk. Heliyon 2022, 8, e09261. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Liu, X.; Wen, L.; Zhou, Y.; Jiang, Y.; Li, Z. Comparison of basic dye Crystal Violet removal from aqueous solution by low-cost biosorbents. Sep. Sci. Technol. 2008, 43, 3712–3731. [Google Scholar] [CrossRef]
- Sayed, G.O.E. Removal of Methylene Blue and Crystal Violet from aqueous solutions by palm kernel fiber. Desalination 2011, 272, 225–232. [Google Scholar] [CrossRef]
- Ahmad, R. Studies on adsorption of Crystal Violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J. Hazard. Mater. 2009, 171, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Miyah, Y.; Lahrichi, A.; Idrissi, M.; Anis, K.; Kachkoul, R.; Idrissi, N.; Lairini, S.; Nenov, V.; Zerrouq, F. Removal of cationic dye “Crystal Violet” in aqueous solution by the local clay. J. Mater. Environ. Sci. 2017, 8, 3570–3582. [Google Scholar]
- Kumari, J.H.; Krishnamoorthy, P.; Arumugam, T.K.; Radhakrishnan, S.; Vasudevan, D. An efficient removal of Crystal Violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent. Int. J. Biol. Macromol. 2016, 96, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Sonia, S.; Bajpai, P.K.; Bharti, D.; Mittal, J.; Arora, C. Removal of Crystal Violet from aqueous solution using iron based metal organic framework. Desalination Water Treat. 2020, 205, 386–399. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Adsorption of hazardous dye Crystal Violet from wastewater by waste materials. J. Colloid Interface Sci. 2010, 343, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Elella, M.H.A.; Sabaa, M.W.; El Hafeez, E.A.; Mohamed, R.R. Crystal Violet dye removal using crosslinked grafted xanthan gum. Int. J. Biol. Macromol. 2019, 137, 1086–1101. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J., Jr. Physiological Processes for Water Quality Control; Wiley Interscience: New York, NY, USA, 1972. [Google Scholar]
- Vazquez, G.; Alonso, R.; Freire, S.; Gonzalez-Alvarez, J. Antorrena, Uptake of Phenol from aqueous solutions by adsorption in a pinus pinaster bark packed bed. J. Hazard. Mater. 2006, 133, 61–67. [Google Scholar] [CrossRef]
- Walker, G.M.; Weatherley, L.R. Adsorption of Acid Dyes on Granular Activated Carbon in fixed Beds. Water Res. 1997, 31, 2093–2101. [Google Scholar] [CrossRef]
- Sakina, F.; Baker, R.T. Metal- and halogen- free synthesis of ordered mesoporous carbon materials. Microporous Mesoporous Mater. 2019, 289, 109622. [Google Scholar] [CrossRef]
- Li, X.-Y.; Han, D.; Xie, J.-F.; Wang, Z.-B.; Gong, Z.-Q.; Li, B. Hierarchical porous activated biochar derived from marine macroalgae wastes (Enteromorpha prolifera): Facile synthesis and its application on Methylene Blue removal. RSC Adv. 2018, 8, 29237–29247. [Google Scholar] [CrossRef] [PubMed]
Other names | Aniline violet, Basic violet 3, Baszol Violet 57L, Brilliant Violet 58, Hexamethyl-p-rosaniline chloride, Methylrosanilide chloride, Methyl Violet 10B, Methyl Violet 10BNS, Pyoktanin |
Melting point | 205 °C (401 F: 478 K) |
Molecular weight | 407.99 g·mol−1 |
IUPAC name | 4-{Bis[4-(dimethylamino)phenyl]methylidene}-N,N-dimethylcyclohexa-2,5-dien-1-iminium chloride |
Chemical formula | C25H30CIN3 |
Class | Triarylmethane |
Colour | Blue Violet |
Solubility in water | 4 g/L at 25 °C |
Langmuir Adsorption Isotherm | |||
---|---|---|---|
Parameter | Temperature (°C) | ||
30 | 40 | 50 | |
qo (g·g−1) | 2.15 | 1.75 | 0.73 |
× 104 (L·mol−1) | 1.85 | 2.27 | 3.62 |
r | 0.52 | 0.47 | 0.36 |
R2 | 0.99 | 0.99 | 1.00 |
Freundlich Adsorption Isotherm | |||
× 104 (mol·g−1) | 1.11 | 5.67 | 2.06 |
n | 0.94 | 0.83 | 0.88 |
R2 | 1.00 | 0.99 | 0.99 |
Temkin Adsorption Isotherm | |||
× 10−1 (mol·g−1) | 2.30 | 2.42 | 2.15 |
× 105 (L·mol−1) | 5.79 | 5.32 | 4.99 |
R2 | 0.96 | 0.95 | 0.92 |
Dubinin–Radushkevtich Adsorption Isotherm | |||
Xm (mol·g−1) | 1.34 | 3.01 | 1.82 |
× 10−9 (L·mol−1) | 7.00 | 7.00 | 6.00 |
E (kJ·mol−1) | 8.45 | 8.45 | 9.12 |
R2 | 1.00 | 1.00 | 0.99 |
Parameters | Temperature (°C) | ||
---|---|---|---|
30 | 40 | 50 | |
−ΔG° (kJ·mol−1) | 24.76 | 26.11 | 28.19 |
ΔH° (kJ·mol−1) | 16.12 | 27.31 | 39.23 |
ΔS° (kJ·K−1mol−1) | 16.20 | 27.39 | 39.32 |
Adsorbent | Maximum Adsorption Capacity (mg/g) | Optimal Adsorption Conditions | Ref. | |||
---|---|---|---|---|---|---|
pH | Dose (g/L) | Time (h) | Conc. | |||
OMC | 2150.00 | 9 | 1.0 | 2.0 | 4 × 10−5 M | Present Study |
Bentonite–Alginate Composite | 601.93 | 8 | 10.0 | - | 300 ppm | [49] |
Water Hyacinth | 322.58 | 7.8 | 1.5 | 2.0 | 100 ppm | [50] |
Bio-Nanocomposite (Alg-Cst/Kal) | 169.49 | 8 | 0.4 | 3.0 | - | [51] |
Modified Rice Husk | 90.02 | 10 | 1.0 | 1.0 | 1000 ppm | [52] |
Alligator weed Laminaria Japonica | 82.83 | 10 | - | 2.0 | 5 g/L | [53] |
Palm Kernel Fiber | 78.9 | 7.2 | 0.15 | 1.5 | - | [54] |
Coniferous Pinus Bark Powder | 32.78 | 8 | 1.0 | 2.0 | 50 ppm | [55] |
Clay | 25.98 | 10 | 1.0 | 0.25 | 30 ppm | [56] |
TLAC/Chitosan Composite | 12.5 | 9 | 4.0 | 0.67 | - | [57] |
Iron Based Metal Organic Framework | 9.259 | 6 | 3.5 | 24.0 | 5 ppm | [58] |
De-Oiled Soya | 1.42 | 8 | 2.0 | 4.0. | 8 × 10−5 M | [59] |
Crosslinked Grafted Xanthan Gum | 0.75 | 7 | 0.8 | 7.0 | 500 ppm | [60] |
Bottom Ash | 0.27 | 8 | 2.0 | 4.0 | 8 × 10−5 M | [59] |
Co (M) | Cx (M) | Cb (M) | Vx (mL) | Vb (mL) | (Vx − Vb) (mL) | Fm (mg/cm2/min) | D (cm) |
---|---|---|---|---|---|---|---|
5 × 10−4 | 4.94 × 10−5 | 2.96 × 10−5 | 400 | 40 | 85 | 1.167 | 0.90 |
tx (min) | tδ (min) | tf (min) | f | δ (cm) | Percentage Saturation |
---|---|---|---|---|---|
342.720 | 308.448 | 8.889 | 0.991 | 0.924 | 96.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaur, B.; Mittal, J.; Hassan, H.; Mittal, A.; Baker, R.T. Ordered Mesoporous Carbon as Adsorbent for the Removal of a Triphenylmethane Dye from Its Aqueous Solutions. Molecules 2024, 29, 4100. https://doi.org/10.3390/molecules29174100
Gaur B, Mittal J, Hassan H, Mittal A, Baker RT. Ordered Mesoporous Carbon as Adsorbent for the Removal of a Triphenylmethane Dye from Its Aqueous Solutions. Molecules. 2024; 29(17):4100. https://doi.org/10.3390/molecules29174100
Chicago/Turabian StyleGaur, Bharti, Jyoti Mittal, Hadi Hassan, Alok Mittal, and Richard T. Baker. 2024. "Ordered Mesoporous Carbon as Adsorbent for the Removal of a Triphenylmethane Dye from Its Aqueous Solutions" Molecules 29, no. 17: 4100. https://doi.org/10.3390/molecules29174100
APA StyleGaur, B., Mittal, J., Hassan, H., Mittal, A., & Baker, R. T. (2024). Ordered Mesoporous Carbon as Adsorbent for the Removal of a Triphenylmethane Dye from Its Aqueous Solutions. Molecules, 29(17), 4100. https://doi.org/10.3390/molecules29174100