Phenolic Constituents, Photoprotective Effect, and Antioxidant Capacities of Achillea ligustica All
Abstract
:1. Introduction
2. Results
2.1. HPLC-Q-TOF-MS
2.2. Structure of the Isolated Compounds
2.3. Total Phenolic and Flavonoid Contents
2.4. Antioxidant and Photoprotective Activities
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. Extraction and Isolation
4.3. HPLC-Q-TOF-MS Analysis
4.4. Isolation and Purification of Compounds
4.5. Determination of Total Phenolics and Flavonoids Contents
4.5.1. Total Phenolic Content (TPC)
4.5.2. Total Flavonoid Content (TFC)
4.6. Estimation of Antioxidant Activities
4.6.1. DPPH Free Radical Scavenging Activity
4.6.2. Galvinoxyl (GOR) Scavenging Activity
4.6.3. Cupric Reducing Antioxidant Capacity (CUPRAC) Activity
4.6.4. Reducing Power Activity
4.6.5. O-Phenanthroline Activity
4.7. Photoprotective Activity
4.8. Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venditti, A.; Guarcini, L.; Bianco, A.; Rosselli, S.; Bruno, M.; Senatore, F. Phytochemical analysis of Achillea ligustica All. from Lipari Island (Aeolian Islands). Nat. Prod. Res. 2015, 30, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Boubertakh, H.; Kabouche, Z.; Boudechicha, A.; Madi, A.; Khalfallah, A.; Kabouche, A. RP-UHPLC-ESI-QTOF-MSn analyses, antioxidant, antimicrobial, analgesic activities and toxicity of Achillea ligustica. Nat. Prod. Res. 2024, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Quezel, P.; Santa, S. Nouvelle Flore de l’Algérie et Des Régions Désertiques et Méridionales; CNRS: Paris, France, 1962. [Google Scholar]
- Muselli, A.; Pau, M.; Desjobert, J.M.; Foddai, M.; Usai, M.; Costa, J. Volatile constituents of Achillea ligustica All. by HSSPME/ GC/GC-MS comparison with essential oils obtained by hydrodistillation from Corsica and Sardinia. Chromatographia 2009, 69, 575–585. [Google Scholar] [CrossRef]
- Bruni, A.; Ballero, M.; Poli, F. Quantitative ethnopharmacological study of the Campidano Valley and Urzulei district, Sardinia, Italy. J. Ethnopharmacol. 1997, 57, 97–124. [Google Scholar] [CrossRef] [PubMed]
- Bouteche, A.; Touil, A.; Segueni, N. Achillea ligustica All.: Phytochemical composition, ethnomedicinal uses, and pharmacological properties: A review. J. Res. Pharm. 2024; 28, 313–325. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Kowalczyk, A.; Coroneo, V.; Russo, M.T.; Dessì, S.; Cabras, P. Chemical composition and antioxidant, antimicrobial, and antifungal activities of the essential oil of Achillea ligustica All. J. Agric. Food. Chem. 2005, 53, 10148–10153. [Google Scholar] [CrossRef]
- Conforti, F.; Loizzo, M.R.; Statti, G.A.; Menichini, F. Comparative radical scavenging and antidiabetic activities of methanolic extract and fractions from Achillea ligustica All. Biol. Pharm. Bull. 2005, 28, 1791–1794. [Google Scholar] [CrossRef]
- Maggi, F.; Bramucci, M.; Cecchini, C.; Coman, M.M.; Cresci, A.; Cristalli, G.; Lupidi, G.; Papa, F.; Quassinti, L.; Sagratini, G.; et al. Composition and biological activity of essential oil of Achillea ligustica All. (Asteraceae) naturalized in central Italy: Ideal candidate for anti-cariogenic formulations. Fitoterapia 2009, 80, 313–319. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Montoro, P.; Piacente, S.; Corona, G.; Deiana, M.; Dessì, M.A.; Pizza, C.; Cabras, P. Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All. J. Pharm. Biomed. Anal. 2009, 50, 440–448. [Google Scholar] [CrossRef]
- Ben Jemia, M.; Rouis, Z.; Maggio, A.; Venditti, A.; Bruno, M.; Senatore, F. Chemical composition and free radical scavenging activity of the essential oil of Achillea ligustica growing wild in Lipari (Aeolian Islands, Sicily). Nat. Prod. Commun. 2013, 8, 1629–1632. [Google Scholar] [CrossRef]
- Bader, A.; Martini, F.; Schinella, G.R.; Rios, J.L.; Prieto, J.M. Modulation of Cox-1, 5,12- and 15-Lox by popular herbal remedies used in southern Italy against psoriasis and other skin diseases. Phytother. Res. 2015, 29, 108–113. [Google Scholar] [CrossRef]
- Cecchini, C.; Silvi, S.; Cresci, A.; Piciotti, A.; Caprioli, G.; Papa, F.; Sagratini, G.; Vittori, S.; Maggi, F. Antimicrobial efficacy of Achillea ligustica All. (Asteraceae) essential oils against reference and isolated oral microorganisms. Chem. Biodivers. 2012, 9, 12–24. [Google Scholar] [CrossRef]
- Freires, I.A.; Denny, C.; Benso, B.; de Alencar, S.M.; Rosalen, P.L. Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: A systematic review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef] [PubMed]
- Giamperi, L.; Bucchini, A.E.A.; Ricci, D.; Papa, F.; Maggi, F. Essential oil of Achillea ligustica (Asteraceae) as an antifungal agent against phytopathogenic fungi. Nat. Prod. Commun. 2018, 13, 1171–1174. [Google Scholar] [CrossRef]
- Hegazy, M.E.F.; Mohamed, A.E.H.H.; El-Sayed, M.A.; Ohta, S. A new chlorine containing sesquiterpene lactone from Achillea ligustica. Zeitschrift für Naturforschung B 2008, 63, 105–107. [Google Scholar] [CrossRef]
- Tzakou, O.; Couladis, M.; Evmorfia, V.; Loukis, A. Leaf flavonoids of Achillea ligustica and Achillea holosericea. Biochem. Syst. Ecol. 1995, 23, 569–570. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Gàti, T.; Hussein, T.A.; Ali, A.T.; Tzakou, O.; Couladis, M.A.; Mabry, T.J. Ligustolide A and B two novel sesquiterpenes with rare skeletons and three 1,10-seco-guaianolide derivatives from Achillea ligustica. Tetrahedron 2003, 59, 3729–3735. [Google Scholar] [CrossRef]
- Boudjerda, A.; Zaiter, H.; Benayache, S.; Chalchat, J.C.; Gonzàlez-Platas, J.; Leon, F.; Brouard, I.; Bermejo, J.; Benayache, F. Anew guaianolide and other constituents from Achillea ligustica. Biochem. Syst. Ecol. 2008, 36, 461–466. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Al-Shihry, S.S.; Hegazy, M.E.F. A new epimeric sesquiterpene lactone from Achillea ligustica. Rec. Nat. Prod. 2012, 6, 21–27. [Google Scholar]
- Bruno, M.; Herz, W. Guaianolides and other constituents of Achillea ligustica. Phytochemistry 1988, 27, 1871–1872. [Google Scholar] [CrossRef]
- Cefali, L.C.; Ataide, J.A.; Sousa, I.M.O.; Figueiredo, M.C.; Ruiz, A.L.T.G.; Foglio, M.A.; Mazzola, P.G. In vitro solar protection factor, antioxidant activity, and stability of a topical formulation containing Benitaka grape (Vitis vinifera L.) peel extract. Nat. Prod. Res. 2020, 34, 2677–2682. [Google Scholar] [CrossRef]
- Hashemi, Z.; Ebrahimzadeh, M.A.; Khalili, M. Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran. Trop. J. Pharm. Res. 2019, 18, 1443–1448. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Enayatifard, R.; Khalili, M.; Ghaffarloo, M.; Saeed, M.; Charati, J.Y. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran. J. Pharm. Res. 2014, 13, 1041–1047. [Google Scholar]
- Itokawa, H.; Suto, K.; Takeya, K. Studies on a novel p-Coumaroyl glycoside of Apigenin and on other flavonoids isolated from Patchouli (Labiatae). Chem. Pharm. Bull. 1981, 29, 254–256. [Google Scholar] [CrossRef]
- Lin, L.C.; Pai, Y.F.; Tsai, T.H. Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium ramat tzvel and their pharmacokinetics in rats. J. Agric. Food. Chem. 2015, 63, 7700–7706. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, C.; Fabre, N.; Moulis, C. Constituents of Pilocarpus trachylophus. Fitoterapia 2001, 72, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Alarcόn, R.; Ocampos, S.; Pacciaroni, A.; Colloca, C.; Sosa, V. Constituents of Gutierrezia mandonii (Asteraceae). Biochem. Syst. Ecol. 2009, 37, 683–685. [Google Scholar] [CrossRef]
- Karaoglan, E.S.; Hanci, H.; Koca, M.; Kazaz, C. Some bioactivities of isolated apigenin-7-O-glucoside and luteolin-7-O-glucoside. Appl. Sci. 2023, 13, 1503. [Google Scholar] [CrossRef]
- Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Ćavar Zeljković, S. Influence of extraction solvent on the phenolic profile and bioactivity of two Achillea species. Molecules 2021, 26, 1601. [Google Scholar] [CrossRef] [PubMed]
- Agar, O.T.; Dikmen, M.; Ozturk, N.; Yilmaz, M.A.; Temel, H.; Turkmenoglu, F.P. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. Molecules 2015, 20, 17976–18000. [Google Scholar] [CrossRef]
- Benedec, D.; Vlase, L.; Oniga, I.; Mot, A.C.; Damian, G.; Hanganu, D.; Duma, M.; Silaghi-Dumitrescu, R. Polyphenolic composition, antioxidant and antibacterial activities for two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules 2013, 18, 8725–8739. [Google Scholar] [CrossRef]
- Taşkin, T.; Balkan, I.E.; Taşkin, D.; Dogan, A. Characterization of phenolic constituents and pharmacological activity of Achillea vermicularis. Indian J. Pharm. Sci. 2019, 81, 293–301. [Google Scholar] [CrossRef]
- Yilmaz, M.A.; Ertas, A.; Yener, I.; Akdeniz, M.; Cakir, O.; Altun, M.; Demirtas, I.; Temel, H. A comprehensive LC-MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in Achillea species: A detailed examination of A. coarctata and A. monocephala. J. Pharm. Biomed. Anal. 2018, 30, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Erian, N.S.; Hamed, H.B.; El-Khateeb, A.Y.; Farid, M. Phytochemical, HPLC analysis and antibacterial activity of crude methanolic and aqueous extracts for some medicinal plant flowers. Arab Gulf J. Sci. Res. 2016, 2, 22–32. [Google Scholar] [CrossRef]
- Bakr, O.R.; Arafa, K.R.; Al-Abd, A.M.; Elshishtawy, M.H. Phenolics of Achillea fragrantissima growing in Egypt and its cytotoxic activity. J. Med. Plant. Res. 2014, 8, 763–771. [Google Scholar] [CrossRef]
- Doudach, S.; Slougui, N.; Rebbas, K.; Benmkhebi, L.; Bensouici, C.; Mehmet, N.A.; Akkal, S.; Bicha, S. First report on phytoconstituents, LC-ESI/MS profile and in vitro antioxidant activities of Lathyrus latifolius growing in Algeria. Int. J. Nat. Eng. Sci. 2022, 16, 128–136. [Google Scholar]
- Ngoc, L.T.N.; Tran, V.V.; Moon, J.Y.; Chae, M.; Park, D.; Lee, Y.C. Recent trends of sunscreen cosmetic: An update review. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef]
- Lekmine, S.; Boussekine, S.; Akkal, S.; Martín-García, A.I.; Boumegoura, A.; Kadi, K.; Djeghim, H.; Mekersi, N.; Bendjedid, S.; Bensouici, C.; et al. Investigation of photoprotective, anti-inflammatory, antioxidant capacities and LC-ESI-MS phenolic profile of Astragalus gombiformis Pomel. Foods 2021, 10, 1937. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Viticul. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Topçu, G.; Ay, M.; Bilici, A.; Sarikurkcu, C.; Öztürk, M.; Ulubelen, A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007, 103, 816–822. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Shi, H.; Noguchi, N.; Niki, E. Galvinoxyl method for standardizing electron and proton donation activity. Method Enzym. 2001, 335, 157–166. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food. Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Szydlowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008, 76, 899–905. [Google Scholar] [CrossRef]
- Mansur, J.D.S.; Breder, M.N.R.; Mansur, M.C.D.A.; Azulay, R.D. Determinaçäo do fator de proteçäo solar porespectrofotometria. An. Bras. Dermatol. 1986, 40, 121–124. [Google Scholar]
- Sayre, R.M.; Agin, P.P.; Levee, G.J.; Marlowe, E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
No. | Compounds | Rt (min) | Molecular Formula | m/z (Molecular Ion) |
---|---|---|---|---|
1 | Quinic acid | 3.22 | C7H12O6 | 192.0634 |
2 | Malic acid | 3.31 | C4H6O5 | 134.0216 |
3 | Protocatechuic acid | 7.74 | C7H6O4 | 154.0267 |
4 | Syringic acid a | 7.97 | C9H10O5 | 198.0530 |
5 | Catechol | 8.72 | C6H6O2 | 110.0366 |
6 | 4-Hydroxybenzoic acid | 10.05 | C7H6O3 | 138.0318 |
7 | Chlorogenic acid | 11.63 | C16H18O9 | 354.0951 |
8 | Caffeic acid | 12.60 | C9H8O4 | 180.0424 |
9 | p-Coumaric acid | 14.73 | C9H8O3 | 164.0469 |
10 | Naringin a | 16.44 | C27H32O14 | 580.1786 |
11 | Hesperetin | 16.84 | C16H14O6 | 302.0793 |
12 | Rutin | 17.36 | C27H30O16 | 610.1535 |
13 | Hyperoside | 17.41 | C21H20O12 | 464.0956 |
14 | Hesperidin a | 17.49 | C28H34O15 | 610.1875 |
15 | Vanillin | 17.97 | C8H8O3 | 152.0475 |
16 | Apigenin-7-O-glucoside | 18.21 | C21H20O10 | 432.1056 |
17 | Luteolin-7-O-glucoside | 18.73 | C21H20O11 | 448.1004 |
18 | Naringenin b | 20.42 | C15H12O5 | 272.0683 |
19 | Quercetin | 20.47 | C15H10O7 | 302.0424 |
20 | Fisetin | 21.16 | C15H10O6 | 286.0475 |
21 | Rhamnetin | 21.43 | C16H12O7 | 316.0583 |
22 | Apigenin | 22.63 | C15H10O5 | 270.0529 |
23 | Rosmarinic acid | 26.31 | C18H16O8 | 360.0836 |
Extract | TPC (μg GAE/mg) | TFC (μg EQ/mg) |
---|---|---|
AcOEt | 465.47 ± 1.02 | 225.63 ± 0.59 |
BuOH | 258.12 ± 1.02 | 147.50 ± 2.21 |
Samples | IC50 (μg/mL) | A0.50 (μg/mL) | |||
---|---|---|---|---|---|
DPPH | GOR | CUPRAC | Reducing Power | Phenanthroline | |
AcOEt | 7.13 ± 0.15 | 4.57 ± 0.10 | 5.61 ± 0.06 | 13.14 ± 2.20 | 5.17 ± 0.27 |
BuOH | 13.06 ± 0.60 | 8.33 ± 0.30 | 9.56 ± 0.28 | 29.12 ± 1.16 | 8.83 ± 0.50 |
BHA | 5.73 ± 0.41 | 5.38 ± 0.06 | 3.64 ± 0.19 | NT | 0.93 ± 0.07 |
BHT | NT | 3.32 ± 0.18 | 9.62 ± 0.87 | NT | 2.24 ± 0.17 |
Ascorbic acid | NT | NT | NT | 6.77 ± 1.15 | NT |
Tannic acid | NT | NT | NT | 5.39 ± 0.91 | NT |
α-Tocopherol | NT | NT | NT | 34.93 ± 2.38 | NT |
Extract | SPF | Protection Category * |
---|---|---|
AcOEt | 48.08 ± 0.01 | High protection |
BuOH | 48.08 ± 0.05 | High protection |
CSS 1 | 44.22 ± 0.35 | High protection |
CSS 2 | 50.11 ± 0.53 | High protection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouteche, A.; Touil, A.; Akkal, S.; Bensouici, C.; Nieto, G. Phenolic Constituents, Photoprotective Effect, and Antioxidant Capacities of Achillea ligustica All. Molecules 2024, 29, 4112. https://doi.org/10.3390/molecules29174112
Bouteche A, Touil A, Akkal S, Bensouici C, Nieto G. Phenolic Constituents, Photoprotective Effect, and Antioxidant Capacities of Achillea ligustica All. Molecules. 2024; 29(17):4112. https://doi.org/10.3390/molecules29174112
Chicago/Turabian StyleBouteche, Azza, Ahmed Touil, Salah Akkal, Chawki Bensouici, and Gema Nieto. 2024. "Phenolic Constituents, Photoprotective Effect, and Antioxidant Capacities of Achillea ligustica All" Molecules 29, no. 17: 4112. https://doi.org/10.3390/molecules29174112
APA StyleBouteche, A., Touil, A., Akkal, S., Bensouici, C., & Nieto, G. (2024). Phenolic Constituents, Photoprotective Effect, and Antioxidant Capacities of Achillea ligustica All. Molecules, 29(17), 4112. https://doi.org/10.3390/molecules29174112