Breaking New Ground towards Innovative Synthesis of Palladacycles: The Electrochemical Synthesis of a Tetranuclear Thiosemicarbazone-[C,N,S] Palladium(II) Complex
Abstract
:1. Introduction
2. Results
Molecular and Crystal Structures
3. Conclusions
4. Experimental Section
4.1. General Procedures
4.2. Preparation of the Ligands
4.3. Ligands b and c Were Prepared Analogously
4.4. Electrochemical Synthesis of the Complexes
4.5. Crystal Structure Analysis and Details on Data Collection and Refinement
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, M.T.; Vila, J.M. The P-C Building Block of Palladacycles: A Cornerstone for Stoichiometric C-C and C-X Bond Assemblage. In Palladacycles: Synthesis, Characterization and Applications; Dupont, J., Pfeffer, M., Eds.; Wiley-VCH: Hoboken, NJ, USA, 2008; pp. 87–108. ISBN 978-3-527-31781-3. [Google Scholar]
- Omae, I. Cyclometalation Reactions: Five-Membered Ring Products as Universal Reagents; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-4-431-54603-0. [Google Scholar]
- Omae, I. Intramolecular Five-Membered Ring Compounds and Their Applications. Coord. Chem. Rev. 2004, 248, 995–1023. [Google Scholar] [CrossRef]
- Sun, M.; Yu, H.; Zhang, K.; Wang, S.; Hayat, T.; Alsaedi, A.; Huang, D. Palladacycle Based Fluorescence Turn-On Probe for Sensitive Detection of Carbon Monoxide. ACS Sens. 2018, 3, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Díez, Á.; Lalinde, E.; Moreno, M.T. Heteropolynuclear Cycloplatinated Complexes: Structural and Photophysical Properties. Coord. Chem. Rev. 2011, 255, 2426–2447. [Google Scholar] [CrossRef]
- Santana, D.P.; Faria, P.A.; Paredes-Gamero, E.J.; Caires, A.C.F.; Nantes, I.L.; Rodrigues, T. Palladacycles Catalyse the Oxidation of Critical Thiols of the Mitochondrial Membrane Proteins and Lead to Mitochondrial Permeabilization and Cytochrome c Release Associated with Apoptosis. Biochem. J. 2009, 417, 247–256. [Google Scholar] [CrossRef]
- Ionescu, A.; Godbert, N.; Crispini, A.; Termine, R.; Golemme, A.; Ghedini, M. Photoconductive Nile Red Cyclopalladated Metallomesogens. J. Mater. Chem. 2012, 22, 23617–23626. [Google Scholar] [CrossRef]
- Pucci, D.; Barberio, G.; Bellusci, A.; Crispini, A.; Ghedini, M. Tailoring “Non Conventional” Ionic Metallomesogens around an Ortho-Palladated Fragment. J. Organomet. Chem. 2006, 691, 1138–1142. [Google Scholar] [CrossRef]
- Bedford, R.B. Palladacyclic Catalysts in C–C and C–Heteroatom Bond-Forming Reactions. Chem. Commun. 2003, 15, 1787–1796. [Google Scholar] [CrossRef]
- Herrmann, W.A.; Elison, M.; Köcher, C.; Artus, G.R.J. Metal Complexes of N-Heterocyclic Carbenes—A New Structure Principle for Catalysts in Homogenous Catalysis. Angew. Chem. Int. Ed. 1995, 34, 2371–2374. [Google Scholar] [CrossRef]
- Beller, M.; Fischer, H.; Herrmann, W.A.; Öfele, K.; Brossmer, C. Palladacycles as Efficient Catalysts for Aryl Coupling Reactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 1848–1849. [Google Scholar] [CrossRef]
- Carbene, N.; Catalytic, I.; Hartwig, B.; Catalysis, A.; Ostrowska, S.; Palio, L.; Czapik, A.; Bhandary, S.; Kwit, M.; Van Hecke, K.; et al. A Second-Generation Palladacycle Architecture Bearing a N-Heterocyclic Carbene and Its Catalytic Behavior in Buchwals-Hartwig Amination Catalysis. Catalysts 2023, 13, 559. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Cheprakov, A.V. Palladacycles in Catalysis—A Critical Survey. J. Organomet. Chem. 2004, 689, 4055–4082. [Google Scholar] [CrossRef]
- Dupont, J.; Consorti, C.S.; Spencer, J. The Potential of Palladacycles: More than Just Precatalysts. Chem. Rev. 2005, 105, 2527–2571. [Google Scholar] [CrossRef]
- Bermúdez-Puente, B.; Adrio, L.A.; Lucio-Martínez, F.; Reigosa, F.; Ortigueira, J.M.; Vila, J.M. Imine Palladacycles: Synthesis, Structural Analysis and Applications in Suzuki-Miyaura Cross Coupling in Semi-Aqueous Media. Molecules 2022, 27, 3146. [Google Scholar] [CrossRef]
- Lucio-Martínez, F.; Bermúdez, B.; Ortigueira, J.M.; Adams, H.; Fernández, A.; Pereira, M.T.; Vila, J.M. A Highly Effective Strategy for Encapsulating Potassium Cations in Small Crown Ether Rings on a Dinuclear Palladium Complex. Chem. Eur. J. 2017, 23, 6255–6258. [Google Scholar] [CrossRef]
- Miyaura, N.; Suzuki, A. Stereoselective Synthesis of Arylated. J. Chem. Soc. Chem. Commun. 1979, 19, 866–867. [Google Scholar] [CrossRef]
- Suzuki, A. Carbon-Carbon Bonding Made Easy. Chem. Commun. 2005, 38, 4759–4763. [Google Scholar] [CrossRef]
- Vila, J.M.; Pereira, M.T.; Lucio-Martínez, F.; Reigosa, F. Palladacycles as Efficient Precatalysts for Suzuki-Miyaura Cross-Coupling Reactions. In Palladacycles: Catalysis and Beyond; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–20. ISBN 978-0-12-815505-9. [Google Scholar]
- Littke, A.F.; Fu, G.C. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides. Angew. Chem.-Int. Ed. 2002, 41, 4176–4211. [Google Scholar] [CrossRef]
- Habtemariam, A.; Watchman, B.; Potter, B.S.; Palmer, R.; Parsons, S.; Parkin, A.; Sadler, P.J. Control of Aminophosphine Chelate Ring-Opening in Pt(II) and Pd(II) Complexes: Potential Dual-Mode Anticancer Agents. J. Chem. Soc. Dalt. Trans. 2001, 8, 1306–1318. [Google Scholar] [CrossRef]
- Quiroga, A.G.; Ranninger, C.N. Contribution to the SAR Field of Metallated and Coordination Complexes: Studies of the Palladium and Platinum Derivatives with Selected Thiosemicarbazones as Antitumoral Drugs. Coord. Chem. Rev. 2004, 248, 119–133. [Google Scholar] [CrossRef]
- Gigli, R.; Pereira, G.J.S.; Antunes, F.; Bechara, A.; Garcia, D.M.; Spindola, D.G.; Jasiulionis, M.G.; Caires, A.C.F.; Smaili, S.S.; Bincoletto, C. The Biphosphinic Paladacycle Complex Induces Melanoma Cell Death through Lysosomal-Mitochondrial Axis Modulation and Impaired Autophagy. Eur. J. Med. Chem. 2016, 107, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.; Bosque, R.; Cadena, M.; D’Andrea, L.; Granell, J.; González, A.; Quirante, J.; Calvis, C.; Messeguer, R.; Badía, J.; et al. A New Family of Doubly Cyclopalladated Diimines. A Remarkable Effect of the Linker between the Metalated Units on Their Cytotoxicity. Organometallics 2014, 33, 2862–2873. [Google Scholar] [CrossRef]
- Cutillas, N.; Yellol, G.S.; De Haro, C.; Vicente, C.; Rodríguez, V.; Ruiz, J. Anticancer Cyclometalated Complexes of Platinum Group Metals and Gold. Coord. Chem. Rev. 2013, 257, 2784–2797. [Google Scholar] [CrossRef]
- Aliwaini, S.; Swarts, A.J.; Blanckenberg, A.; Mapolie, S.; Prince, S. A Novel Binuclear Palladacycle Complex Inhibits Melanoma Growth in Vitro and in Vivo through Apoptosis and Autophagy. Biochem. Pharmacol. 2013, 86, 1650–1663. [Google Scholar] [CrossRef]
- Sarto, L.E.; Pereira De Gois, E.; Gomes De Andrade, G.; Silveira De Almeida, M.; Jacon Freitas, J.T.; De Souza Reis, A.; Franco, L.P.; Torres, C.; Tonon De Almeida, E.; Cação Paiva Gouvêa, C.M. Anticancer Potential of Palladium(II) Complexes with Schiff Bases Derived from 4-Aminoacetophenone against Melanoma in Vitro. Anticancer Res. 2019, 39, 6693–6699. [Google Scholar] [CrossRef]
- Reigosa-Chamorro, F.; Raposo, L.R.; Munín-Cruz, P.; Pereira, M.T.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R.; Vila, J.M. In Vitro and in Vivo Effect of Palladacycles: Targeting A2780 Ovarian Carcinoma Cells and Modulation of Angiogenesis. Inorg. Chem. 2021, 60, 3939–3951. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.Z.; Cui, P.F.; Lin, Y.J.; Jin, G. Octanuclear Palladacycles with B (3)-H Bond Activation of O-Carborane. Chin. J. Chem. 2023, 41, 307–313. [Google Scholar] [CrossRef]
- Gao, W.X.; Feng, H.J.; Guo, B.B.; Lu, Y.; Jin, G.X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020, 120, 6288–6325. [Google Scholar] [CrossRef]
- Zhang, H.N.; Jin, G.X. Controllable Topological Transformations of 818 Molecular Metalla-Knots by Oxidation of Thiazole-Based Ligands. Angew. Chem.-Int. Ed. 2023, 62, e202313605. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.S.; Gao, X.; Cui, Z.; Lin, Y.J.; Jin, G.X. Selective Construction of Molecular Solomon Links and Figure-Eight Knots by Fine-Tuning Unsymmetrical Ligands. Sci. China Chem. 2023, 66, 2885–2891. [Google Scholar] [CrossRef]
- Rodrı, L.; Labisbal, E.; Sousa-pedrares, A.; Garcı, A.; Romero, J.; Dura, L.; Real, A.; Sousa, A. Coordination Chemistry of Amine Bis (Phenolate) Cobalt (II), Nickel (II), and Copper (II) Complexes. Inorg. Chem. 2006, 45, 7903–7914. [Google Scholar]
- Labisbal, E.; Rodríguez, L.; Souto, O.; Sousa-Pedrares, A.; García-Vázquez, J.A.; Romero, J.; Sousa, A.; Yáñez, M.; Orallo, F.; Real, J.A. Electrochemical Synthesis and Structural Characterization of Co(II), Ni(II) and Cu(II) Complexes of N,N-Bis(4,5-Dimethyl-2-Hydroxybenzyl)-N-(2- Pyridylmethyl)Amine. Dalt. Trans. 2009, 40, 8644–8656. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.; Sousa-Pedrares, A.; Romero, J.; García-Vázquez, J.A.; Sousa, A.; Pérez-Lourido, P. Zinc (II), Cadmium (II), Mercury (II), and Ethylmercury (II) Complexes of Phosphinothiol Ligands. Inorg. Chem. 2008, 47, 2121–2132. [Google Scholar] [CrossRef] [PubMed]
- Durán, M.L.; Sousa, A.; Romero, J.; Castiñeiras, A.; Bermejo, E.; West, D.X. Structural Study of the Electrochemically Synthesized Binuclear Complex Bis{1-Phenylglyoxal Bis(3-Piperidylthiosemicarbazone)Zinc(II)}. Inorganica Chim. Acta 1999, 294, 79–82. [Google Scholar] [CrossRef]
- Casanova, I.; Durán, M.L.; Viqueira, J.; Sousa-Pedrares, A.; Zani, F.; Real, J.A.; García-Vázquez, J.A. Metal Complexes of a Novel Heterocyclic Benzimidazole Ligand Formed by Rearrangement-Cyclization of the Corresponding Schiff Base. Electrosynthesis, Structural Characterization and Antimicrobial Activity. Dalt. Trans. 2018, 47, 4325–4340. [Google Scholar] [CrossRef]
- Viqueira, J.; Durán, M.L.; García-Vázquez, J.A.; Castro, J.; Platas-Iglesias, C.; Esteban-Gómez, D.; Alzuet-Piña, G.; Moldes, A.; Nascimento, O.R. Modulating the DNA Cleavage Ability of Copper(Ii) Schiff Bases through Ternary Complex Formation. New J. Chem. 2018, 42, 15170–15183. [Google Scholar] [CrossRef]
- Rodríguez, A.; García-Vázquez, J.A. The Use of Sacrificial Anodes for the Electrochemical Synthesis of Metallic Complexes. Coord. Chem. Rev. 2015, 303, 42–85. [Google Scholar] [CrossRef]
- al Janabi, B.; Reigosa, F.; Alberdi, G.; Ortigueira, J.M.; Vila, J.M. An Innovative Structural Rearrangement in Imine Palladacycle Metaloligand Chemistry: From Single-Nuclear to Double-Nuclear Pseudo-Pentacoordinated Complexes. Molecules 2023, 28, 2328. [Google Scholar] [CrossRef]
- Vila, J.M.; Pereira, M.T.; Ortigueira, J.M.; Graña, M.; Suárez, A.; Fernández, J.J.; Fernández, A.; López-torres, M.; Adams, H. Formation, Characterization, and Structural Studies of Novel Thiosemicarbazone Palladium(II) Complexes. Crystal Structures of [{Pd[C6H4C(Et)=NN=C(S)NH2]}4], [Pd{C6H4C(Et)=NN=C(S)NH2}(PMePh2)] and [{Pd[C6H4C(Et)=NN=C(S)NH2]}2(Ph2PCH2PPh2)]. Dalt. Trans. 1999, 23, 4193–4201. [Google Scholar] [CrossRef]
- Antelo, J.M.; Adrio, L.; Teresa Pereira, M.; Ortigueira, J.M.; Fernández, J.J.; Vila, J.M. Synthesis and Structural Characterization of Palladium and Platinum Bimetallic Compounds Derived from Bidentate P, S-Palladacycle Metaloligands. Cryst. Growth Des. 2010, 10, 700–708. [Google Scholar] [CrossRef]
- Zangrando, E.; Begum, M.S.; Sheikh, M.C.; Miyatake, R.; Hossain, M.M.; Alam, M.M.; Hasnat, M.A.; Halim, M.A.; Ahmed, S.; Rahman, M.N.; et al. Synthesis, Characterization, Density Functional Study and Antimicrobial Evaluation of a Series of Bischelated Complexes with a Dithiocarbazate Schiff Base Ligand. Arab. J. Chem. 2017, 10, 172–184. [Google Scholar] [CrossRef]
- Begum, K.; Begum, S.; Sheikh, C.; Miyatake, R.; Zangrando, E. Cis versus Trans Arrangement of Dithiocarbazate Ligands in Bis-Chelated Ni and Cu Complexes. Acta Crystallogr. Sect. E Crystallogr. Commun. 2020, 76, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Armarego, W.L. Purification of Laboratory Chemicals; Butterworth-Heinemann: Amsterdam, The Netherlands, 2017; ISBN 978-185-617-567-8. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Carril, M.L.; Fidalgo-Brandón, J.I.; Lombao-Rodríguez, D.; Munín-Cruz, P.; Reigosa, F.; Vila, J.M. Breaking New Ground towards Innovative Synthesis of Palladacycles: The Electrochemical Synthesis of a Tetranuclear Thiosemicarbazone-[C,N,S] Palladium(II) Complex. Molecules 2024, 29, 4185. https://doi.org/10.3390/molecules29174185
Durán-Carril ML, Fidalgo-Brandón JI, Lombao-Rodríguez D, Munín-Cruz P, Reigosa F, Vila JM. Breaking New Ground towards Innovative Synthesis of Palladacycles: The Electrochemical Synthesis of a Tetranuclear Thiosemicarbazone-[C,N,S] Palladium(II) Complex. Molecules. 2024; 29(17):4185. https://doi.org/10.3390/molecules29174185
Chicago/Turabian StyleDurán-Carril, María L., José Ignacio Fidalgo-Brandón, David Lombao-Rodríguez, Paula Munín-Cruz, Francisco Reigosa, and José M. Vila. 2024. "Breaking New Ground towards Innovative Synthesis of Palladacycles: The Electrochemical Synthesis of a Tetranuclear Thiosemicarbazone-[C,N,S] Palladium(II) Complex" Molecules 29, no. 17: 4185. https://doi.org/10.3390/molecules29174185
APA StyleDurán-Carril, M. L., Fidalgo-Brandón, J. I., Lombao-Rodríguez, D., Munín-Cruz, P., Reigosa, F., & Vila, J. M. (2024). Breaking New Ground towards Innovative Synthesis of Palladacycles: The Electrochemical Synthesis of a Tetranuclear Thiosemicarbazone-[C,N,S] Palladium(II) Complex. Molecules, 29(17), 4185. https://doi.org/10.3390/molecules29174185