Unravelling the Influence of Extraction Techniques on Protein Yield and Nutritional Value in Lesser Mealworm Larvae †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Amino Acids in Whole Lesser Mealworm Larvae
2.2. Lesser Mealworm Protein Extractions
2.3. Characterisation of LM Extracts
2.3.1. Total Amino Acids
2.3.2. Degree of Hydrolysis and Free Amino Acids of Enzymatic Hydrolysate
3. Materials and Methods
3.1. Materials
3.2. Total Amino Acids Profile
3.3. Lipid Extraction
3.4. Protein Extraction Protocols
3.4.1. One-Step Protein Extraction
3.4.2. Stepwise Protein Extraction (Osborne Fractionation)
3.4.3. Enzymatic Protein Extraction
Determination of the Degree of Hydrolysis (DH%)
Free Amino Acid Determination by UPLC/ESI-MS
3.5. Determination of Protein Extraction Yield
3.6. Amino Acid Composition of the Extracts
Determination of the Amino Acid Score of the Protein Fractions
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional Consumption of and Rearing Edible Insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2018, 59, 2169–2188. [Google Scholar] [CrossRef]
- Munialo, C.D.; Stewart, D.; Campbell, L.; Euston, S.R. Extraction, Characterisation and Functional Applications of Sustainable Alternative Protein Sources for Future Foods: A Review. Future Foods 2022, 6, 100152. [Google Scholar] [CrossRef]
- Fuso, A.; Leni, G.; Prandi, B.; Lolli, V.; Caligiani, A. Novel Foods/Feeds and Novel Frauds: The Case of Edible Insects. Trends Food Sci. Technol. 2024, 147, 104457. [Google Scholar] [CrossRef]
- Chakravarthy, A.K.; Jayasimha, G.T.; Rachana, R.R.; Rohini, G. Insects as Human Food. In Economic and Ecological Significance of Arthropods in Diversified Ecosystems; Chakravarthy, A., Sridhara, S., Eds.; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent Insights into the Extraction, Characterization, and Bioactivities of Chitin and Chitosan from Insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Sogari, G.; Copelotti, E.; Andreani, G.; Schouteten, J.J.; Moruzzo, R.; Liu, A.; Li, J.; Mancini, S. What Motivates Consumers to Accept Whole and Processed Mealworms in Their Diets? A Five-Country Study. Future Foods 2023, 7, 100225. [Google Scholar] [CrossRef]
- Liceaga, A.M. Processing Insects for Use in the Food and Feed Industry. Curr. Opin. Insect Sci. 2021, 48, 32–36. [Google Scholar] [CrossRef]
- Edible Insects Market–Size, Growth, Industry Share & Report. Available online: https://www.mordorintelligence.com/industry-reports/edible-insects-market (accessed on 5 October 2023).
- Sweers, L.J.H.; Politiek, R.G.A.; Lakemond, C.M.M.; Bruins, M.E.; Boom, R.M.; Fogliano, V.; Mishyna, M.; Keppler, J.K.; Schutyser, M.A.I. Dry Fractionation for Protein Enrichment of Animal By-Products and Insects: A Review. J. Food Eng. 2022, 313, 110759. [Google Scholar] [CrossRef]
- Mishyna, M.; Keppler, J.K.; Chen, J. Techno-Functional Properties of Edible Insect Proteins and Effects of Processing. Curr. Opin. Colloid. Interface Sci. 2021, 56, 101508. [Google Scholar] [CrossRef]
- Caligiani, A.; Marseglia, A.; Leni, G.; Baldassarre, S.; Maistrello, L.; Dossena, A.; Sforza, S. Composition of Black Soldier Fly Prepupae and Systematic Approaches for Extraction and Fractionation of Proteins, Lipids and Chitin. Food Res. Int. 2018, 105, 812–820. [Google Scholar] [CrossRef]
- Dridi, C.; Millette, M.; Aguilar, B.; Manus, J.; Salmieri, S.; Lacroix, M. Effect of Physical and Enzymatic Pre-Treatment on the Nutritional and Functional Properties of Fermented Beverages Enriched with Cricket Proteins. Foods 2021, 10, 2259. [Google Scholar] [CrossRef] [PubMed]
- Azzollini, D.; Wibisaphira, T.; Lakemond, C.M.M.; Fogliano, V. Toward the Design of Insect-Based Meat Analogue: The Role of Calcium and Temperature in Coagulation Behavior of Alphitobius Diaperinus Proteins. LWT 2019, 100, 75–82. [Google Scholar] [CrossRef]
- Lacroix, I.M.E.; Dávalos Terán, I.; Fogliano, V.; Wichers, H.J. Investigation into the Potential of Commercially Available Lesser Mealworm (A. Diaperinus) Protein to Serve as Sources of Peptides with DPP-IV Inhibitory Activity. Int. J. Food Sci. Technol. 2019, 54, 696–704. [Google Scholar] [CrossRef]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic Hydrolysis of Insect: Alphitobius Diaperinus towards the Development of Bioactive Peptide Hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, J.; Ballon, A.; Pallarès, J.; Vernet, A.; de Lamo-Castellví, S.; Güell, C.; Ferrando, M. Lesser Mealworm (A. Diaperinus) Protein as a Replacement for Dairy Proteins in the Production of O/W Emulsions: Droplet Coalescence Studies Using Microfluidics under Controlled Conditions. Food Res. Int. 2023, 172, 113100. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.H.; Vincken, J.P.; Arts, N.J.G.; Fogliano, V.; Lakemond, C.M.M. Effect of Endogenous Phenoloxidase on Protein Solubility and Digestibility after Processing of Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Food Res. Int. 2019, 121, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Yong, H.I.; Chun, H.H.; Lee, M.A.; Kim, Y.B.; Choi, Y.S. Changes of Amino Acid Composition and Protein Technical Functionality of Edible Insects by Extracting Steps. J. Asia Pac. Entomol. 2020, 23, 298–305. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible: Tenebrio molitor, Alphitobius Diaperinus, and Hermetia. J. Agric. Food Chem. 2017, 65, 2275. [Google Scholar] [CrossRef]
- Luparelli, A.V.; Leni, G.; Fuso, A.; Pedrazzani, C.; Palini, S.; Sforza, S.; Caligiani, A. Development of a Quantitative UPLC-ESI/MS Method for the Simultaneous Determination of the Chitin and Protein Content in Insects. Food Anal. Methods 2023, 16, 252–265. [Google Scholar] [CrossRef]
- Young, V.R.; Pellett, P.L. Protein Evaluation, Amino Acid Scoring and the Food and Drug Administration’s Proposed Food Labeling Regulations. J. Nutr. 1991, 121, 145–150. [Google Scholar] [CrossRef]
- Churchward-Venne, T.A.; Pinckaers, P.J.M.; van Loon, J.J.A.; van Loon, L.J.C. Consideration of Insects as a Source of Dietary Protein for Human Consumption. Nutr. Rev. 2017, 75, 1035–1045. [Google Scholar] [CrossRef]
- Fuso, A.; Barbi, S.; Macavei, L.I.; Luparelli, A.V.; Maistrello, L.; Montorsi, M.; Sforza, S.; Caligiani, A. Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods 2021, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Clemente, A. Enzymatic Protein Hydrolysates in Human Nutrition. Trends Food Sci. Technol. 2001, 11, 254–262. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. Transglutaminase-Crosslinked Lesser Mealworm Protein Isolate: A New Milk Fat Substitute for High-Quality Probiotic Set Yogurts. Food Hydrocoll. 2024, 146, 109172. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, Y.; Zheng, Y.; Liu, Z.; Zhong, Y.; Deng, Y.; Zhao, Y. Effects of Salting-in/out-Assisted Extractions on Structural, Physicochemical and Functional Properties of Tenebrio molitor Larvae Protein Isolates. Food Chem. 2021, 338, 128158. [Google Scholar] [CrossRef]
- Leni, G.; Tedeschi, T.; Faccini, A.; Pratesi, F.; Folli, C.; Puxeddu, I.; Migliorini, P.; Gianotten, N.; Jacobs, J.; Depraetere, S.; et al. Shotgun Proteomics, in-Silico Evaluation and Immunoblotting Assays for Allergenicity Assessment of Lesser Mealworm, Black Soldier Fly and Their Protein Hydrolysates. Sci. Rep. 2020, 10, 1228. [Google Scholar] [CrossRef]
- Damodaran, S. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2005, 70, R54–R66. [Google Scholar] [CrossRef]
- Leni, G.; Caligiani, A.; Sforza, S. Killing Method Affects the Browning and the Quality of the Protein Fraction of Black Soldier Fly (Hermetia illucens) Prepupae: A Metabolomics and Proteomic Insight. Food Res. Int. 2019, 115, 116–125. [Google Scholar] [CrossRef]
- Reiersen, H.; Rees, A.R. The Hunchback and Its Neighbours: Proline as an Environmental Modulator. Trends Biochem. Sci. 2001, 26, 679–684. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Cunha, L.M.; Sousa-Pinto, B.; Fonseca, J. Allergic Risks of Consuming Edible Insects: A Systematic Review. Mol. Nutr. Food Res. 2018, 62, 1700030. [Google Scholar] [CrossRef]
- Hall, F.G.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional Properties of Tropical Banded Cricket (Gryllodes sigillatus) Protein Hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Nagodawithana, T.W.; Nelles, L.; Trivedi, N.B. Protein Hydrolysates as Hypoallergenic, Flavors and Palatants for Companion Animals. In Protein Hydrolysates in Biotechnology; Pasupuleti, V., Demain, A., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Leni, G.; Soetemans, L.; Jacobs, J.; Depraetere, S.; Gianotten, N.; Bastiaens, L.; Caligiani, A.; Sforza, S. Protein Hydrolysates from Alphitobius diaperinus and Hermetia illucens Larvae Treated with Commercial Proteases. J. Insects Food Feed. 2020, 6, 393–404. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of Taste-Active Amino Acids, Amino Acid Derivatives and Peptides in Food Fermentations–A Review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the Biological Potential of Proteins from Edible Insects through Enzymatic Hydrolysis: A Review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef]
- Leni, G.; Del Vecchio, L.; Dellapina, C.; Maria, V.; Moliterni, C.; Caligiani, A.; Cirlini, M. Black Soldier Fly Larvae Grown on Hemp Fiber: Nutritional Composition and Production of Potential Bioactive Peptides. Macromol. 2024, 4, 135–149. [Google Scholar] [CrossRef]
- Butré, C.I.; Wierenga, P.A.; Gruppen, H. Influence of Water Availability on the Enzymatic Hydrolysis of Proteins. Process Biochem. 2014, 49, 1903–1912. [Google Scholar] [CrossRef]
- Prandi, B.; Zurlini, C.; Maria, C.I.; Cutroneo, S.; Di Massimo, M.; Bondi, M.; Brutti, A.; Sforza, S.; Tedeschi, T. Targeting the Nutritional Value of Proteins From Legumes By-Products Through Mild Extraction Technologies. Front. Nutr. 2021, 8, 695793. [Google Scholar] [CrossRef]
LM Protein (g/100g DM) | LM Protein (mg/g Protein) | Reference protein FAO/WHO 2013 (mg/g Protein) | Egg White (mg/g Protein) | Soybean (mg/g Protein) a | |
---|---|---|---|---|---|
Essential AA | |||||
His | 2.40 ± 0.01 | 41 | 15 | 23 | 25 |
Thr | 2.58 ± 0.05 | 42 | 23 | 47 | 38 |
Val | 3.61 ± 0.18 | 59 | 39 | 47 | 49 |
Lys | 4.05 ± 0.11 | 68 | 45 | 65 | 63 |
Ile | 2.60 ± 0.03 | 43 | 30 | 50 | 47 |
Leu | 4.15 ± 0.05 | 69 | 59 | 81 | 85 |
Phe | 2.97 ± 0.07 | ||||
Trp | 1.22 ± 0.01 | 20 | 6 | 11 | |
Met | 1.25 ± 0.04 | ||||
Cys + Met | 30 (9 + 21) | 22 | 63 (24 + 39) | 68 | |
Phe + Tyr | 130 (51 + 79) | 38 | 93 (59 + 34) | 97 | |
Non-essential AA | |||||
Asp + Asn | 5.42 ± 0.01 | 90 | |||
Ser | 2.84 ± 0.05 | 45 | |||
Glu + Gln | 7.74 ± 0.03 | 130 | |||
Gly | 2.81 ± 0.01 | 41 | |||
Arg | 3.63 ± 0.18 | 62 | |||
Ala | 4.34 ± 0.11 | 66 | |||
Pro | 3.94 ± 0.08 | 64 | |||
Tyr | 4.57 ± 0.28 | ||||
Cys | 0.66 ± 0.13 |
Protein Extraction Protocol | Protein Extraction Yield (%) | |
---|---|---|
“One shot” chemical extraction | 0.1M NaOH (2 h, 50 °C) | 73 ± 3 a |
Enzymatic extraction | Protease from Bacillus licheniformis | 76 ± 12 a |
“Stepwise” chemical extraction | Osborne fractionation | 91.3 ± 0.2 b |
ALBUMINS | 30.8 ± 1.0 | |
GLOBULINS | 2.6 ± 0.2 | |
PROLAMINS | 5.5 ± 0.3 | |
GLUTELINS | 52.4 ± 0.8 |
EAA | LM | “One Shot” Extraction | “Stepwise” Fractionation | Enzymatic Hydrolysate | |||
---|---|---|---|---|---|---|---|
Albumin | Globulin | Prolamin | Glutelin | ||||
His | 1.82 | 1.34 | 1.66 | 2.26 | 3.22 | 1.12 | 1.03 |
Ile | 0.89 | 0.83 | 0.65 | 0.63 | 0.39 | 0.88 | 0.88 |
Leu | 0.87 | 0.95 | 0.71 | 0.77 | 0.64 | 1.03 | 1.03 |
Met | 0.56 | 0.46 | 0.32 | 0.28 | 0.51 | 0.11 | 0.48 |
Phe | 0.88 | 0.83 | 0.62 | 0.85 | 0.92 | 0.82 | 0.84 |
Thr | 0.92 | 0.86 | 0.97 | 1.05 | 0.81 | 1.07 | 1.12 |
Val | 1.28 | 1.20 | 1.17 | 1.14 | 1.18 | 0.91 | 1.32 |
Lys | 1.08 | 1.07 | 1.21 | 1.04 | 1.65 | 1.02 | 1.09 |
Tyr | 2.39 | 2.33 | 1.33 | 2.36 | 2.10 | 2.47 | 2.43 |
Sum | 1.09 | 1.04 | 0.90 | 1.03 | 1.11 | 1.01 | 1.10 |
Free Amino Acids (mg/g of Dry LM) | LM | Enzymatic Hydrolysate |
---|---|---|
Gly | 0.18 ± 0.02 b | 5.3 ± 0.9 a |
Ala | 0.8 ± 0.2 b | 19.9 ± 4.8 a |
Ser | 0.21 ± 0.03 b | 5.0 ± 0.1 a |
Pro | 1.4 ± 0.2 b | 14.5 ± 2.8 a |
Val | 0.37 ± 0.03 b | 15.5 ± 3.7 a |
Thr | 0.17 ± 0.03 b | 2.9 ± 0.3 a |
Ile | 0.4 ± 0.2 b | 10.8 ± 2.8 a |
Leu | 0.39 ± 0.05 b | 17.6 ± 3.6 a |
Asn | <0.1 b | 1.4 ± 0.2 a |
Asp | 0.34 ± 0.08 b | 6.1 ± 1.1 a |
Gln | < 0.1 b | 0.9 ± 0.1 a |
Lys | 0.10 ± 0.04 b | 17.5 ± 4.7 a |
Glu | 1.0 ± 0.2 b | 22.0 ± 5.3 a |
Met | 0.06 ± 0.01 b | 4.3 ± 1.1 a |
His | <0.1 | <0.1 |
Phe | 0.19 ± 0.01 b | 11.9 ± 4.3 a |
Arg | 0.36 ± 0.07 b | 3.4 ± 0.9 a |
Tyr | 0.30 ± 0.03 b | 2.0 ± 0.1 a |
Trp | 0.16 ± 0.01 b | 5.6 ± 0.1 a |
Sum | 6.4 ± 0.6 b | 166.7 ± 4.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuso, A.; Leni, G.; Caligiani, A. Unravelling the Influence of Extraction Techniques on Protein Yield and Nutritional Value in Lesser Mealworm Larvae. Molecules 2024, 29, 4220. https://doi.org/10.3390/molecules29174220
Fuso A, Leni G, Caligiani A. Unravelling the Influence of Extraction Techniques on Protein Yield and Nutritional Value in Lesser Mealworm Larvae. Molecules. 2024; 29(17):4220. https://doi.org/10.3390/molecules29174220
Chicago/Turabian StyleFuso, Andrea, Giulia Leni, and Augusta Caligiani. 2024. "Unravelling the Influence of Extraction Techniques on Protein Yield and Nutritional Value in Lesser Mealworm Larvae" Molecules 29, no. 17: 4220. https://doi.org/10.3390/molecules29174220
APA StyleFuso, A., Leni, G., & Caligiani, A. (2024). Unravelling the Influence of Extraction Techniques on Protein Yield and Nutritional Value in Lesser Mealworm Larvae. Molecules, 29(17), 4220. https://doi.org/10.3390/molecules29174220