Molecular Dynamics Simulations of the miR-155 Duplex: Impact of Ionic Strength on Structure and Na+ and Cl− Ion Distribution
Abstract
:1. Introduction
2. Results
2.1. Structure of the Duplex
2.2. Water and Ion Distribution around the Duplex
3. Materials and Methods
3.1. Modelling
3.2. Molecular Dynamics (MD) Simulations
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V. The Functions of Animal MicroRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genomics 2010, 11, 537–561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaghf, A.; Khansarinejad, B.; Ghaznavi-Rad, E.; Mondanizadeh, M. The Role of MicroRNAs in Diseases and Related Signaling Pathways. Mol. Biol. Rep. 2022, 49, 6789–6801. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.; Liu, Z.; Han, Z.; Ge, Q. MicroRNA Detection Specificity: Recent Advances and Future Perspective. Anal. Chem. 2019, 91, 3179–3186. [Google Scholar] [CrossRef] [PubMed]
- Lowe, B.M.; Sun, K.; Zeimpekis, I.; Skylaris, C.-K.; Green, N.G. Field-effect Sensors—From pH Sensing to Biosensing: Sensitivity Enhancement Using Streptavidin-Biotin as a Model System. Analyst 2017, 142, 4173–4200. [Google Scholar] [CrossRef]
- Sung, D.; Koo, J. A Review of BioFET’s Basic Principles and Materials for Biomedical Applications. Biomed. Eng. Lett. 2021, 11, 85–96. [Google Scholar] [CrossRef]
- Hwang, M.T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A.M.; et al. Ultrasensitive Detection of Nucleic Acids Using Deformed Graphene Channel Field Effect Biosensors. Nat. Commun. 2020, 11, 1543. [Google Scholar] [CrossRef]
- Gong, P.; Levicky, R. DNA Surface Hybridization Regimes. Proc. Natl. Acad. Sci. USA 2008, 105, 5301–5306. [Google Scholar] [CrossRef]
- Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J.N. Debye Length and Double-layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380–2388. [Google Scholar] [CrossRef]
- Poghossian, A.; Schoning, M.J. Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications. Electroanalysis 2014, 26, 1197–1213. [Google Scholar] [CrossRef]
- Faraoni, I.; Antonetti, F.R.; Cardone, J.; Bonmassar, E. miR-155 Gene: A Typical Multifunctional MicroRNA. Biochim. Biophys. Acta 2009, 1792, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Due, H.; Svendsen, P.; Bødker, J.S.; Schmitz, A.; Bøgsted, M.; Johnsen, H.E.; El-Galaly, T.C.; Roug, A.S.; Dybkær, K. miR-155 as a Biomarker in B-Cell Malignancies. Biomed. Res. Int. 2016. [CrossRef] [PubMed]
- Mattiske, S.; Suetani, R.J.; Neilsen, P.W.; Callen, D.F. The Oncogenic Role of miR-155 in Breast Cancer. Cancer Epidemiol. Biomarkers Prev. 2012, 21, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, J.; Wang, X.; Shi, S.; Wang, W.; Chen, Z. Appraising MicroRNA-155 as a Noninvasive Diagnostic Biomarker for Cancer Detection: A Meta-Analysis. Medicine (Baltimore) 2016, 95, e2450. [Google Scholar] [CrossRef] [PubMed]
- Botti, V.; Lavecchia di Tocco, F.; Cannistraro, S.; Bizzarri, A.R. Hybridization Kinetics of miR-155 on Gold Surfaces as Investigated by Surface Plasmon Resonance and Atomic Force Spectroscopy. ACS Omega 2023, 8, 38941–38949. [Google Scholar] [CrossRef]
- Kührová, P.; Otyepka, M.; Šponer, J.; Banáš, P. Are Waters around RNA More than Just a Solvent? – An Insight from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013, 10, 401–411. [Google Scholar] [CrossRef]
- Feig, M.; Pettitt, B.M. Sodium and Chlorine Ions as Part of the DNA Solvation Shell. Biophys. J. 1999, 77, 1769–1781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strzelecka, T.E.; Rill, R.L. 23Na NMR of Concentrated DNA Solutions: Salt Concentration and Temperature Effects. J. Phys. Chem. 1992, 96, 7796–7807. [Google Scholar] [CrossRef]
- Cruz-León, S.; Schwierz, N. RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations. J. Phys. Chem. B 2022, 126, 8646–8654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manning, G.S. The Molecular Theory of Polyelectrolyte Solutions with Applications to the Electrostatic Properties of Polynucleotides. Q. Rev. Biophys. 1978, 11, 179–246. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, A.R.; Cametti, G.; Di Biasio, A. Counterion Accumulation in Rod-Like Polyelectrolyte Solutions with Added Salt and Manning’s Condensation Theory. Ber. Bunsenges. Phys. Chem. 1988, 92, 17–21. [Google Scholar] [CrossRef]
- Phillips, R.; Kondev, J.; Theriot, J. Physical Biology of the Cell; Garland Science: New York, NY, USA, 2009; p. 26. [Google Scholar]
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D Structure Composition for Large RNAs. Nucleic Acids Res. 2012, 40, e112. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An Environment for Comparative Protein Modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Humphrey, W.F.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Lindahl, A.; Abraham, M.; Hess, B.; van der Spoel, D. GROMACS 2021 Source Code (Version 2021); Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-chain Torsion Potentials for the AMBER ff99SB Protein Force Field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Kholmurodov, K.; Smith, W.; Yasuoka, K.; Darden, T.; Ebisuzaki, T. A Smooth-Particle Mesh Ewald Method for DL_POLY Molecular Dynamics Simulation Package on the Fujitsu VPP700. J. Comput. Chem. 2000, 21, 1187–1191. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Botti, V.; Cannistraro, S.; Bizzarri, A.R. Interaction of miR-155 with Human Serum Albumin: An Atomic Force Spectroscopy, Fluorescence, FRET, and Computational Modelling Evidence. Int. J. Mol. Sci. 2022, 23, 10728. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, A.R. Conformational Heterogeneity and Frustration of the Tumor Suppressor p53 as Tuned by Punctual Mutations. Int. J. Mol. Sci. 2022, 23, 12636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, R.; Smith, J.C.; Hess, B.; Lindahl, E. Gromacs: High Performance Molecular Simulations through Multi-level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
Ionic strength | RMSD (nm) | SASA (nm2) | RMSF (nm) | H-bonds | Length (nm) |
---|---|---|---|---|---|
0 mM | 0.52 (0.08) | 80 (1) | 0.24 (0.08) | 60 (4) | 6.6 (0.3) |
100 mM | 0.55 (0.09) | 80 (1) | 0.28 (0.10) | 61 (4) | 6.9 (0.4) |
200 mM | 0.54 (0.09) | 81 (1) | 0.26 (0.10) | 61 (4) | 6.9 (0.3) |
300 mM | 0.49 (0.09) | 80 (1) | 0.23 (0.06) | 61 (4) | 6.7 (0.3) |
400 mM | 0.51 (0.09) | 82 (1) | 0.26 (0.10) | 61 (4) | 6.5 (0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizzarri, A.R. Molecular Dynamics Simulations of the miR-155 Duplex: Impact of Ionic Strength on Structure and Na+ and Cl− Ion Distribution. Molecules 2024, 29, 4246. https://doi.org/10.3390/molecules29174246
Bizzarri AR. Molecular Dynamics Simulations of the miR-155 Duplex: Impact of Ionic Strength on Structure and Na+ and Cl− Ion Distribution. Molecules. 2024; 29(17):4246. https://doi.org/10.3390/molecules29174246
Chicago/Turabian StyleBizzarri, Anna Rita. 2024. "Molecular Dynamics Simulations of the miR-155 Duplex: Impact of Ionic Strength on Structure and Na+ and Cl− Ion Distribution" Molecules 29, no. 17: 4246. https://doi.org/10.3390/molecules29174246
APA StyleBizzarri, A. R. (2024). Molecular Dynamics Simulations of the miR-155 Duplex: Impact of Ionic Strength on Structure and Na+ and Cl− Ion Distribution. Molecules, 29(17), 4246. https://doi.org/10.3390/molecules29174246