Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms
Abstract
:1. Introduction
2. Olive Leaves Composition and Phytochemicals
3. Anticancer Properties of the Main Olive Leaves Compounds
3.1. Anticancer Effects of Oleuropein In Vitro
3.2. Anticancer Effects of Hydroxytyrosol In Vitro
4. Anticancer Properties of Olive Leaf Extract
5. Potential Antitumor Mechanisms of Oleuropein, Hydroxytyrosol, and Olive Leaf Extracts
6. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khadivi, A.; Mirheidari, F.; Moradi, Y.; Paryan, S. Identification of the Promising Olive (Olea europaea L.) Cultivars Based on Morphological and Pomological Characters. Food Sci. Nutr. 2022, 10, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, V.; Mascio, I.; Falek, W.; Miazzi, M.M.; Montemurro, C. Current Status of Biodiversity Assessment and Conservation of Wild Olive (Olea europaea L. Subsp. europaea Var. sylvestris). Plants 2022, 11, 480. [Google Scholar] [CrossRef]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Searles, P.; Cecilia Rousseaux, M.; García-Inza, G.; Miserere, A.; Bodoira, R.; Contreras, C.; Maestri, D. Olive Cultivation in the Southern Hemisphere: Flowering, Water Requirements and Oil Quality Responses to New Crop Environments. Front. Plant Sci. 2017, 8, 1830. [Google Scholar] [CrossRef]
- Markhali, F.S.; Teixeira, J.A.; Rocha, C.M.R. Olive Tree Leaves-A Source of Valuable Active Compounds. Processes 2020, 8, 1177. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Olive Tree (Olea europaea L.) Leaf as a Waste by-Product of Table Olive and Olive Oil Industry: A Review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.; Albqmi, M.; Al-Sanea, M.M.; Alnusaire, T.S.; Almuhayawi, M.S.; AbdElgawad, H.; Al Jaouni, S.K.; Elkelish, A.; Hussein, S.; Warrad, M.; et al. Valorizing the Usage of Olive Leaves, Bioactive Compounds, Biological Activities, and Food Applications: A Comprehensive Review. Front. Nutr. 2022, 9, 1008349. [Google Scholar] [CrossRef]
- Ferreira, W.A.; Aguiar, G.S.; Pessoa, H.R.; da Costa, D.C.F.; Zago, L. Potencial Antitumoral dos Compostos Fenólicos de Produtos da Oliveira (Olea europaea L.): Uma Revisão Integrativa da Literatura. Res. Soc. Dev. 2021, 10, e22101320733. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Mohan Shankar, G.; Swetha, M.; Keerthana, C.K.; Rayginia, T.P.; Anto, R.J. Cancer Chemoprevention: A Strategic Approach Using Phytochemicals. Front. Pharmacol. 2022, 12, 809308. [Google Scholar]
- Yuan, M.; Zhang, G.; Bai, W.; Han, X.; Li, C.; Bian, S. The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. Oxid. Med. Cell Longev. 2022, 2022, 1429869. [Google Scholar] [CrossRef]
- Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.C.G.; Gonçalves, J.L.; Granato, D.; Pereira, J.A.M.; Barros, L.; Ferreira, I.C.F.R. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2021, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, V.; Faraone, I.; Bruno, M.R.; Ponticelli, M.; Labanca, F.; Bisaccia, D.; Massarelli, C.; Milella, L.; Todaro, L. Olive Trees By-Products as Sources of Bioactive and Other Industrially Useful Compounds: A Systematic Review. Molecules 2021, 26, 5081. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Russo, A.; Trani, A.; Paradiso, V.M.; Ranieri, M.; Pasqualone, A.; Summo, C.; Tamma, G.; Silletti, R.; Caponio, F. Green Extracts from Coratina Olive Cultivar Leaves: Antioxidant Characterization and Biological Activity. J. Funct. Foods 2017, 31, 63–70. [Google Scholar] [CrossRef]
- Difonzo, G.; Crescenzi, M.A.; Piacente, S.; Altamura, G.; Caponio, F.; Montoro, P. Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season. Plants 2022, 11, 3321. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Pasković, I.; Žurga, P.; Germek, V.M.; Brkljača, M.; Marcelić, Š.; Ban, D.; Grozić, K.; Lukić, M.; Užila, Z.; et al. Determination of the Variability of Biophenols and Mineral Nutrients in Olive Leaves with Respect to Cultivar, Collection Period and Geographical Location for Their Targeted and Well-Timed Exploitation. Plants 2020, 9, 1667. [Google Scholar] [CrossRef]
- Antunes, B.D.F.; Otero, D.M.; Bonemann, D.H.; Ribeiro, A.S.; Jacques, A.C.; Zambiazi, R.C. Evaluation of Physicochemical, Bioactive Composition and Profile of Fatty Acids in Leaves of Different Olive Cultivars. Rev. Ceres 2021, 68, 511–520. [Google Scholar] [CrossRef]
- Martín-García, B.; Verardo, V.; León, L.; De la Rosa, R.; Arráez-Román, D.; Segura-Carretero, A.; Gómez-Caravaca, A.M. GC-QTOF-MS as Valuable Tool to Evaluate the Influence of Cultivar and Sample Time on Olive Leaves Triterpenic Components. Food Res. Int. 2019, 115, 219–226. [Google Scholar] [CrossRef]
- Scicchitano, S.; Vecchio, E.; Battaglia, A.M.; Oliverio, M.; Nardi, M.; Procopio, A.; Costanzo, F.; Biamonte, F.; Faniello, M.C. The Double-Edged Sword of Oleuropein in Ovarian Cancer Cells: From Antioxidant Functions to Cytotoxic Effects. Int. J. Mol. Sci. 2023, 24, 842. [Google Scholar] [CrossRef]
- Martínez-Navarro, M.E.; Kaparakou, E.H.; Kanakis, C.D.; Cebrián-Tarancón, C.; Alonso, G.L.; Salinas, M.R.; Tarantilis, P.A. Quantitative Determination of the Main Phenolic Compounds, Antioxidant Activity, and Toxicity of Aqueous Extracts of Olive Leaves of Greek and Spanish Genotypes. Horticulturae 2023, 9, 55. [Google Scholar] [CrossRef]
- Bulotta, S.; Corradino, R.; Celano, M.; D’Agostino, M.; Maiuolo, J.; Oliverio, M.; Procopio, A.; Iannone, M.; Rotiroti, D.; Russo, D. Antiproliferative and Antioxidant Effects on Breast Cancer Cells of Oleuropein and Its Semisynthetic Peracetylated Derivatives. Food Chem. 2011, 127, 1609–1614. [Google Scholar] [CrossRef]
- Samara, P.; Christoforidou, N.; Lemus, C.; Argyropoulou, A.; Ioannou, K.; Vougogiannopoulou, K.; Aligiannis, N.; Paronis, E.; Gaboriaud-Kolar, N.; Tsitsilonis, O.; et al. New Semi-Synthetic Analogs of Oleuropein Show Improved Anticancer Activity in Vitro and in Vivo. Eur. J. Med. Chem. 2017, 137, 11–29. [Google Scholar] [CrossRef]
- Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a Bioactive Compound from Olea europaea l., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants 2019, 8, 578. [Google Scholar] [CrossRef]
- Bulotta, S.; Oliverio, M.; Russo, D.; Procopio, A. Biological Activity of Oleuropein and Its Derivatives. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3605–3638. ISBN 9783642221446. [Google Scholar]
- Ruzzolini, J.; Peppicelli, S.; Bianchini, F.; Andreucci, E.; Urciuoli, S.; Romani, A.; Tortora, K.; Caderni, G.; Nediani, C.; Calorini, L. Cancer Glycolytic Dependence as a New Target of Olive Leaf Extract. Cancers 2020, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Larrosa, M.; Possemiers, S.; Tomás-Barberán, F.A.; Espín, J.C. Bioavailability of Phenolics from an Oleuropein-Rich Olive (Olea europaea) Leaf Extract and Its Acute Effect on Plasma Antioxidant Status: Comparison between Pre- and Postmenopausal Women. Eur. J. Nutr. 2014, 53, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Ros, G.; Nieto, G. Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef]
- González-Santiago, M.; Fonollá, J.; Lopez-Huertas, E. Human Absorption of a Supplement Containing Purified Hydroxytyrosol, a Natural Antioxidant from Olive Oil, and Evidence for Its Transient Association with Low-Density Lipoproteins. Pharmacol. Res. 2010, 61, 364–370. [Google Scholar] [CrossRef]
- Marković, A.K.; Torić, J.; Barbarić, M.; Brala, C.J. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef]
- Han, J.; Talorete, T.P.N.; Yamada, P.; Isoda, H. Anti-Proliferative and Apoptotic Effects of Oleuropein and Hydroxytyrosol on Human Breast Cancer MCF-7 Cells. Cytotechnology 2009, 59, 45–53. [Google Scholar] [CrossRef]
- Hassan, Z.K.; Elamin, M.H.; Omer, S.A.; Daghestani, M.H.; Al-Olayan, E.S.; Elobeid, M.A.R.; Virk, P. Oleuropein Induces Apoptosis via the P53 Pathway in Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2013, 14, 6739–6742. [Google Scholar] [CrossRef]
- Choupani, J.; Alivand, M.R.; Derakhshan, S.M.; Zaeifizadeh, M.; Khaniani, M.S. Oleuropein Inhibits Migration Ability through Suppression of Epithelial-Mesenchymal Transition and Synergistically Enhances Doxorubicin-Mediated Apoptosis in MCF-7 Cells. J. Cell Physiol. 2019, 234, 9093–9104. [Google Scholar] [CrossRef]
- Liu, L.; Ahn, K.S.; Shanmugam, M.K.; Wang, H.; Shen, H.; Arfuso, F.; Chinnathambi, A.; Alharbi, S.A.; Chang, Y.; Sethi, G.; et al. Oleuropein Induces Apoptosis via Abrogating NF-ΚB Activation Cascade in Estrogen Receptor–Negative Breast Cancer Cells. J. Cell Biochem. 2019, 120, 4504–4513. [Google Scholar] [CrossRef] [PubMed]
- Messeha, S.S.; Zarmouh, N.O.; Asiri, A.; Soliman, K.F.A. Gene Expression Alterations Associated with Oleuropein-Induced Antiproliferative Effects and S-Phase Cell Cycle Arrest in Triple-Negative Breast Cancer Cells. Nutrients 2020, 12, 3755. [Google Scholar] [CrossRef]
- Yan, C.M.; Chai, E.Q.; Cai, H.Y.; Miao, G.Y.; Ma, W. Oleuropein Induces Apoptosis via Activation of Caspases and Suppression of Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway in HepG2 Human Hepatoma Cell Line. Mol. Med. Rep. 2015, 11, 4617–4624. [Google Scholar] [CrossRef] [PubMed]
- Katsoulieris, E.N. The Olive Leaf Extract Oleuropein Exerts Protective Effects against Oxidant-Induced Cell Death, Concurrently Displaying pro-Oxidant Activity in Human Hepatocarcinoma Cells. Redox Rep. 2016, 21, 90–97. [Google Scholar] [CrossRef]
- Sherif, I.O.; Al-Gayyar, M.M.H. Oleuropein Potentiates Anti-Tumor Activity of Cisplatin against HepG2 through Affecting ProNGF/NGF Balance. Life Sci. 2018, 198, 87–93. [Google Scholar] [CrossRef]
- Gioti, K.; Papachristodoulou, A.; Benaki, D.; Aligiannis, N.; Skaltsounis, A.L.; Mikros, E.; Tenta, R. Assessment of the Nutraceutical Effects of Oleuropein and the Cytotoxic Effects of Adriamycin, When Administered Alone and in Combination, in Mg-63 Human Osteosarcoma Cells. Nutrients 2021, 13, 354. [Google Scholar] [CrossRef] [PubMed]
- Seçme, M.; Eroğlu, C.; Dodurga, Y.; Bağci, G. Investigation of Anticancer Mechanism of Oleuropein via Cell Cycle and Apoptotic Pathways in SH-SY5Y Neuroblastoma Cells. Gene 2016, 585, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.; Patrizia, G.; Valeria, C.; Ornella, M.; Arturo, L.; Vincenzo, Z. The Protective Effect of Olive Oil Polyphenol (3,4-Dihydroxyphenyl)-Ethanol Counteracts Reactive Oxygen Metabolite–Induced Cytotoxicity in Caco-2 Cells. J. Nutr. 1997, 127, 286–292. [Google Scholar] [CrossRef]
- Corona, G.; Deiana, M.; Incani, A.; Vauzour, D.; Dessià, M.A.; Spencer, J.P.E. Hydroxytyrosol Inhibits the Proliferation of Human Colon Adenocarcinoma Cells through Inhibition of ERK1/2 and Cyclin D1. Mol. Nutr. Food Res. 2009, 53, 897–903. [Google Scholar] [CrossRef]
- Hormozi, M.; Marzijerani, A.S.; Baharvand, P. Effects of Hydroxytyrosol on Expression of Apoptotic Genes and Activity of Antioxidant Enzymes in Ls180 Cells. Cancer Manag. Res. 2020, 12, 7913–7919. [Google Scholar] [CrossRef]
- Zhang, S.-P.; Zhou, J.; Fan, Q.-Z.; Lv, X.-M.; Wang, T.; Wang, F.; Chen, Y.; Hong, S.-Y.; Liu, X.-P.; Xu, B.-S.; et al. Discovery of Hydroxytyrosol as Thioredoxin Reductase 1 Inhibitor to Induce Apoptosis and G 1 /S Cell Cycle Arrest in Human Colorectal Cancer Cells via ROS Generation. Exp. Ther. Med. 2021, 22, 829. [Google Scholar] [CrossRef] [PubMed]
- del Saz-Lara, A.; Boughanem, H.; López de las Hazas, M.C.; Crespo, C.; Saz-Lara, A.; Visioli, F.; Macias-González, M.; Dávalos, A. Hydroxytyrosol Decreases EDNRA Expression through Epigenetic Modification in Colorectal Cancer Cells. Pharmacol. Res. 2023, 187, 106612. [Google Scholar] [CrossRef] [PubMed]
- Della Ragione, F.; Cucciolla, V.; Borriello, A.; Della Pietra, V.; Pontoni, G.; Racioppi, L.; Manna, C.; Galletti, P.; Zappia, V. Hydroxytyrosol, a Natural Molecule Occurring in Olive Oil, Induces Cytochrome c-Dependent Apoptosis. Biochem. Biophys. Res. Commun. 2000, 278, 733–739. [Google Scholar] [CrossRef]
- Fabiani, R.; Rosignoli, P.; De Bartolomeo, A.; Fuccelli, R.; Morozzi, G. Inhibition of Cell Cycle Progression by Hydroxytyrosol Is Associated with Upregulation of Cyclin-Dependent Protein Kinase Inhibitors P21 WAF1/Cip1 and P27 Kip1 and with Induction of Differentiation in HL60 Cells 1. J. Nutr. 2008, 138, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Parra-Perez, A.M.; Pérez-Jiménez, A.; Gris-Cárdenas, I.; Bonel-Pérez, G.C.; Carrasco-Díaz, L.M.; Mokhtari, K.; García-Salguero, L.; Lupiáñez, J.A.; Rufino-Palomares, E.E. Involvement of the PI3K/AKT Intracellular Signaling Pathway in the AntiCancer Activity of Hydroxytyrosol, a Polyphenol from Olea Europaea, in Hematological Cells and Implication of HSP60 Levels in Its Anti-Inflammatory Activity. Int. J. Mol. Sci. 2022, 23, 7053. [Google Scholar] [CrossRef] [PubMed]
- Goya, L.; Mateos, R.; Bravo, L. Effect of the Olive Oil Phenol Hydroxytyrosol on Human Hepatoma HepG2 Cells: Protection against Oxidative Stress Induced by Tert-Butylhydroperoxide. Eur. J. Nutr. 2007, 46, 70–78. [Google Scholar] [CrossRef]
- Martin, M.A.; Ramos, S.; Granado-Serrano, A.B.; Rodriguez-Ramiro, I.; Trujillo, M.; Bravo, L.; Goya, L. Hydroxytyrosol Induces Antioxidant/Detoxificant Enzymes and Nrf2 Translocation via Extracellular Regulated Kinases and Phosphatidylinositol-3-Kinase/ Protein Kinase B Pathways in HepG2 Cells. Mol. Nutr. Food Res. 2010, 54, 956–966. [Google Scholar] [CrossRef]
- Tutino, V.; Caruso, M.G.; Messa, C.; Perri, E.; Notarnicola, M. Antiproliferative, Antioxidant and Anti-Inflammatory Effects of Hydroxytyrosol on Human Hepatoma HepG2 and Hep3B Cell Lines. Anticancer Res. 2012, 32, 5371–5377. [Google Scholar]
- Giordano, E.; Davalos, A.; Nicod, N.; Visioli, F. Hydroxytyrosol Attenuates Tunicamycin-Induced Endoplasmic Reticulum Stress in Human Hepatocarcinoma Cells. Mol. Nutr. Food Res. 2014, 58, 954–962. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, Y.; Xu, Z.; Wang, J.; Wang, F.; Wang, D.; Pan, S.; Wu, Y.; Pan, H.; Xu, D.; et al. Hydroxytyrosol, a Natural Molecule from Olive Oil, Suppresses the Growth of Human Hepatocellular Carcinoma Cells via Inactivating AKT and Nuclear Factor-Kappa B Pathways. Cancer Lett. 2014, 347, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Liao, W.C.; Lin, R.A.; Chen, I.S.; Wang, J.L.; Chien, J.M.; Kuo, C.C.; Hao, L.J.; Chou, C.T.; Jan, C.R. Hydroxytyrosol [2-(3,4-Dihydroxyphenyl)-Ethanol], a Natural Phenolic Compound Found in the Olive, Alters Ca2+ Signaling and Viability in Human HepG2 Hepatoma Cells. Chin. J. Physiol. 2022, 65, 30–36. [Google Scholar] [CrossRef]
- Costantini, F.; Di Sano, C.; Barbieri, G. The Hydroxytyrosol Induces the Death for Apoptosis of Human Melanoma Cells. Int. J. Mol. Sci. 2020, 21, 8074. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quesada, C.; Gutiérrez-Santiago, F.; Rodríguez-García, C.; Gaforio, J.J. Synergistic Effect of Squalene and Hydroxytyrosol on Highly Invasive MDA-MB-231 Breast Cancer Cells. Nutrients 2022, 14, 255. [Google Scholar] [CrossRef]
- Boss, A.; Bishop, K.S.; Marlow, G.; Barnett, M.P.G.; Ferguson, L.R. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients 2016, 8, 513. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Goulas, V.; Exarchou, V.; Troganis, A.N.; Psomiadou, E.; Fotsis, T.; Briasoulis, E.; Gerothanassis, I.P. Phytochemicals in Olive-Leaf Extracts and Their Antiproliferative Activity against Cancer and Endothelial Cells. Mol. Nutr. Food Res. 2009, 53, 600–608. [Google Scholar] [CrossRef]
- Bouallagui, Z.; Han, J.; Isoda, H.; Sayadi, S. Hydroxytyrosol Rich Extract from Olive Leaves Modulates Cell Cycle Progression in MCF-7 Human Breast Cancer Cells. Food Chem. Toxicol. 2011, 49, 179–184. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Zurek, G.; Barrajón-Catalán, E.; Bäßmann, C.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. A Metabolite-Profiling Approach to Assess the Uptake and Metabolism of Phenolic Compounds from Olive Leaves in SKBR3 Cells by HPLC-ESI-QTOF-MS. J. Pharm. Biomed. Anal. 2013, 72, 121–126. [Google Scholar] [CrossRef]
- Rashidipour, M.; Heydari, R. Biosynthesis of Silver Nanoparticles Using Extract of Olive Leaf: Synthesis and in Vitro Cytotoxic Effect on MCF-7 Cells. J. Nanostructure Chem. 2014, 4, 112. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Taamalli, A.; Quirantes-Piné, R.; Roldan-Segura, C.; Arráez-Román, D.; Segura-Carretero, A.; Micol, V.; Zarrouk, M. Differential Metabolomic Analysis of the Potential Antiproliferative Mechanism of Olive Leaf Extract on the JIMT-1 Breast Cancer Cell Line. J. Pharm. Biomed. Anal. 2015, 105, 156–162. [Google Scholar] [CrossRef]
- Korkmaz, S.; Sarimahmut, M.; Ozel, M.Z.; Ulukaya, E. Oleuropein Içeren Zeytin Yaprağı Ekstresi Hücre Hattına Bağlı Olarak Meme Kanser Hücrelerinde Epirubisinin Sitotoksik Etkilerini Değiştirir. Turk. J. Biochem. 2016, 41, 385–392. [Google Scholar] [CrossRef]
- Benot-Dominguez, R.; Tupone, M.G.; Castelli, V.; d’Angelo, M.; Benedetti, E.; Quintiliani, M.; Cinque, B.; Forte, I.M.; Cifone, M.G.; Ippoliti, R.; et al. Olive Leaf Extract Impairs Mitochondria by Pro-Oxidant Activity in MDA-MB-231 and OVCAR-3 Cancer Cells. Biomed. Pharmacother. 2021, 134, 111139. [Google Scholar] [CrossRef] [PubMed]
- Alhajri, H.M.; Aloqaili, S.S.; Alterary, S.S.; Alqathama, A.; Abdalla, A.N.; Alzhrani, R.M.; Alotaibi, B.S.; Alsaab, H.O. Olive Leaf Extracts for a Green Synthesis of Silver-Functionalized Multi-Walled Carbon Nanotubes. J. Funct. Biomater. 2022, 13, 224. [Google Scholar] [CrossRef] [PubMed]
- Vizza, D.; Lupinacci, S.; Toteda, G.; Puoci, F.; Ortensia, I.P.; De Bartolo, A.; Lofaro, D.; Scrivano, L.; Bonofiglio, R.; La Russa, A.; et al. An Olive Leaf Extract Rich in Polyphenols Promotes Apoptosis in Cervical Cancer Cells by Upregulating P21 Cip/WAF1 Gene Expression. Nutr. Cancer 2019, 71, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Bektay, M.Y.; Güler, E.M.; Gökçe, M.; Kiziltaş, M.V. Investigation of the Genotoxic, Cytotoxic, Apoptotic, and Oxidant Effects of Olive Leaf Extracts on Liver Cancer Cell Lines. Turk. J. Pharm. Sci. 2021, 18, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Cecchi, L.; Bellumori, M.; Balli, D.; Giovannelli, L.; Huang, L.; Mulinacci, N. Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars (Olea europaea L.). Foods 2021, 10, 2823. [Google Scholar] [CrossRef]
- Albogami, S.; Hassan, A.M. Assessment of the Efficacy of Olive Leaf (Olea europaea L.) Extracts in the Treatment of Colorectal Cancer and Prostate Cancer Using in Vitro Cell Models. Molecules 2021, 26, 4069. [Google Scholar] [CrossRef]
- Pla, E.O.; Montoro, A.; Pacifico, S.; Bláha, P.; Faramarzi, S.; Fede, F.; Michaličková, K.; Piccolella, S.; Ricciardi, V.; Manti, L. Differential Radiomodulating Action of Olea europaea L. Cv. Caiazzana Leaf Extract on Human Normal and Cancer Cells: A Joint Chemical and Radiobiological Approach. Antioxidants 2022, 11, 1603. [Google Scholar] [CrossRef]
- Goldsmith, C.; Vuong, Q.; Sadeqzadeh, E.; Stathopoulos, C.; Roach, P.; Scarlett, C. Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells. Molecules 2015, 20, 12992–13004. [Google Scholar] [CrossRef]
- Anter, J.; Fernández-Bedmar, Z.; Villatoro-Pulido, M.; Demyda-Peyras, S.; Moreno-Millán, M.; Alonso-Moraga, Á.; Muñoz-Serrano, A.; Luque de Castro, M.D. A Pilot Study on the DNA-Protective, Cytotoxic, and Apoptosis-Inducing Properties of Olive-Leaf Extracts. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2011, 723, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Fares, R.; Bazzi, S.; Baydoun, S.E.; Abdel-Massih, R.M. The Antioxidant and Anti-Proliferative Activity of the Lebanese Olea europaea Extract. Plant Foods Hum. Nutr. 2011, 66, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Samet, I.; Han, J.; Jlaiel, L.; Sayadi, S.; Isoda, H. Olive (Olea europaea) Leaf Extract Induces Apoptosis and Monocyte/Macrophage Differentiation in Human Chronic Myelogenous Leukemia K562 Cells: Insight into the Underlying Mechanism. Oxid. Med. Cell Longev. 2014, 2014, 927619. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, C.; Clericuzio, M.; Borghesi, B.; Cornara, L.; Ribulla, S.; Gosetti, F.; Marengo, E.; Burlando, B. Oleuropein-Enriched Olive Leaf Extract Affects Calcium Dynamics and Impairs Viability of Malignant Mesothelioma Cells. Evid.-Based Complement. Altern. Med. 2015, 2015, 908493. [Google Scholar] [CrossRef]
- Pereira, W.L.; Oliveira, T.T.; Kanashiro, M.; Costa, M.R. Ação Antiproliferativado Flavonoide Morina e Do Extrato Da Folha de Oliveira (Olea europaea L.) Contra a Linhagem de Célula H460. Rev. Bras. Plantas Med. 2015, 17, 798–806. [Google Scholar] [CrossRef]
- Tunca, B.; Tezcan, G.; Cecener, G.; Egeli, U.; Ak, S.; Malyer, H.; Tumen, G.; Bilir, A. Olea europaea Leaf Extract Alters MicroRNA Expression in Human Glioblastoma Cells. J. Cancer Res. Clin. Oncol. 2012, 138, 1831–1844. [Google Scholar] [CrossRef]
- Tezcan, G.; Tunca, B.; Demirci, H.; Bekar, A.; Taskapilioglu, M.O.; Kocaeli, H.; Egeli, U.; Cecener, G.; Tolunay, S.; Vatan, O. Olea europaea Leaf Extract Improves the Efficacy of Temozolomide Therapy by Inducing MGMT Methylation and Reducing P53 Expression in Glioblastoma. Nutr. Cancer 2017, 69, 873–880. [Google Scholar] [CrossRef]
- Morandi, F.; Bensa, V.; Calarco, E.; Pastorino, F.; Perri, P.; Corrias, M.V.; Ponzoni, M.; Brignole, C. The Olive Leaves Extract Has Anti-tumor Effects against Neuroblastoma through Inhibition of Cell Proliferation and Induction of Apoptosis. Nutrients 2021, 13, 2178. [Google Scholar] [CrossRef]
- De Cicco, P.; Ercolano, G.; Tenore, G.C.; Ianaro, A. Olive Leaf Extract Inhibits Metastatic Melanoma Spread through Suppression of Epithelial to Mesenchymal Transition. Phytother. Res. 2022, 36, 4002–4013. [Google Scholar] [CrossRef]
Compound | Concentration Range | Types | Cell Models | Observed Effects | Refs. |
---|---|---|---|---|---|
Oleuropein and Hydroxytyrosol | 100 and 200 μg/mL | Breast | MCF-7 | Cell viability; morphological changes indicative of apoptosis; caspases and cell cycle arrest at G1 phase. | [30] |
Oleuropein | 1, 10, and 100 μM | Breast | T-47D and MCF-7 | Cell viability and cell cycle arrest at the G2/M phase. | [21] |
Oleuropein | 100 or 200 μM | Breast | MCF-7 | Bax gene and ↑ activation of p53-dependent apoptotic pathways, by ↑ p53 gene expression. | [31] |
Oleuropein and doxorubicin (DOX) | 300 or 600 µg/mL and 0.05 to 1 µM | Breast | MCF-7 | Oleuropein: cell migration and proliferation, MMP-2/9, ZEB1, ↑ E-CAD and p53; Oleuropein-DOX: ↑ antiproliferative effect, DOX IC50 by 6.40 times, ↑ ratio of late/early apoptosis. | [32] |
Oleuropein | 0 to 100 μM | Breast | MDA-MB-231 and MCF-7 | Cell viability and migration; cell cycle arrest at the sub-G1 phase; ↑ apoptosis with ↑ cleavage of PARP and caspase-3/7. NF-κB activation. | [33] |
Oleuropein | 0 to 700 µM | Breast | MDA-MB-231 and MDA-MB-468 | Cell viability; apoptosis was mainly induced by the antiapoptotic gene TNFRSF11B and BIRC5 and ↑ CASP4. | [34] |
Semi-synthetic oleuropein analogs | 15 and 20 μM | Breast, melanoma, cervix, and colon | MCF-7 and SKBR3, FM3, HeLa, and HCT-116 | ↑ Cancer cell death without causing severe toxicity in non-tumor cells. | [22] |
Oleuropein | 100, 200 and 400 µM | Ovarian and breast | HEY and MCF-7 | Antioxidant activity (iron chelator; ↑ ROS scavenging enzyme GPX4; LIP and mitochondrial ROS); cell cycle arrest at the subG1 and G2/M phases. | [19] |
Oleuropein | 20 to 100 μM | Hepatocellular carcinoma | HepG2 | Morphological alterations; cell growth; ↑ caspase and Bcl-2 family and PI3K/AKT signaling; no effect on cell viability. | [35] |
Oleuropein | 10 to 100 µmol/L | Hepatocellular carcinoma | HepG2 | Protective effects on cellular viability, accompanied by of Casp-3 cleavage. | [36] |
Oleuropein and cisplatine | 200 μM and 50 μM | Hepatocellular carcinoma | HepG2 | Pro-NGF/NGF balance via affecting MMP-7 activity. | [37] |
Oleuropein or Oleuropein + Adriamycin (ADR) | 10 to 50 μg/mL | Osteosarcoma | MG-63 | Cell cycle arrest at the G0/G1 phase; ↑ ADR cytotoxicity; ↑ ULK1, AMBRA1, and BniP3L mRNAs; ↑ LC-3. | [38] |
Oleuropein | 25 to 800 µmol/L | Neuroblastoma | SH-SY5Y | Cell viability; genes involved in cell cycle progression; ↑ genes that promote cell cycle arrest. | [39] |
Hydroxytyrosol and tyrosol | 250 μmol/L and 500 μmol/L | Colorectal adenocarcinoma | Caco-2 | HT cellular damage induced by oxidative stress | [40] |
Hydroxytyrosol | 5.0 to 162.5 μM | Colorectal adenocarcinoma | Caco-2 | Cell cycle arrest at the G2/M phase; cell division and proliferation; ERK and cyclin D1 expression. | [41] |
Hydroxytyrosol | 50, 100 and 150 μM | Colorectal adenocarcinoma | LS180 | ↑ CASP3 gene, ↑ cell death by BAX:BCL2 ratio; NFE2L2 gene; ↑ activity of antioxidant enzymes. | [42] |
Hydroxytyrosol | 5, 10 and 20 μM | Colorectal adenocarcinoma | SW620 | ↑ Cell death by ↑ TrxR1 activity and leads to the cell accumulation of ROS; ↑ apoptosis and G1/S cell cycle arrest. | [43] |
Hydroxytyrosol | 0, 5, 10, 50, 100 or 150 µM | Colorectal adenocarcinoma | Caco-2 | Cancer development and progression by ↑ DNA methylation, the EDNRA gene stood out as a target. | [44] |
Hydroxytyrosol | 50 to 100 μM | Myeloid leukemia and Colorectal cancer cells | HL60, HT-29 and CaCo2 | HL60: ↑ apoptosis by release of cytochrome c from the mitochondria. HT-29 and CaCo2: HT was not able to induce cell death. | [45] |
Hydroxytyrosol | 100 μmol/L | Myeloid leukemia | HL60 | Cell proliferation; incorporation of [3H]-thymidine; ↑ release of cytosolic nucleosomes; cell cycle arrest at the G0/G1 phase; CDK6 and ↑ cyclin D3; ↑ CDK inhibi-tors p21WAF1/Cip1 and p27Kip1. | [46] |
Hydroxytyrosol | 6.25 to 50 μg/mL | Liquid cancers, leukemias, myelomas, and lymphomas | Jurkat, HL60 and Raw264.7 | Cycle arrest in the G0/G1 phase and apoptosis, while being less toxic to normal cells; PI3K signaling pathway and ↑ MAPK pathway; NO | [47] |
Hydroxytyrosol | 10 to 40 μM | Hepatocellular carcinoma | HepG2 | No changes in cell integrity or antioxidant status were verified. | [48] |
Hydroxytyrosol | 0.5, 1.0, 5.0 and 10.0 μM | Hepatocellular carcinoma | HepG2 | ↑ Expression of antioxidant enzymes; ↑ activation of AKT and ERK; ↑ nuclear translocation of the Nrf2 transcription factor. | [49] |
Hydroxytyrosol | 30 to 200 μM | Hepatocellular carcinoma | Hep3B e HepG2 | Antiproliferative effect by ↑ FAS; cellular antioxidant system; IL-6. | [50] |
Hydroxytyrosol | 1 μM and 5 μM | Hepatocellular carcinoma | HepG2 | Endoplasmic reticulum stress. | [51] |
Hydroxytyrosol | 100 to 400 μM | Hepatocellular carcinoma | HepG2, Hep3B, SK-HEP-1 and Huh-7 | Cell proliferation; cell cycle arrest in the G2/M phase; ↑ cleavage PARP; PI3K/AKT pathway and NF-κB. | [52] |
Hydroxytyrosol | 0 to 100 μM | Hepatocellular carcinoma | HepG2 | Cell viability; ↑ intracellular calcium levels. | [53] |
Hydroxytyrosol | 50 to 250 μM | Melanoma | A375, HT-144, and M74 | Cell viability; ↑ apoptotic; ↑ p53 and γH2AX; AKT; colony formation; ↑ oxidative stress and DNA damage. | [54] |
Squalene and HT | 0.01 μM to 100 μM | Breast | MDA-MB-231 | Cell proliferation; ↑ apoptosis; ↑ DNA damage. | [55] |
Compound | Concentration Range | Types | Cell Models | Observed Effects | Refs. |
---|---|---|---|---|---|
OLE | 66 to 510 μg/mL | Breast and urinary bladder | MCF-7 | Cell proliferation. | [58] |
OLE enriched in HT | 2000, 2200, 2400, 2600, 2800, and 3000 μg/mL | Breast | MCF-7 | Cell viability; cell cycle arrest at the G0/G1 phase; Pin1 and cyclin D1. | [59] |
OLE | 200 μg/mL | Breast | SKBR3 | Cytotoxic effects. | [60] |
OLE | 50 and 0.024 μg/mL | Breast | MCF-7 | Cell proliferation. | [61] |
OLE | 7.00 and 70.0 μg/mL | Breast | JIMT-1 | Cell growth; apoptosis; MAPK pathway. | [62] |
OLE and epirubicin | 3.12 to 400 µg/mL | Breast | MCF-7 and MDA-MB-231 | Cytotoxicity of the drug only in MDA-MB-231. | [63] |
OLE | 100 to 400 μg/mL | Breast and ovarian | MDA-MB-231 and OVCAR-3 cells | Cell viability and proliferation; apoptosis; oxidative stress; leaving healthy cells unaffected. | [64] |
OLE | 100, 50, 25, 10 and 5 μg/mL | Breast | SKBr3, AMJ13, MDA-MB-231 and MCF-7 | Cytotoxic effects. | [65] |
OLE and OLE and Cisplatin | 5 mM | Cervical cancer | HeLa | Cell viability and Cyclin-D1; p21; neutralized EMT; NFkB, Akt and MAPK pathways. | [66] |
OLE | 250, 500, 1000 and 2000 ppm | Hepatocellular carcinoma | H4IIE cells | Apoptotic, genotoxic, cytotoxic, and oxidative effects. | [67] |
Extract of Phenolic Compounds and Triterpenes of branch an leaves Olive | 97.06 μg/mL | Colon cancer | HCT-116 | Cell viability. | [68] |
OLE | 535.3, 289.6, 203.1, and 198.6 µg/mL | Colorectal and prostate | HT29 and PC3 | Apoptosis; DNA fragmentation and ROS and antioxidant defenses. | [69] |
OLE (pre-treatment) and Cell Irradiation | 12.5 μg/mL | Prostate and pancreatic | MCF-10A and DU145 cells, compared with normal HUVECs and MCF-10A cells | Genotoxic effects of radiation in cancer cells and protected normal cells. | [70] |
OLE | 0 to 200 µg/mL | Pancreatic cancer | MiaPaCa-2 | Cell viability. | [71] |
OLE | 10 μL/mL, 170 μM, and 40 μM | Leukemia | HL60 | DNA fragmentation and laddering; cytoplasmic and nuclear changes. | [72] |
OLE | 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.9, 1.1 mg dw | Leukemia | Jurkat | Cell proliferation; apoptosis; Bcl-2; Bax, and p53. | [73] |
OLE | 50, 100, and 150 μg/mL | Chronic myelogenous leukemia | K562 Cells | Cell proliferation and apoptosis by cell cycle arrest G0/G1 and G2/M; cell differentiation in monocytes. | [74] |
OLE enriched in oleuropein or Oleuropein or HT | 10 to 100 μM | Mesothelioma | REN cell | Cell viability; cytosolic calcium. | [75] |
OLE and flavonoid morin | 50, 100, 200, 400 and 800 μM e μg/mL | Lung cancer | H460 | Cell growth; apoptosis by changes in the mitochondrial membrane. | [76] |
OLE and OLE and TMZ | 1 to 2 mg/mL | Glioblastoma | T98G | Antiproliferative effects; miR-181b, miR-153, miR-145, miR-137, and let-7d. | [77] |
OLE and OLE and bevacizumab | 1 to 2 mg/mL | Glioblastoma | T98G | Angiogenesis ( VEGFA); invasion ( MMP-2/9). | [78] |
OLE and combining OLE with the chemotherapeutic topotecan | 50 to 300 μM | Neuroblastoma | HTLA-230, IMR-32, SH-SY5Y and SK-N-AS | Cell proliferation; cell cycle arrest at the G0/G1 phase and sub-G0 phase; caspases 3 and 7. | [79] |
OLE | 50 to 100 a 150 to 200 µg/mL | Human melanoma | A375 cells | Apoptosis; migration, invasion, and ability to form colonies; EMT-associated factors. | [80] |
OLEO (olive leaf extract enriched in Oleuropein) | 6.25 µM to 800 µM | Human melanoma | A375 | Glycolysis rate; GLUT1, PKM2, and MCT4. | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, H.R.; Zago, L.; Difonzo, G.; Pasqualone, A.; Caponio, F.; Ferraz da Costa, D.C. Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms. Molecules 2024, 29, 4249. https://doi.org/10.3390/molecules29174249
Pessoa HR, Zago L, Difonzo G, Pasqualone A, Caponio F, Ferraz da Costa DC. Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms. Molecules. 2024; 29(17):4249. https://doi.org/10.3390/molecules29174249
Chicago/Turabian StylePessoa, Heloisa Rodrigues, Lilia Zago, Graziana Difonzo, Antonella Pasqualone, Francesco Caponio, and Danielly C. Ferraz da Costa. 2024. "Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms" Molecules 29, no. 17: 4249. https://doi.org/10.3390/molecules29174249
APA StylePessoa, H. R., Zago, L., Difonzo, G., Pasqualone, A., Caponio, F., & Ferraz da Costa, D. C. (2024). Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms. Molecules, 29(17), 4249. https://doi.org/10.3390/molecules29174249