Photo-Thermal Conversion and Raman Sensing Properties of Three-Dimensional Gold Nanostructure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Gold Seed Nanoparticles
2.2. Characterization of GNSPs and GNSTs
2.3. Theoretical Properties of GNSPs and GNSTs
2.4. Characterization of 3D-GNSs
2.5. Light-Heat Conversion Characteristics of the 3D-GNSs
2.6. SERS Characteristics of the 3D-GNS
3. Experimental
3.1. Chemicals
3.2. Characteristics
3.3. Methods
3.3.1. Synthesis of Gold Seeds
3.3.2. Synthesis of GNSP
3.3.3. Synthesis of GNST
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviation | Definition |
SERS | surface-enhanced Raman scattering |
3D-GNS | three-dimensional gold nanostructures |
GNSP | gold nanosphere particles |
GNST | gold nanostar particles |
References
- Gao, M.; Connora, P.K.N.; Ho, G.W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 2016, 9, 3151–3160. [Google Scholar] [CrossRef]
- Gao, M.; Peh, C.K.; Phan, H.T.; Zhu, L.; Ho, G.W. Solar Absorber Gel: Localized Macro-Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation. Adv. Energy Mater. 2018, 8, 1800711. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, Y.; Fang, J. Triangular Au nanoparticle arrays based on flexible materials as temperature-sensitive SERS substrates. Opt. Mater. 2023, 146, 114556. [Google Scholar] [CrossRef]
- Christoph, H.; Eric, H.H.; David, V.L.; Guillermo, G.R.; Cristiano, M.; Agustin, M.; Luis, M.L.M. Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures. ACS Appl. Mater. Interfaces 2019, 11, 11763–11771. [Google Scholar]
- Tonnuquynh, T.; Phuongtrinh, N.T.; Giabao, N.T.; Hanhthu, V.H. Hotspot-type silver-polymers grafted nanocellulose paper with analyte enrichment as flexible plasmonic sensors for highly sensitive SERS sensing. J. Sci. Adv. Mater. Devices 2023, 8, 100597. [Google Scholar]
- Ashrafipeyman, Z.; Jafargholi, A.; Moshfegh, A.Z. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting. Nanoscale 2024, 16, 3591–3605. [Google Scholar] [CrossRef]
- Du, M.; Tang, G.H. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Sol. Energy 2016, 137, 393–400. [Google Scholar] [CrossRef]
- Fabijanic, I.; Janicki, V.; Josep, F.B.; Matej, B.; Bregovic, V.B.; Marsal, L.F.; Jordi, S.P. Plasmonic Nanoparticles and Island Films for Solar Energy Harvesting: A Comparative Study of Cu, Al, Ag and Au Performance. Coatings 2019, 9, 382. [Google Scholar] [CrossRef]
- Babicheva, V.E. Optical Processes behind Plasmonic Applications. Nanomaterials 2023, 13, 1270. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Zhang, X. Optically processed microlens array for singlebeam lithography of plasmonic structures. Nanophotonics 2018, 7, 1819–1825. [Google Scholar] [CrossRef]
- Marion, C.; Silvere, S.; Davy, G.; Jerome, M.; Thomas, M.; Uri, H.; Gil, M.; Jerome, P.; Julien, P. Colloidal Synthesis of Crystalline Aluminum Nanoparticles for UV Plasmonics. ACS Photonics 2022, 9, 880–887. [Google Scholar]
- Imrankhan, M.; Sayantani, G.; Arnole, D.K. Modeling broadband cloaking using 3D nano-assembled plasmonic meta-structures. Optics Express 2020, 28, 22732–22747. [Google Scholar]
- Zhang, X.-Y.; Shan, F.; Zhou, H.-L.; Su, D.; Xue, X.-M.; Wu, J.-Y.; Chen, Y.-Z.; Zhao, N.; Zhang, T. Silver Nanoplate Aggregations based Multifunctional Black Metal Absorber for Localization, Photothermic Harnessing Enhancement and Omnidirectional Light Antireflection. J. Mater. Chem. C 2018, 6, 989–999. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, L.; Gong, M.; Deng, Z. Chemically modified nanofoci unifying plasmonics and catalysis. Chem. Sci. 2019, 10, 5929–5934. [Google Scholar] [CrossRef]
- Priyank, V.K.; Tuomas, P.R.; Mikael, K.; Paul, E.; David, J.N. Direct hot-carrier transfer in plasmonic catalysis. Faraday Discuss. 2019, 214, 189–197. [Google Scholar]
- Mehdi, K.H.; Franz, F.; Mady, E. Review of Plasmonic Nanocomposite Metamaterial Absorber. Materials 2014, 7, 1221–1248. [Google Scholar] [CrossRef]
- Bae, K.; Kang, G.; Cho, S.K.; Park, W.; Kim, K.; Padilla, W.J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103. [Google Scholar] [CrossRef]
- Qiu, J.; Wei, W.D. Surface Plasmon-Mediated Photothermal Chemistry. J. Phys. Chem. C 2014, 118, 20735–20749. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 2015, 10, 25–34. [Google Scholar]
- Zimbone, M.; Messina, E.; Compagnini, G.; Fragala, M.E.; Calcagno, L. Resonant depolarized dynamic light scattering of silver nanoplatelets. J. Nanopart. Res. 2015, 7, 402. [Google Scholar]
- Zhang, X.-Y.; Zhang, T.; Hu, A.; Song, Y.-J.; Duley, W.W. Controllable plasmonic antennas with ultra narrow bandwidth based on silver nano-flags. Appl. Phys. Lett. 2012, 101, 153118. [Google Scholar] [CrossRef]
- Liu, R.; Sun, J.F.; Cao, D.; Zhang, L.Q.; Liu, J.F.; Jiang, G.B. Fabrication of highly-specific SERS substrates by co-precipitation of functional nanomaterials during the self-sedimentation of silver nanowires into a nanoporous film. Chem. Commun. 2015, 51, 1309–1312. [Google Scholar] [CrossRef]
- Chen, H.J.; Shao, L.; Ming, T.; Sun, Z.H.; Zhao, C.M.; Yang, B.C.; Wang, J.F. Understanding the photothermal conversionefficiency of gold nanocrystals. Small 2010, 6, 2272–2280. [Google Scholar] [CrossRef]
- Zhang, T.; Song, Y.-J.; Zhang, X.-Y.; Wu, J.-Y. Synthesis of silver nanostructures by multistep method. Sensors 2014, 14, 5860–5889. [Google Scholar] [CrossRef]
- Antonella, G.; Francesco, R.; Maria, G.G. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications. Nanomaterials 2016, 6, 110. [Google Scholar] [CrossRef]
- Hao, J.M.; Wang, J.; Liu, X.L.; Padilla, W.J.; Zhou, L.; Qiu, M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2010, 96, 251104. [Google Scholar] [CrossRef]
- Thomas, S.; Sergey, M.N.; Tobias, H.; René, L.E.; Jonas, B.; Zhanghua, H.; Kjeld, P.; Sergey, I.B. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 2012, 3, 969. [Google Scholar]
- Duygu, K.; Dogukan, H.A.; Ali, C.; Emren, N.E. Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org. Electron. 2013, 14, 1720–1727. [Google Scholar]
- Klinkova, A.; Thérien-Aubin, H.; Ahmed, A.; Nykypanchuk, D.; Choueiri, R.M.; Gagnon, B.; Muntyanu, A.; Gang, O.; Walker, G.C.; Kumacheva, E. Structural and Optical Properties of Self-Assembled Chains of Plasmonic Nanocubes. Nano Lett. 2014, 14, 6314–6321. [Google Scholar] [CrossRef]
- Siyun, L.; Lu, H.; Jiafang, L.; Chen, W.; Qiang, L.; Hongxing, X.; Honglian, G.; Ziming, M.; Zhe, S.; Zhiyuan, L. Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. J. Phys. Chem. C 2013, 117, 10636–10642. [Google Scholar]
- Qian, H.; Anwer, S.; Bharath, G.; Iqbal, S.; Chen, L. Nanoporous Ag-Au Bimetallic Triangular Nanoprisms Synthesized by Galvanic Replacement for Plasmonic Applications. J. Nanomater. 2018, 2018, 1263942. [Google Scholar]
- Ni, Y.; Kan, C.; Xu, J.; Liu, Y. The synthesis of high yield Au nanoplate and optimized optical properties. Superlattices Microstruct. 2018, 114, 124–142. [Google Scholar] [CrossRef]
- Antonio, B.; Marcello, C.; Luca, S.; Vittorio, S.; Mariaelena, F.; Matteo, B.; Giuseppe, C.; Luisa, D.U. Ag nanoflowers as single-particle, multi-wavelength SERS active platforms. Surf. Interfaces 2023, 40, 103157. [Google Scholar]
- Furong, T.; Franck, B.; Alan, C.; Anne, E.S.; Hugh, J.B. Surface enhanced Raman scattering with gold nanoparticles: Effect of particle shape. Anal. Methods 2014, 6, 9116–9123. [Google Scholar]
- Su, Q.; Ma, X.; Dong, J.; Jiang, C.; Qian, W. A Reproducible SERS Substrate Based on Electrostatically Assisted APTES-Functionalized Surface-Assembly of Gold Nanostars. ACS Appl. Mater. Interfaces 2011, 3, 1873–1879. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.-H.; Jin, S.M.; Suh, Y.D.; Nam, J.-M. Single-Molecule and Single-Particle-Based Correlation Studies between Localized Surface Plasmons of Dimeric Nanostructures with ~1 nm Gap and Surface-Enhanced Raman Scattering. Nano Lett. 2013, 13, 6113–6121. [Google Scholar] [CrossRef]
- Banik, M.; Nag, A.; El-Khoury, P.Z.; Rodriguezperez, A.; Guarrotxena, N.; Bazan, G.C.; Apkarian, V.A. Surface-Enhanced Raman Scattering of a Single Nanodumbbell: Dibenzyldithio-Linked Silver Nanospheres. J. Phys. Chem. C 2012, 116, 10415–10423. [Google Scholar] [CrossRef]
- Li, G.C.; Zhang, Y.L.; Jiang, J.; Luo, Y.; Lei, D.Y. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement. ACS Nano 2017, 11, 3067–3080. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, F.; Huang, J.; Zhu, Y.; Wei, G. Photo-Thermal Conversion and Raman Sensing Properties of Three-Dimensional Gold Nanostructure. Molecules 2024, 29, 4287. https://doi.org/10.3390/molecules29184287
Shan F, Huang J, Zhu Y, Wei G. Photo-Thermal Conversion and Raman Sensing Properties of Three-Dimensional Gold Nanostructure. Molecules. 2024; 29(18):4287. https://doi.org/10.3390/molecules29184287
Chicago/Turabian StyleShan, Feng, Jingyi Huang, Yanyan Zhu, and Guohao Wei. 2024. "Photo-Thermal Conversion and Raman Sensing Properties of Three-Dimensional Gold Nanostructure" Molecules 29, no. 18: 4287. https://doi.org/10.3390/molecules29184287
APA StyleShan, F., Huang, J., Zhu, Y., & Wei, G. (2024). Photo-Thermal Conversion and Raman Sensing Properties of Three-Dimensional Gold Nanostructure. Molecules, 29(18), 4287. https://doi.org/10.3390/molecules29184287