Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications
Abstract
:1. Introduction
2. Overview of Adsorption Processes
2.1. Basic Principles
Mechanisms of Adsorption: Physisorption vs. Chemisorption
2.2. Adsorption Isotherms
2.3. Kinetics of Adsorption
- Pseudo-first-order kinetics: This model assumes that the rate of adsorption is proportional to the number of available adsorption sites. It is represented by the following equation:
- 2.
- Pseudo-second-order kinetics: This model assumes that adsorption follows chemisorption, where the rate of occupation of adsorption sites is proportional to the square of the number of unoccupied sites. The equation is as follows:
2.4. Factors Affecting Adsorption Efficiency
3. Innovative Non-Conventional Adsorbents
3.1. Three-Dimensional Graphene-Based Adsorbents
3.2. Adsorbents from Stainless Steel Slag
3.3. Biochar Composites
3.4. Calixarene-Based Polymers
3.5. Carbon Nanotubes
3.6. Carbon Xerogels
3.7. Carbonaceous Waste from Oil Refineries
3.8. Carbon-Based Aerogels from Waste Paper
3.9. Cellulose-Based Hydrogels
3.10. Chitosan-Based Nanocomposites
3.11. Cyclodextrin Polymers
3.12. Geopolymers (Inorganic Polymers)
3.13. Graphene-Based Composites
3.14. Hydroxyapatite Nanoparticles
3.15. Industrial Sludge
3.16. Ionic-Liquid-Enhanced Adsorbents
3.17. Iron-Based Hybrid Nanomaterials
3.18. Iron-Rich Red Mud
3.19. Lignin-Based Adsorbents
3.20. Lignocellulosic Resources and Organic Wastes
3.21. Magnetic Layered Double Hydroxides
3.22. Mesoporous Silicas
3.23. Metal Oxide Composites
3.24. Metal–Organic Frameworks
3.25. Modified Pillared Clays
3.26. Modified Zeolites
3.27. Molecularly Imprinted Polymers
3.28. Nanocellulose
3.29. Novel Structured Carbon-Based Materials
3.30. Plant Biomass
3.31. Super-Chalcogens
3.32. Synthetic Hydrogels
4. Pollutants Targeted by Innovative Adsorbents
4.1. Alkylphenols and Other Surfactants
4.2. Antibiotics
4.3. Anti-Inflammatory Drugs
4.4. Disinfectants
4.5. Dyes
4.6. Fluorides
4.7. Hormones
4.8. Metals and Metalloids
4.9. Per- and Polyfluoroalkyl Substances
4.10. Pesticides
4.11. Plastic Nanoparticles
4.12. Polycyclic Aromatic Hydrocarbons
4.13. Radionuclides
4.14. Synthetic Cosmetics Ingredients
4.15. UV Filters
5. Adsorbent Performance and Efficiency
5.1. Adsorption Capacity
5.2. Selectivity
5.3. Regeneration and Reusability
5.4. Cost-Effectiveness
5.5. Environmental Impact
5.6. Comparative Performance of Adsorbents for Selected Pollutants
6. Case Studies and Applications
6.1. Industrial Applications
6.2. Pilot Studies
6.3. Field Trials
7. Challenges and Future Perspectives
7.1. Technical Challenges
7.2. Economic Considerations
7.3. Regulatory and Policy Aspects
7.4. Future Research Directions
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Das, T.K.; Ghosh, S.K.; Das, N.C. Green synthesis of a reduced graphene oxide/silver nanoparticles-based catalyst for degradation of a wide range of organic pollutants. Nano-Struct. Nano-Objects 2023, 34, 100960. [Google Scholar] [CrossRef]
- Silvestro, I.; Fernández-García, M.; Ciarlantini, C.; Francolini, I.; Girelli, A.; Piozzi, A. molecularly imprinted polymers based on chitosan for 2, 4-dichlorophenoxyacetic acid removal. Int. J. Mol. Sci. 2022, 23, 13192. [Google Scholar] [CrossRef] [PubMed]
- Sacco, O.; Vaiano, V.; Daniel, C.; Navarra, W.; Venditto, V. Highly robust and selective system for water pollutants removal: How to transform a traditional photocatalyst into a highly robust and selective system for water pollutants removal. Nanomaterials 2019, 9, 1509. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Qi, J.; Yao, C.; Cui, B.; Zhang, T.; Li, D. A novel bentonite-based adsorbent for anionic pollutant removal from water. Chem. Eng. J. 2012, 200, 97–103. [Google Scholar] [CrossRef]
- Keshta, B.E.; Yu, H.; Wang, L. MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water. Sep. Purif. Technol. 2023, 322, 124301. [Google Scholar] [CrossRef]
- Pashaei-Fakhri, S.; Peighambardoust, S.J.; Foroutan, R.; Arsalani, N.; Ramavandi, B. Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 2021, 270, 129419. [Google Scholar] [CrossRef]
- Khan, A.W.; Lali, N.S.; Sabei, F.Y.; Irfan, M.I.; Naeem-ul-Hassan, M.; Sher, M.; Safhi, A.Y.; Alsalhi, A.; Albariqi, A.H.; Kamli, F.; et al. Sunlight-assisted green synthesis of gold nanocubes using horsetail leaf extract: A highly selective colorimetric sensor for Pb2+, photocatalytic and antimicrobial agent. J. Environ. Chem. Eng. 2024, 12, 112576. [Google Scholar] [CrossRef]
- Shah, A.; Akhtar, S.; Mahmood, F.; Urooj, S.; Siddique, A.B.; Irfan, M.I.; Naeem-ul-Hassan, M.; Sher, M.; Alhoshani, A.; Rauf, A.; et al. Fagonia arabica extract-stabilized gold nanoparticles as a highly selective colorimetric nanoprobe for Cd2+ detection and as a potential photocatalytic and antibacterial agent. Surf. Interfaces 2024, 51, 104556. [Google Scholar] [CrossRef]
- Shahzad, R.; Muneer, M.; Khalid, R.; Amin, H.M.A. ZnO-Bi2O3 Heterostructured Composite for the Photocatalytic Degradation of Orange 16 Reactive Dye: Synergistic Effect of UV Irradiation and Hydrogen Peroxide. Catalysts 2023, 13, 1328. [Google Scholar] [CrossRef]
- Alfei, S.; Grasso, F.; Orlandi, V.; Russo, E.; Boggia, R.; Zuccari, G. Cationic polystyrene-based hydrogels as efficient adsorbents to remove methyl orange and fluorescein dye pollutants from industrial wastewater. Int. J. Mol. Sci. 2023, 24, 2948. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, M.I.; Pellicer, J.A.; Gómez-Morte, T.; Auñón, D.; Gómez-López, V.M.; Yáñez-Gascón, M.J.; Gil-Izquierdo, Á.; Cerón-Carrasco, J.P.; Crini, G.; Núñez-Delicado, E. Removal of an azo dye from wastewater through the use of two technologies: Magnetic cyclodextrin polymers and pulsed light. Int. J. Mol. Sci. 2022, 23, 8406. [Google Scholar] [CrossRef]
- Doyo, A.N.; Kumar, R.; Barakat, M.A. Recent advances in cellulose, chitosan, and alginate based biopolymeric composites for adsorption of heavy metals from wastewater. J. Taiwan Inst. Chem. Eng. 2023, 151, 105095. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Kumar, J.S.; Kamyab, H.; Sujana, J.A.J.; Al-Khashman, O.A.; Kuslu, Y.; Ene, A.; Kumar, B.S. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—A comprehensive review. J. Clean. Prod. 2020, 272, 122636. [Google Scholar] [CrossRef]
- Noormohammadi, M.; Zabihi, M.; Faghihi, M. Novel chitosan–clay–iron nanocomposites supported on anodic aluminum as an efficient plate-shaped adsorbent for the removal of arsenic and dye from aqueous solutions. J. Phys. Chem. Solids 2024, 187, 111874. [Google Scholar] [CrossRef]
- Poornachandhra, C.; Jayabalakrishnan, R.M.; Prasanthrajan, M.; Balasubramanian, G.; Lakshmanan, A.; Selvakumar, S.; John, J.E. Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: Isotherms and kinetics. RSC Adv. 2023, 13, 4757–4774. [Google Scholar] [CrossRef]
- Lagiewka, J.; Nowik-Zajac, A.; Pajdak, A.; Zawierucha, I. A novel multifunctional β-cyclodextrin polymer as a promising sorbent for rapid removal of methylene blue from aqueous solutions. Carbohydr. Polym. 2023, 307, 120615. [Google Scholar] [CrossRef]
- Omidvar, A. Removal of toxic heavy metal ions from waste water using superchalcogens: A theoretical study. J. Environ. Chem. Eng. 2021, 9, 104787. [Google Scholar] [CrossRef]
- Panasyuk-Delaney, T.; Mirsky, V.M.; Ulbricht, M.; Wolfbeis, O.S. Impedometric herbicide chemosensors based on molecularly imprinted polymers. Anal. Chim. Acta 2001, 435, 157–162. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Bahi, A.; Fernández, R.; Alaee, P.; Wu, S.; Wuttke, S.; Ko, F.; Arjmand, M. Metal-organic frameworks and electrospinning: A happy marriage for wastewater treatment. Adv. Funct. Mater. 2022, 32, 2207723. [Google Scholar] [CrossRef]
- Zeb, S.; Ali, N.; Ali, Z.; Bilal, M.; Adalat, B.; Hussain, S.; Gul, S.; Ali, F.; Ahmad, R.; Iqbal, H.M.N. Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices. J. Water Process Eng. 2020, 38, 101675. [Google Scholar] [CrossRef]
- Wu, C.; Klemes, M.J.; Trang, B.; Dichtel, W.R.; Helbling, D.E. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Res. 2020, 182, 115950. [Google Scholar] [CrossRef] [PubMed]
- Siipola, V.; Pflugmacher, S.; Romar, H.; Wendling, L.; Koukkari, P. Low-cost biochar adsorbents for water purification including microplastics removal. Appl. Sci. 2020, 10, 788. [Google Scholar] [CrossRef]
- Rovani, S.; Censi, M.T.; Pedrotti, S.L., Jr.; Lima, É.C.; Cataluña, R.; Fernandes, A.N. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal. J. Hazard. Mater. 2014, 271, 311–320. [Google Scholar] [CrossRef]
- Abin-Bazaine, A.; Trujillo, A.C.; Olmos-Marquez, M. Adsorption isotherms: Enlightenment of the phenomenon of adsorption. Wastewater Treat. 2022, 19, 1–5. [Google Scholar]
- Huber, F.; Berwanger, J.; Polesya, S.; Mankovsky, S.; Ebert, H.; Giessibl, F.J. Chemical bond formation showing a transition from physisorption to chemisorption. Science 2019, 366, 235–238. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. [Google Scholar] [CrossRef]
- El-Bery, H.M.; Saleh, M.; El-Gendy, R.A.; Saleh, M.R.; Thabet, S.M. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 2022, 12, 5499. [Google Scholar] [CrossRef]
- Boudalia, M.; Laourayed, M.; El Moudane, M.; Sekkat, Z.; Campos, O.S.; Bellaouchou, A.; Guenbour, A.; José Garcia, A.; Amin, H.M.A. Phosphate glass doped with niobium and bismuth oxides as an eco-friendly corrosion protection matrix of iron steel in HCl medium: Experimental and theoretical insights. J. Alloys Compd. 2023, 938, 168570. [Google Scholar] [CrossRef]
- Peme, T.; Olasunkanmi, L.O.; Bahadur, I.; Adekunle, A.S.; Kabanda, M.M.; Ebenso, E.E. Adsorption and corrosion inhibition studies of some selected dyes as corrosion inhibitors for mild steel in acidic medium: Gravimetric, electrochemical, quantum chemical studies and synergistic effect with iodide ions. Molecules 2015, 20, 16004–16029. [Google Scholar] [CrossRef]
- Eddahhaoui, F.-Z.; Najem, A.; Elhawary, M.; Boudalia, M.; Campos, O.S.; Tabyaoui, M.; José Garcia, A.; Bellaouchou, A.; Amin, H.M.A. Experimental and computational aspects of green corrosion inhibition for low carbon steel in HCl environment using extract of Chamaerops humilis fruit waste. J. Alloys Compd. 2024, 977, 173307. [Google Scholar] [CrossRef]
- Najem, A.; Campos, O.S.; Girst, G.; Raji, M.; Hunyadi, A.; García-Antón, J.; Bellaouchou, A.; Amin, H.M.A.; Boudalia, M. Experimental and DFT atomistic insights into the mechanism of corrosion protection of low-carbon steel in an acidic medium by polymethoxyflavones from citrus peel waste. J. Electrochem. Soc. 2023, 170, 093512. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Vedenyapina, M.D.; Kurmysheva, A.Y.; Weichgrebe, D.; Nair, R.R.; Nguyen, N.P.T.; Kustov, L.M. Modern carbon–based materials for adsorptive removal of organic and inorganic pollutants from water and wastewater. Molecules 2021, 26, 6628. [Google Scholar] [CrossRef]
- Weidong, L.I.; Suhayb, M.K.; Thangavelu, L.; Marhoon, H.A.; Pustokhina, I.; Alqsair, U.F.; El-Shafay, A.S.; Alashwal, M. Implementation of AdaBoost and genetic algorithm machine learning models in prediction of adsorption capacity of nanocomposite materials. J. Mol. Liq. 2022, 350, 118527. [Google Scholar]
- Tan, X.-F.; Zhu, S.-S.; Wang, R.-P.; Chen, Y.-D.; Show, P.-L.; Zhang, F.-F.; Ho, S.-H. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups. Chin. Chem. Lett. 2021, 32, 2939–2946. [Google Scholar] [CrossRef]
- Nuhnen, A.; Janiak, C. A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal–organic frameworks, MOFs. Dalton Trans. 2020, 49, 10295–10307. [Google Scholar] [CrossRef] [PubMed]
- Obaid, S.A. Langmuir, Freundlich and Tamkin adsorption isotherms and kinetics for the removal aartichoke tournefortii straw from agricultural waste. J. Phys. Conf. Ser. 2020, 1664, 012011. [Google Scholar] [CrossRef]
- Pereira, S.K.; Kini, S.; Prabhu, B.; Jeppu, G.P. A simplified modeling procedure for adsorption at varying pH conditions using the modified Langmuir–Freundlich isotherm. Appl. Water Sci. 2023, 13, 29. [Google Scholar] [CrossRef]
- Vigdorowitsch, M.; Pchelintsev, A.; Tsygankova, L.; Tanygina, E. Freundlich isotherm: An adsorption model complete framework. Appl. Sci. 2021, 11, 8078. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, H.; Sun, J.; Zhang, Y.; Xia, S. Enhanced adsorption of Rhodamine B on modified oil-based drill cutting ash: Characterization, adsorption kinetics, and adsorption isotherm. ACS Omega 2021, 6, 17086–17094. [Google Scholar] [CrossRef]
- Arab, C.; El Kurdi, R.; Patra, D. Zinc curcumin oxide nanoparticles for enhanced adsorption of Congo red: Kinetics and adsorption isotherms study. Mater. Today Chem. 2022, 23, 100701. [Google Scholar] [CrossRef]
- Binh, Q.A.; Nguyen, H.-H. Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2, 4-dichlorophenoxyacetic acid (2, 4-D) on corn cob biochar. Bioresour. Technol. Rep. 2020, 11, 100520. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Irfan, M.I.; Hassan, M.N.u.; Sher, M.; Alhazmi, H.A.; Qramish, A.N.; Amin, H.M.A.; Qadir, R.; Abbas, A. Maleated Hydroxyethyl Cellulose for the Efficient Removal of Cd(II) Ions from an Aqueous Solution: Isothermal, Kinetic and Regeneration Studies. Water Air Soil Pollut. 2024, 235, 536. [Google Scholar] [CrossRef]
- Rosset, M.; Sfreddo, L.W.; Perez-Lopez, O.W.; Feris, L.A. Effect of concentration in the equilibrium and kinetics of adsorption of acetylsalicylic acid on ZnAl layered double hydroxide. J. Environ. Chem. Eng. 2020, 8, 103991. [Google Scholar] [CrossRef]
- Diniz, V.; Rath, G.; Rath, S.; Araújo, L.S.; Cunha, D.G.F. Competitive kinetics of adsorption onto activated carbon for emerging contaminants with contrasting physicochemical properties. Environ. Sci. Pollut. Res. 2022, 29, 42185–42200. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Danish, M.; Singh, R.S.; Rafatullah, M.; Hps, A.K. Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. J. Water Process Eng. 2021, 43, 102255. [Google Scholar] [CrossRef]
- Shabir, F.; Sultan, M.; Miyazaki, T.; Saha, B.B.; Askalany, A.; Ali, I.; Zhou, Y.; Ahmad, R.; Shamshiri, R.R. Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renew. Sustain. Energy Rev. 2020, 119, 109630. [Google Scholar] [CrossRef]
- Juang, R.-S.; Yei, Y.-C.; Liao, C.-S.; Lin, K.-S.; Lu, H.-C.; Wang, S.-F.; Sun, A.-C. Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents. J. Taiwan Inst. Chem. Eng. 2018, 90, 51–60. [Google Scholar] [CrossRef]
- Gislon, P.; Galli, S.; Monteleone, G. Siloxanes removal from biogas by high surface area adsorbents. Waste Manag. 2013, 33, 2687–2693. [Google Scholar] [CrossRef]
- Qiu, Y.; Xiao, X.; Cheng, H.; Zhou, Z.; Sheng, G.D. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter. Environ. Sci. Technol. 2009, 43, 4973–4978. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, J. Effect of environmental factors on estrogenic compounds adsorption by MIP. Water Air Soil Pollut. 2010, 210, 255–264. [Google Scholar] [CrossRef]
- Xia, M.; Li, A.; Zhu, Z.; Zhou, Q.; Yang, W. Factors influencing antibiotics adsorption onto engineered adsorbents. J. Environ. Sci. 2013, 25, 1291–1299. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, T.; Ye, X.; Li, Q.; Guo, M.; Liu, H.; Wu, Z. Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J. 2013, 228, 392–397. [Google Scholar] [CrossRef]
- Wang, T.; Liu, W.; Xiong, L.; Xu, N.; Ni, J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb (II), Cd (II) and Cr (III) onto titanate nanotubes. Chem. Eng. J. 2013, 215, 366–374. [Google Scholar] [CrossRef]
- Lin, Y.; Tian, Y.; Sun, H.; Hagio, T. Progress in modifications of 3D graphene-based adsorbents for environmental applications. Chemosphere 2021, 270, 129420. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, D.; Chen, X.; Xu, H.; Tian, Y. A sustainable carbon aerogel from waste paper with exceptional performance for antibiotics removal from water. J. Hazard. Mater. 2024, 474, 134738. [Google Scholar] [CrossRef] [PubMed]
- Plaza, L.; Castellote, M.; Nevshupa, R.; Jimenez-Relinque, E. High-capacity adsorbents from stainless steel slag for the control of dye pollutants in water. Environ. Sci. Pollut. Res. 2021, 28, 23896–23910. [Google Scholar] [CrossRef]
- Nguyen, T.M.P.; Van, H.T.; Yılmaz, M.; Hoang, T.K.; Nguyen, Q.T.; Vi, T.M.H.; Nga, L.T.Q. Removal of Tetracycline from aqueous solution using composite adsorbent of ZnAl layered double hydroxide and bagasse biochar. Environ. Technol. Innov. 2022, 28, 102914. [Google Scholar]
- Ngo, H.H.; Guo, W.; Nguyen, T.H.; Luong, T.M.L.; Nguyen, X.H.; Phan, T.L.A.; Nguyen, M.P.; Nguyen, M.K. New chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole antibiotics in water. Bioresour. Technol. 2023, 385, 129384. [Google Scholar]
- Shetty, D.; Jahovic, I.; Skorjanc, T.; Erkal, T.S.; Ali, L.; Raya, J.; Asfari, Z.; Olson, M.A.; Kirmizialtin, S.; Yazaydin, A.O. Rapid and efficient removal of perfluorooctanoic acid from water with fluorine-rich calixarene-based porous polymers. ACS Appl. Mater. Interfaces 2020, 12, 43160–43166. [Google Scholar] [CrossRef]
- Zhou, S.; Jin, L.; Gu, P.; Tian, L.; Li, N.; Chen, D.; Marcomini, A.; Xu, Q.; Lu, J. Novel calixarene-based porous organic polymers with superfast removal rate and ultrahigh adsorption capacity for selective separation of cationic dyes. Chem. Eng. J. 2022, 433, 134442. [Google Scholar] [CrossRef]
- Shetty, D.; Jahovic, I.; Raya, J.; Asfari, Z.; Olsen, J.-C.; Trabolsi, A. Porous polycalix [4] arenes for fast and efficient removal of organic micropollutants from water. ACS Appl. Mater. Interfaces 2018, 10, 2976–2981. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Luan, Z.; Di, Z.; Zhang, Z.; Zhu, C. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water. Carbon 2005, 43, 880–883. [Google Scholar] [CrossRef]
- Duran, A.; Tuzen, M.; Soylak, M. Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J. Hazard. Mater. 2009, 169, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-L.; Yuan, D.-X.; Lin, Q.-M. Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J. Chromatogr. A 2004, 1026, 283–288. [Google Scholar] [CrossRef]
- Girgis, B.S.; El-Sherif, I.Y.; Attia, A.A.; Fathy, N.A. Textural and adsorption characteristics of carbon xerogel adsorbents for removal of Cu (II) ions from aqueous solution. J. Non-Cryst. Solids 2012, 358, 741–747. [Google Scholar] [CrossRef]
- Pillai, A.; Kandasubramanian, B. Carbon xerogels for effluent treatment. J. Chem. Eng. Data 2020, 65, 2255–2270. [Google Scholar] [CrossRef]
- Mitra, D.; Zhou, C.; Hashim, M.H.B.; Hang, T.M.; Gin, K.Y.-H.; Wang, C.-H.; Neoh, K.G. Emerging pharmaceutical and organic contaminants removal using carbonaceous waste from oil refineries. Chemosphere 2021, 271, 129542. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, O.A.; Kanthasamy, R.; Saber, S.E.M.; Olalere, O.A. Characterization of agriculture wastes based activated carbon for removal of hydrogen sulfide from petroleum refinery waste water. Mater. Today Proc. 2020, 20, 588–594. [Google Scholar] [CrossRef]
- Pham, T.H.; Jung, S.H.; Kim, Y.J.; Kim, T. Adsorptive removal and recovery of organic pollutants from wastewater using waste paper-derived carbon-based aerogel. Chemosphere 2021, 268, 129319. [Google Scholar] [CrossRef]
- Chang, C.; He, M.; Zhou, J.; Zhang, L. Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 2011, 44, 1642–1648. [Google Scholar] [CrossRef]
- Raucci, M.G.; Alvarez-Perez, M.A.; Demitri, C.; Sannino, A.; Ambrosio, L. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J. Appl. Biomater. Funct. Mater. 2012, 10, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Gao, S.; Jian, J.; Shi, X.; Lai, C.; Wang, C.; Xu, F.; Chu, F.; Zhang, D. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors. Int. J. Biol. Macromol. 2023, 227, 462–471. [Google Scholar] [CrossRef]
- Bhatt, P.; Joshi, S.; Bayram, G.M.U.; Khati, P.; Simsek, H. Developments and application of chitosan-based adsorbents for wastewater treatments. Environ. Res. 2023, 226, 115530. [Google Scholar] [CrossRef]
- Waliullah, R.M.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Sheikh, M.C.; Salman, M.S.; Hossain, M.S.; Hasan, M.M.; Kubra, K.T.; Hasan, M.N. Optimization of toxic dye removal from contaminated water using chitosan-grafted novel nanocomposite adsorbent. J. Mol. Liq. 2023, 388, 122763. [Google Scholar] [CrossRef]
- Ahamad, T.; Naushad, M.; Al-Shahrani, T.; Al-Hokbany, N.; Alshehri, S.M. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int. J. Biol. Macromol. 2020, 147, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, A.; Mallard, I.; Landy, D.; Brabie, G.; Nistor, D.; Fourmentin, S. Retention of aroma compounds from Mentha piperita essential oil by cyclodextrins and crosslinked cyclodextrin polymers. Food Chem. 2013, 138, 291–297. [Google Scholar] [CrossRef]
- Nkinahamira, F.; Alsbaiee, A.; Zeng, Q.; Li, Y.; Zhang, Y.; Feng, M.; Yu, C.-P.; Sun, Q. Selective and fast recovery of rare earth elements from industrial wastewater by porous β-cyclodextrin and magnetic β-cyclodextrin polymers. Water Res. 2020, 181, 115857. [Google Scholar] [CrossRef]
- Crini, G. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dye. Pigment. 2008, 77, 415–426. [Google Scholar] [CrossRef]
- Li, C.; Klemes, M.J.; Dichtel, W.R.; Helbling, D.E. Tetrafluoroterephthalonitrile-crosslinked β-cyclodextrin polymers for efficient extraction and recovery of organic micropollutants from water. J. Chromatogr. A 2018, 1541, 52–56. [Google Scholar] [CrossRef]
- Ettahiri, Y.; Bouargane, B.; Fritah, K.; Akhsassi, B.; Pérez-Villarejo, L.; Aziz, A.; Bouna, L.; Benlhachemi, A.; Novais, R.M. A state-of-the-art review of recent advances in porous geopolymer: Applications in adsorption of inorganic and organic contaminants in water. Constr. Build. Mater. 2023, 395, 132269. [Google Scholar] [CrossRef]
- Mladenović, N.; Kljajević, L.; Nenadović, S.; Ivanović, M.; Čalija, B.; Gulicovski, J.; Trivunac, K. The applications of new inorganic polymer for adsorption cadmium from waste water. J. Inorg. Organomet. Polym. Mater. 2020, 30, 554–563. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Aslam, A.A.; Iftikhar, R.; Junaid, M.; Imran, S.M.; Nazir, M.S.; Ali, Z.; Zafar, M.; Kanwal, A.; Othman, N.K. The potential of functionalized graphene-based composites for removing heavy metals and organic pollutants. J. Water Process Eng. 2023, 53, 103809. [Google Scholar] [CrossRef]
- Verma, S.; Nadagouda, M.N. Graphene-based composites for phosphate removal. ACS Omega 2021, 6, 4119–4125. [Google Scholar] [CrossRef]
- Aaddouz, M.; Azzaoui, K.; Akartasse, N.; Mejdoubi, E.; Hammouti, B.; Taleb, M.; Sabbahi, R.; Alshahateet, S.F. Removal of methylene blue from aqueous solution by adsorption onto hydroxyapatite nanoparticles. J. Mol. Struct. 2023, 1288, 135807. [Google Scholar]
- Nayak, A.; Bhushan, B. Hydroxyapatite as an advanced adsorbent for removal of heavy metal ions from water: Focus on its applications and limitations. Mater. Today Proc. 2021, 46, 11029–11034. [Google Scholar] [CrossRef]
- Orlandi, G.; Cavasotto, J.; Machado, F.R.S., Jr.; Colpani, G.L.; Dal Magro, J.; Dalcanton, F.; Mello, J.M.M.; Fiori, M.A. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues. Chemosphere 2017, 169, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Mahecha-Rivas, J.C.; Fuentes-Ordoñez, E.; Epelde, E.; Saldarriaga, J.F. Aluminum extraction from a metallurgical industry sludge and its application as adsorbent. J. Clean. Prod. 2021, 310, 127374. [Google Scholar] [CrossRef]
- Nekooghadirli, R.; Taghizadeh, M.; Mahmoudi Alami, F. Adsorption of Pb (II) and Ni (II) from aqueous solution by a high-capacity industrial sewage sludge-based adsorbent. J. Dispers. Sci. Technol. 2016, 37, 786–798. [Google Scholar] [CrossRef]
- Zare, E.N.; Mudhoo, A.; Khan, M.A.; Otero, M.; Bundhoo, Z.M.A.; Navarathna, C.; Patel, M.; Srivastava, A.; Pittman, C.U., Jr.; Mlsna, T. Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents. Environ. Chem. Lett. 2021, 19, 3075–3114. [Google Scholar] [CrossRef]
- Mardikar, S.P.; Doss, V.R.; Jolhe, P.D.; Gaikwad, R.W.; Barkade, S.S. Nanocomposite adsorbent-based wastewater treatment processes: Special emphasis on surface-engineered iron oxide nanohybrids. In Handbook of Nanomaterials for Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 867–897. [Google Scholar]
- Tripathy, M.; Sahoo, S.K.; Mishra, M.; Hota, G. Iron-based functional nanomaterials: Synthesis, characterization, and adsorption studies about arsenic removal. In Design, Fabrication, and Characterization of Multifunctional Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 239–266. [Google Scholar]
- Wang, H.; Chen, D.; Wen, Y.; Zhang, Y.; Liu, Y.; Xu, R. Iron-rich red mud and iron oxide-modified biochars: A comparative study on the removal of Cd (II) and influence of natural aging processes. Chemosphere 2023, 330, 138626. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Y.; Yang, D.; Jin, Q.; Lin, H. Synthesis of co-pyrolyzed biochar using red mud and peanut shell for removing phosphate from pickling wastewater: Performance and mechanism. Chemosphere 2023, 331, 138841. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Konyukhov, Y.; Zinoveev, D.; Jayasankar, K.; Burmistrov, I.; Kravchenko, M.; Mukherjee, P.S. Red mud as a secondary resource of low-grade iron: A global perspective. Sustainability 2022, 14, 1258. [Google Scholar] [CrossRef]
- Paul, S.; Bhardwaj, S.K.; Kaur, R.; Bhaumik, J. Lignin-derived hybrid materials as promising adsorbents for the separation of pollutants. In Multidisciplinary Advances in Efficient Separation Processes; ACS Publications: Columbus, OH, USA, 2020; pp. 225–261. [Google Scholar]
- Sajjadi, M.; Ahmadpoor, F.; Nasrollahzadeh, M.; Ghafuri, H. Lignin-derived (nano) materials for environmental pollution remediation: Current challenges and future perspectives. Int. J. Biol. Macromol. 2021, 178, 394–423. [Google Scholar] [CrossRef]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Ribeiro, A.R.L.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in) organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Tanasă, F.; Teacă, C.-A.; Nechifor, M. Lignocellulosic waste materials for industrial water purification. In Sustainable Green Chemical Processes and Their Allied Applications; Nanotechnology in the Life Sciences; Springer: Cham, Switzerland, 2020; pp. 381–407. [Google Scholar]
- Kheradmand, A.; Negarestani, M.; Kazemi, S.; Shayesteh, H.; Javanshir, S.; Ghiasinejad, H. Adsorption behavior of rhamnolipid modified magnetic Co/Al layered double hydroxide for the removal of cationic and anionic dyes. Sci. Rep. 2022, 12, 14623. [Google Scholar] [CrossRef]
- Dinari, M.; Shirani, M.A.; Maleki, M.H.; Tabatabaeian, R. Green cross-linked bionanocomposite of magnetic layered double hydroxide/guar gum polymer as an efficient adsorbent of Cr (VI) from aqueous solution. Carbohydr. Polym. 2020, 236, 116070. [Google Scholar] [CrossRef]
- Henao, W.; Jaramillo, L.Y.; López, D.; Romero-Sáez, M.; Buitrago-Sierra, R. Insights into the CO2 capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash. J. Environ. Chem. Eng. 2020, 8, 104362. [Google Scholar] [CrossRef]
- Rumman, G.A.; Al-Musawi, T.J.; Sillanpaa, M.; Balarak, D. Adsorption performance of an amine-functionalized MCM–41 mesoporous silica nanoparticle system for ciprofloxacin removal. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100536. [Google Scholar] [CrossRef]
- Yin, T.; Meng, X.; Wang, S.; Yao, X.; Liu, N.; Shi, L. Study on the adsorption of low-concentration VOCs on zeolite composites based on chemisorption of metal-oxides under dry and wet conditions. Sep. Purif. Technol. 2022, 280, 119634. [Google Scholar]
- Wang, L.; Shi, C.; Pan, L.; Zhang, X.; Zou, J.-J. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale 2020, 12, 4790–4815. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, S.; Shahrestani, M.M.; Zendehbad, M.; Djahaniani, H.; Kazemian, H.; Eder, D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). J. Hazard. Mater. 2023, 442, 130127. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, Y.; Wang, S.; Kong, D.; Zhang, L. Highly efficient metal-organic frameworks adsorbent for Pd (II) and Au (III) recovery from solutions: Experiment and mechanism. Environ. Res. 2022, 210, 112870. [Google Scholar] [CrossRef] [PubMed]
- Cardona, Y.; Vicente, M.A.; Korili, S.A.; Gil, A. Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution. Rev. Chem. Eng. 2022, 38, 301–325. [Google Scholar] [CrossRef]
- Najafi, H.; Farajfaed, S.; Zolgharnian, S.; Mirak, S.H.M.; Asasian-Kolur, N.; Sharifian, S. A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Saf. Environ. Prot. 2021, 147, 8–36. [Google Scholar] [CrossRef]
- Sharifian, S.; Asasian-Kolur, N.; Najafi, H.; Haddadi, B.; Jordan, C.; Harasek, M. Reusable granulated silica pillared clay for wastewater treatment, selective for adsorption of Ni (II). Clean. Eng. Technol. 2023, 14, 100634. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Dai, H.; Lu, X.; Peng, L.; Tan, X.; Shi, L.; Fahim, R. Preparation and application of modified zeolites as adsorbents in wastewater treatment. Water Sci. Technol. 2018, 2017, 621–635. [Google Scholar] [CrossRef]
- Altintig, E.; Alsancak, A.; Karaca, H.; Angın, D.; Altundag, H. The comparison of natural and magnetically modified zeolites as an adsorbent in methyl violet removal from aqueous solutions. Chem. Eng. Commun. 2022, 209, 555–569. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Yu, Q.; Deng, S.; Yu, G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Res. 2008, 42, 3089–3097. [Google Scholar] [CrossRef]
- Yu, M.; Li, H.; Xie, J.; Xu, Y.; Lu, X. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 2022, 236, 122875. [Google Scholar] [CrossRef] [PubMed]
- Dasan, Y.K.; Bhat, A.H.; Khan, I. Nanocellulose and nanochitin for water remediation by adsorption of heavy metals. In Nanomaterials for Water Remediation; De Gruyter: Berlin, Germany, 2020; pp. 1–18. [Google Scholar]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R. Potential of Melaleuca diosmifolia as a novel, non-conventional and low-cost coagulating adsorbent for removing both cationic and anionic dyes. J. Ind. Eng. Chem. 2016, 37, 198–207. [Google Scholar] [CrossRef]
- Batmaz, R.; Mohammed, N.; Zaman, M.; Minhas, G.; Berry, R.M.; Tam, K.C. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 2014, 21, 1655–1665. [Google Scholar] [CrossRef]
- Kurniawan, T.W.; Sulistyarti, H.; Rumhayati, B.; Sabarudin, A. Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) as adsorbents of heavy metal ions. J. Chem. 2023, 2023, 5037027. [Google Scholar] [CrossRef]
- Thorat, M.N.; Jagtap, A.; Dastager, S.G. Fabrication of bacterial nanocellulose/polyethyleneimine (PEI-BC) based cationic adsorbent for efficient removal of anionic dyes. J. Polym. Res. 2021, 28, 354. [Google Scholar] [CrossRef]
- Walling, B.; Borah, A.; Hazarika, S.; Bharali, P.; Ramachandran, D.; Kanagasabai, V.; Dutta, N.; Maadurshni, G.B.; Manivannan, J.; Mudoi, P. Production of bacterial nanocellulose as green adsorbent matrix using distillery wastes for dye removal: A combined approach for waste management and pollution mitigation. Biomass Convers. Biorefinery 2024, 1–17. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, S.; Meng, L.; Lou, Y.; Xi, J.; Xiao, H.; Wu, W. Self-supporting and hierarchical porous membrane of bacterial nanocellulose@ metal-organic framework for ultra-high adsorption of Congo red. Int. J. Biol. Macromol. 2024, 277, 134277. [Google Scholar] [CrossRef]
- Peiravi-Rivash, O.; Mashreghi, M.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130355. [Google Scholar] [CrossRef]
- Islam, A.; Teo, S.H.; Ahmed, M.T.; Khandaker, S.; Ibrahim, M.L.; Vo, D.-V.N.; Abdulkreem-Alsultan, G.; Khan, A.S. Novel micro-structured carbon-based adsorbents for notorious arsenic removal from wastewater. Chemosphere 2021, 272, 129653. [Google Scholar] [CrossRef]
- Yadav, S.K.; Dhakate, S.R.; Singh, B.P. Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Bioresour. Technol. 2022, 344, 126231. [Google Scholar] [CrossRef]
- Dubey, A.; Mishra, A.; Singhal, S. Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution. Int. J. Environ. Sci. Technol. 2014, 11, 1043–1050. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Marciniak, M.; Gęca, M.; Herda, K.; Pietrzak, R.; Nowicki, P. Activated biocarbons obtained from plant biomass as adsorbents of heavy metal ions. Materials 2022, 15, 5856. [Google Scholar] [CrossRef]
- Seida, Y.; Tokuyama, H. Hydrogel adsorbents for the removal of hazardous pollutants—Requirements and available functions as adsorbent. Gels 2022, 8, 220. [Google Scholar] [CrossRef]
- Dalalibera, A.; Vilela, P.B.; Vieira, T.; Becegato, V.A.; Paulino, A.T. Removal and selective separation of synthetic dyes from water using a polyacrylic acid-based hydrogel: Characterization, isotherm, kinetic, and thermodynamic data. J. Environ. Chem. Eng. 2020, 8, 104465. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Nyktari, E.; Wheatley, A.D.; Holdich, R.G.; Mohammed, A.S. Removal of Organic Pollutants from Effluent of Anaerobic Digester Using Hydrochars Produced from Faecal Simulant and Sewage Sludge. Water Air Soil Pollut. 2020, 231, 192. [Google Scholar] [CrossRef]
- Vedenyapina, M.D.; Kurmysheva, A.Y.; Kryazhev, Y.G.; Ershova, V.A. Magnetic iron-containing carbon materials as sorbents for the removal of pollutants from aquatic media (A review). Solid Fuel Chem. 2021, 55, 285–305. [Google Scholar] [CrossRef]
- Muntean, S.G.; Nistor, M.A.; Muntean, E.; Todea, A.; Ianoş, R.; Păcurariu, C. Removal of Colored Organic Pollutants from Wastewaters by Magnetite/Carbon Nanocomposites: Single and Binary Systems. J. Chem. 2018, 2018, 6249821. [Google Scholar] [CrossRef]
- Capanema, N.S.V.; Mansur, A.A.P.; Mansur, H.S.; de Jesus, A.C.; Carvalho, S.M.; Chagas, P.; de Oliveira, L.C. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. Environ. Technol. 2018, 39, 2856–2872. [Google Scholar] [CrossRef] [PubMed]
- Al-Samrraie, L.a.A.; Alrawashdeh, K.A.B.; Al-Issa, H.A.; Shakhatreh, S.; Hussien, A.A.; Qasem, I. Improve Heavy Metals and Pollutants Removal from the Pharmaceuticals Wastewater Using Washingtonia Robusta: New Extraction Process. Civ. Environ. Eng. Rep. 2022, 18, 340–349. [Google Scholar] [CrossRef]
- Bhave, P.P.; Yeleswarapu, D. Removal of Indoor Air Pollutants Using Activated Carbon—A Review. In Proceedings of the Global Challenges in Energy and Environment; Springer: Singapore, 2020; pp. 65–75. [Google Scholar]
- Ekanayake, D.; Loganathan, P.; Johir, M.A.H.; Kandasamy, J.; Vigneswaran, S. Enhanced Removal of Nutrients, Heavy Metals, and PAH from Synthetic Stormwater by Incorporating Different Adsorbents into a Filter Media. Water Air Soil Pollut. 2021, 232, 96. [Google Scholar] [CrossRef]
- Alkaram, U.F.; Mukhlis, A.A.; Al-Dujaili, A.H. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J. Hazard. Mater. 2009, 169, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Wang, F.; Chen, Y.; Zhu, Y.; Zhou, Y.; Zhang, S. The adsorption performance of tetracyclines on magnetic graphene oxide: A novel antibiotics absorbent. Appl. Surf. Sci. 2019, 475, 549–558. [Google Scholar] [CrossRef]
- Mlunguza, N.Y.; Ncube, S.; Mahlambi, P.N.; Chimuka, L.; Madikizela, L.M. Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. J. Environ. Chem. Eng. 2019, 7, 103142. [Google Scholar] [CrossRef]
- Radwan, E.K.; Hemdan, B.A.; El-Wakeel, S.T.; Omar, R.A.; Rashdan, H.R.M.; El-Naggar, M.E. Synthesis and application of a new multi-functional biopolymer-based aerogel loaded with bistriazole derivative as highly efficient adsorbent and disinfectant. J. Clean. Prod. 2024, 434, 139932. [Google Scholar] [CrossRef]
- Velmurugan, P.; Rathinakumar, V.; Dhinakaran, G. Dye removal from aqueous solution using low cost adsorbent. Int. J. Environ. Sci. 2011, 1, 1492–1503. [Google Scholar]
- Dong, C.; Wu, X.; Gao, Z.; Yang, P.; Khan, M.Y.A. A novel and efficient metal oxide fluoride absorbent for drinking water safety and sustainable development. Sustainability 2021, 13, 883. [Google Scholar] [CrossRef]
- Guerrero-Gualan, D.; Valdez-Castillo, E.; Crisanto-Perrazo, T.; Toulkeridis, T. Methods of removal of hormones in wastewater. Water 2023, 15, 353. [Google Scholar] [CrossRef]
- Zarghi, M.H.; Roudbari, A.; Jorfi, S.; Jaafarzadeh, N. Removal of Estrogen Hormones (17β-Estradiol and Estrone) from Aqueous Solutions Using Rice Husk Silica. Chem. Biochem. Eng. Q. 2019, 33, 281–293. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F.; Shanthakumar, S. Remediation of metal/metalloid-polluted soils: A short review. Appl. Sci. 2021, 11, 4134. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Bellazzi, S.; Caccamo, F.M.; Calatroni, S.; Milanese, C.; Baldi, M.; Abba, A.; Sorlini, S.; Bertanza, G. Removal of Per-and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials. Sustainability 2023, 15, 13056. [Google Scholar] [CrossRef]
- De Smedt, C.; Spanoghe, P.; Biswas, S.; Leus, K.; Van Der Voort, P. Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions. Adsorption 2015, 21, 243–254. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, J.; Su, F.; He, X. Removal of polystyrene nanoplastics from aqueous solutions by a novel magnetic zeolite adsorbent. Hum. Ecol. Risk Assess. Int. J. 2023, 29, 327–346. [Google Scholar] [CrossRef]
- Chinglenthoiba, C.; Mahadevan, G.; Zuo, J.; Prathyumnan, T.; Valiyaveettil, S. Conversion of PET Bottle Waste into a Terephthalic Acid-Based Metal-Organic Framework for Removing Plastic Nanoparticles from Water. Nanomaterials 2024, 14, 257. [Google Scholar] [CrossRef]
- Yakout, S.M.; Daifullah, A.A.M. Removal of selected polycyclic aromatic hydrocarbons from aqueous solution onto various adsorbent materials. Desalination Water Treat. 2013, 51, 6711–6718. [Google Scholar] [CrossRef]
- De Jesus, J.H.F.; Cunha, G.d.C.; Cardoso, E.M.C.; Mangrich, A.S.; Romão, L.P.C. Evaluation of waste biomasses and their biochars for removal of polycyclic aromatic hydrocarbons. J. Environ. Manag. 2017, 200, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Han, F.X.; Kingery, W.; Sun, H.; Zhang, J. Development of novel nanomaterials for remediation of heavy metals and radionuclides in contaminated water. Nanotechnol. Environ. Eng. 2016, 1, 7. [Google Scholar] [CrossRef]
- Ramin, N.; Asman, S. Synthesis and evaluation of green magnetic mesoporous molecularly imprinted polymers for adsorption removal of parabens from cosmetic samples. Curr. Chem. Lett. 2023, 12, 623–640. [Google Scholar] [CrossRef]
- Zhu, C.; Shen, Y.; Wang, S.; Song, S.; Fang, Q.; Wang, D.; Xu, H.; Liu, R.; He, Z. Bidirectional progressive optimization of carbon and nitrogen defects in solar-driven regenerable adsorbent to remove UV-filters from water. ACS EST Eng. 2021, 1, 456–466. [Google Scholar] [CrossRef]
- Tarashi, S.; Nazockdast, H.; Shafaghsorkh, S.; Sodeifian, G. A porous monolith polysaccharide-based adsorbent aerogel with enhanced mechanical performance and efficient adsorption capacity. Sep. Purif. Technol. 2022, 287, 120587. [Google Scholar] [CrossRef]
- Amalina, F.; Abd Razak, A.S.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. The effects of chemical modification on adsorbent performance on water and wastewater treatment—A review. Bioresour. Technol. Rep. 2022, 20, 101259. [Google Scholar] [CrossRef]
- Samee, G.; Arsalani, N.; Same, S.; Navidi, G.; Esfangare, H.K. Green and solvent-free fabrication of conductive halloysite–polythiophene nanocomposites for the removal of organic pollutants from aqueous media. Clay Miner. 2024, 59, 11–21. [Google Scholar] [CrossRef]
- Liu, X.; Yang, L.; Luo, X.; Pei, J.; Xi, Y.; Liu, C.; Liu, L. A novel non-imprinted adsorbent with superior selectivity towards high-performance capture of Ag (I). Chem. Eng. J. 2018, 348, 224–231. [Google Scholar] [CrossRef]
- Lam, K.F.; Yeung, K.L.; McKay, G. Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity. Environ. Sci. Technol. 2007, 41, 3329–3334. [Google Scholar] [CrossRef]
- Saiz, J.; Bringas, E.; Ortiz, I. New functionalized magnetic materials for As5+ removal: Adsorbent regeneration and reuse. Ind. Eng. Chem. Res. 2014, 53, 18928–18934. [Google Scholar] [CrossRef]
- Gkika, D.A.; Mitropoulos, A.C.; Kyzas, G.Z. Why reuse spent adsorbents? The latest challenges and limitations. Sci. Total Environ. 2022, 822, 153612. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-h.; Babel, S. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci. Total Environ. 2006, 366, 409–426. [Google Scholar] [CrossRef]
- Murray, C.C.; Safulko, A.; Vatankhah, H.; Liu, C.J.; Tajdini, B.; Marshall, R.E.; Bellona, C. PFAS adsorbent selection: The role of adsorbent use rate, water quality, and cost. J. Hazard. Mater. 2023, 454, 131481. [Google Scholar] [CrossRef]
- Zhou, Z.; Qiao, W.; Xing, C.; Wang, C.; Jiang, L.-M.; Gu, Y.; Wang, L. Characterization of dissolved organic matter in the anoxic–oxic-settling-anaerobic sludge reduction process. Chem. Eng. J. 2015, 259, 357–363. [Google Scholar] [CrossRef]
- Gong, B.; Nie, W.; Yan, Y.; Gao, Z.; Shi, Q. Unravelling cadmium toxicity and nitric oxide induced tolerance in Cucumis sativus: Insight into regulatory mechanisms using proteomics. J. Hazard. Mater. 2017, 336, 202–213. [Google Scholar] [CrossRef]
- Wolf, C.; von Gunten, U.; Kohn, T. Kinetics of Inactivation of Waterborne Enteric Viruses by Ozone. Environ. Sci. Technol. 2018, 52, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Jeguirim, M.; Tschamber, V.; Brilhac, J.F. Kinetics of catalyzed and non-catalyzed soot oxidation with nitrogen dioxide under regeneration particle trap conditions. J. Chem. Technol. Biotechnol. 2009, 84, 770–776. [Google Scholar] [CrossRef]
- Awasthi, A.; Jadhao, P.; Kumari, K. Clay nano-adsorbent: Structures, applications and mechanism for water treatment. SN Appl. Sci. 2019, 1, 1076. [Google Scholar]
- Tan, T.H.; Mo, K.H.; Ling, T.-C.; Lai, S.H. Current development of geopolymer as alternative adsorbent for heavy metal removal. Environ. Technol. Innov. 2020, 18, 100684. [Google Scholar] [CrossRef]
- Bhogal, S.; Kaur, K.; Mohiuddin, I.; Kumar, S.; Lee, J.; Brown, R.J.C.; Kim, K.-H.; Malik, A.K. Hollow porous molecularly imprinted polymers as emerging adsorbents. Environ. Pollut. 2021, 288, 117775. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Hayat, T.; Wang, X. Metal–organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef]
- Bang, S.; Pena, M.E.; Patel, M.; Lippincott, L.; Meng, X.; Kim, K.-W. Removal of arsenate from water by adsorbents: A comparative case study. Environ. Geochem. Health 2011, 33, 133–141. [Google Scholar] [CrossRef]
- Nayeem, A.; Ali, M.F.; Shariffuddin, J.H. The recent development of inverse vulcanized polysulfide as an alternative adsorbent for heavy metal removal in wastewater. Environ. Res. 2023, 216, 114306. [Google Scholar] [CrossRef]
- Fabregat, V.; Pagán, J.M. Technical–Economic Feasibility of a New Method of Adsorbent Materials and Advanced Oxidation Techniques to Remove Emerging Pollutants in Treated Wastewater. Water 2024, 16, 814. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M. Sustainable industrial process design for derived CO2 adsorbent from municipal solid wastes: Scale-up, techno-economic and parametric assessment. Sustain. Mater. Technol. 2024, 41, e01091. [Google Scholar] [CrossRef]
Adsorbent | Adsorption Mechanism | Application | Advantages | Disadvantages |
---|---|---|---|---|
Activated carbon | Physisorption | Organic compounds, dyes, VOCs | High surface area, cost-effective | Limited capacity for heavy metals |
Biochar | Physisorption | Organic pollutants, nutrients | Renewable, cost-effective | Limited selectivity |
Calixarene-based polymers | Chemisorption | Metals, organic compounds | High selectivity | High synthesis cost |
Carbon nanotubes (CNTs) | Physisorption | Organic pollutants, gases | Large surface area, mechanical strength | High cost, toxicity concerns |
Chitosan-based nanocomposites | Chemisorption | Metals, dyes | Biodegradable, selective | Lower capacity than activated carbon |
Cyclodextrin polymers | Chemisorption | Pharmaceuticals, organic pollutants | Selective binding for small molecules | Limited reusability |
Geopolymers | Chemisorption | Metals, ammonium | High ion exchange capacity | Fragile under acidic conditions |
Graphene-based composites | Physisorption/chemisorption | Organic compounds, metals | High surface area, tunable properties | Expensive, hard to scale |
Hydroxyapatite nanoparticles | Chemisorption | Metals, radionuclides | High affinity for heavy metals | Lower adsorption for organics |
Metal–organic frameworks (MOFs) | Chemisorption | Metals, gases | High selectivity, large surface area | Expensive, less thermally stable |
Nanocellulose | Physisorption | Dyes, pharmaceuticals | Renewable, biodegradable | Limited selectivity for metals |
Zeolites | Chemisorption | Metals, ammonium | High ion exchange capacity | Expensive modification required |
Pollutant Category | Effective Adsorbents | Efficiency/Observations | Reference |
---|---|---|---|
Alkylphenols and other surfactants | Hydrochars from sewage sludge | Efficient in adsorbing alkylphenols and surfactants. | [130] |
Antibiotics | Magnetic iron-containing carbon | High removal efficiency for antibiotics. | [131] |
Anti-inflammatory drugs | Hydrochars from sewage sludge | Effective in adsorbing anti-inflammatory drugs from wastewater. | [130] |
Disinfectants | Hydrochars from sewage sludge | High efficiency in adsorbing disinfectants. | [130] |
Dyes | CMC hydrogel, magnetite/carbon nanocomposites, clays, activated charcoal | CMC hydrogel >90% for Methylene Blue; Magnetite/carbon shows high capacities for various dyes; Clays and charcoal also efficient for dye removal. | [132,133] |
Fluorides | Magnetic iron-containing carbon | Effective removal of fluorides from water. | [131] |
Hormones | Hydrochars from sewage sludge | Efficient in removing hormones from wastewater. | [130] |
Metals and metalloids | Washingtonia Robusta, magnetic iron-containing carbon, CNTs, biochar | Efficient removal of Fe, Ni, Cu, Cr, Pb, Co, and Al from wastewater. Magnetic adsorbents effective across a wide range of metals. Biochar and CNTs also show high efficiency. | [131,134] |
Per- and polyfluoroalkyl substances (PFASs) | Activated charcoal | Efficient in removing PFAS from water. | [135] |
Pesticides | Magnetic iron-containing carbon | Effective in adsorbing various pesticides. | [131] |
Plastic nanoparticles | Hydrochars from sewage sludge | Effective in removing plastic nanoparticles from wastewater. | [130] |
Polycyclic aromatic hydrocarbons (PAHs) | Soil-based filter with zeolite | Increased removal rates of PAHs with enhanced filter media using zeolite. | [136] |
Radionuclides | Magnetic iron-containing carbon | High efficiency in removing radionuclides from aquatic media. | [131] |
Synthetic cosmetic ingredients | Hydrochars from sewage sludge | Efficient in removing synthetic cosmetic ingredients from effluent. | [130] |
UV filters | Hydrochars from sewage sludge | Effective removal of UV filters from wastewater. | [130] |
Pollutant | Adsorbent | Adsorption Capacity (mg/g) | pH | Contact Time (h) | Adsorbent Dose (g/L) | References |
---|---|---|---|---|---|---|
Amoxicillin (antibiotic) | Metal–organic frameworks (MOFs) | 320.0 | 6.8 | 5.0 | 0.2 | [165] |
Methylene Blue (Dye) | Cellulose-based hydrogels | 450.0 | 7.0 | 2.5 | 0.6 | [166] |
Pesticides | Magnetic iron-containing carbon | 120.0 | 6.5 | 6.0 | 0.5 | [167] |
Fluoride | Hydroxyapatite nanoparticles | 95.4 | 6.2 | 6.0 | 1.0 | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, M.S.; Ali, S.; Zaman, W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024, 29, 4317. https://doi.org/10.3390/molecules29184317
Akhtar MS, Ali S, Zaman W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules. 2024; 29(18):4317. https://doi.org/10.3390/molecules29184317
Chicago/Turabian StyleAkhtar, Muhammad Saeed, Sajid Ali, and Wajid Zaman. 2024. "Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications" Molecules 29, no. 18: 4317. https://doi.org/10.3390/molecules29184317
APA StyleAkhtar, M. S., Ali, S., & Zaman, W. (2024). Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules, 29(18), 4317. https://doi.org/10.3390/molecules29184317