Synthesis and Structure of 5-Methyl-9-(trifluoromethyl)-12H-quino[3,4-b][1,4]benzothiazinium Chloride as Anticancer Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry–Design and Synthesis
2.2. X-ray Analysis
2.3. DFT Calculations
2.4. In Vitro Antiproliferative Activity
2.5. ANOVA Statistical Analysis
3. Materials and Methods
3.1. Chemisty
3.2. Synthesis
Synthesis of 5-methyl-9-(trifluoromethyl)-12H-quino[3,4-b][1,4]benzothiazinium chloride (3)
3.3. X-ray Structural Analysis
3.4. Computational Details
3.5. Biological Evaluation
3.5.1. Cell Culture
3.5.2. Proliferation Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of phenothiazine hybrids with potential medicinal interest: A review. Molecules 2022, 27, 276. [Google Scholar] [CrossRef] [PubMed]
- Varga, B.; Csonka, A.; Csonka, A.; Molnar, J.; Amaral, L.; Spengler, G. Possible biological and clinical applications of phenothiazines. Anticancer. Res. 2017, 37, 5983–5993. [Google Scholar]
- Mitchell, S.C. Phenothiazine: The parent molecule. Curr. Drug Targ. 2006, 7, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.R.; Kumar, M. Synthesis, properties and reactions of phenothiazines. In Phenothiazines and 1,4-Benzothiazines: Chemical and Biological Aspects; Gupta, R.R., Ed.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 1–161. [Google Scholar]
- Andrade, B.; Chen, A.; Gilson, M.K. Host-guest systems for the SAMPL9 blinded prediction challenge: Phenothiazine as a privileged scaffold for binding to cyclodextrins. Phys. Chem. Chem. Phys. 2024, 26, 2035–2043. [Google Scholar] [CrossRef]
- Jaszczyszyn, A.; Gąsiorowski, K.; Świątek, P.; Malinka, W.; Cieślik-Boczula, K.; Petrus, J.; Czarnik-Matusewicz, B. Chemical structure of phenothiazines and theirbiological activity. Pharmacol. Rep. 2012, 64, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Baldessarini, R.J.; Tarazi, F.I. Pharmacotherapy of psychosis and mania. In Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 11th ed.; Brunton, L.L., Lazo, J.S., Parker, K.L., Eds.; McGraw-Hill Medical Publishing Division: New York, NY, USA, 2006; pp. 461–500. [Google Scholar]
- Mosnaim, A.D.; Ranade, V.V.; Wolf, M.E.; Puente, J.; Valenzuela, M.A. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am. J. Ther. 2006, 13, 261–273. [Google Scholar] [CrossRef]
- Pluta, K.; Morak-Młodawska, B.; Jelen, M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem. 2011, 46, 3179–3189. [Google Scholar] [CrossRef]
- Zieba, A.; Czuba, Z.; Krol, W. In vitro antimicrobial activity of novel azaphenothiazine derivatives. Acta Pol. Pharm. Drug Res. 2012, 69, 1149–1152. [Google Scholar]
- Jelen, M.; Morak-Mlodawska, B.; Korlacki, R. Anticancer activities of tetra-, penta-, and hexacyclic phenothiazines modified with quinoline moiety. J. Mol. Struct. 2023, 1287, 135700. [Google Scholar] [CrossRef]
- Sudeshna, G.; Parimal, K. Multiple non-psychiatric effects of phenothiazines: A review. Eur. J. Pharmacol. 2010, 648, 6–14. [Google Scholar] [CrossRef]
- Ohlow, M.J.; Moosmann, B. Phenothiazine: The seven lives of pharmacology’s first lead structure. Drug Discov. Today 2011, 16, 119–131. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, A.; Vazquez-Jimenez, L.K.; Paz-Gonzalez, A.D.; Bolognesi, M.L.; Rivera, G. Recent advances in the medicinal chemistry of phenothiazines, new anticancer and antiprotozoal agents. Curr. Med. Chem. 2021, 28, 7910–7936. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Hu, F.; Wu, H.; Guo, F.W.; Wang, L.; Du, F.Y.; Li, S.S. Controllable Synthesis of N-Heterocycles via Hydride Transfer Strategy-Enabled Formal [5 + 1] and [5 + 2] Cyclizations. Org. Lett. 2024, 26, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.Z.; Sun, Z.P.; Pan, M.Z.; Wang, L.; Xu, L.B.; Liu, X.L.; Li, S.S. Divergent synthesis of nitrogen heterocycles via H2O-mediated hydride transfer reactions. Green Chem. 2023, 25, 5134–5141. [Google Scholar] [CrossRef]
- Jampilek, J. Drug repurposing to overcome microbial resistance. Drug Discov. Today 2022, 27, 2028–2041. [Google Scholar] [CrossRef]
- Jampilek, J. Novel avenues for identification of new antifungal drugs and current challenges. Expert. Opin. Drug Dis. 2022, 17, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Pluta, K.; Morak-Mlodawska, B.; Jelen, M. Synthesis and properties of diaza-, triaza-and tetraazaphenothiazines. J. Heterocycl. Chem. 2009, 46, 355–391. [Google Scholar] [CrossRef]
- Jelen, M.; Pluta, K.; Zimecki, M.; Morak-Mlodawska, B.; Artym, J.; Kocieba, M.; Kochanowska, I. Synthesis and biological evaluation of novel propargylquinobenzothiazines and their derivatives as potential antiproliferative, antiinflammatory, and anticancer agents. J. Enzyme Inhib. Med. Chem. 2016, 31, 83–88. [Google Scholar] [CrossRef]
- Kisiel-Nawrot, E.; Latocha, M.; Bak, A.; Kozik, V.; Jampilek, J.; Zieba, A. Anticancer efficacy of antibacterial quinobenzothiazines. Appl. Sci. 2023, 13, 2886. [Google Scholar] [CrossRef]
- Pluta, K.; Jelen, M.; Morak-Mlodawska, B.; Zimecki, M.; Artym, J.; Kocieba, M.; Zaczynska, E. Azaphenothiazines-promising phenothiazine derivatives. An insight into nomenclature, synthesis, structure elucidation and biological properties. Eur. J. Med. Chem. 2017, 138, 774–806. [Google Scholar] [CrossRef]
- Jelen, M.; Otto-Slusarczyk, D.; Morak-Mlodawska, B.; Struga, M. Novel Tetracyclic azaphenothiazines with the quinoline ring as new anticancer and antibacterial derivatives of chlorpromazine. Int. J. Mol. Sci. 2024, 25, 4148. [Google Scholar] [CrossRef] [PubMed]
- McDowell, J.J.H. The crystal and molecular structure of phenothiazine. Acta Crystallogr. 1976, B32, 5–10. [Google Scholar] [CrossRef]
- McDowell, J.J.H. The crystal and molecular structure of chlorpromazine. Acta Crystallogr. 1969, B25, 2175–2181. [Google Scholar] [CrossRef]
- Phelps, D.W.; Cordes, A.W. The dihedral angle of 2-(trifluoromethyl)phenothiazine. Heterocycl. Chem. 1976, 13, 625–627. [Google Scholar] [CrossRef]
- Zieba, A.; Maslankiewicz, A.; Suwinska, K. 1-Alkyl-4-(arylamino)quinolinium-3-thiolate and 7-alkyl-12(H)-quino[3,4-b]1,4-benzothiazinium salts. Eur. J. Org. Chem. 2000, 16, 2947–2953. [Google Scholar] [CrossRef]
- Zieba, A.; Suwinska, K. 1-Alkyl-4-(3-pyridinylamino)quinolinium-3-thiolates and their transformation into new diazaphenothiazine derivatives. Heterocycles 2006, 68, 495–503. [Google Scholar] [CrossRef]
- Empel, A.; Bak, A.; Kozik, V.; Latocha, M.; Cizek, A.; Jampilek, J.; Suwinska, K.; Sochanik, A.; Zieba, A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021, 22, 12826. [Google Scholar] [CrossRef]
- Zieba, A.; Sochanik, A.; Szurko, A.; Rams, M.; Mrozek, A.; Cmoch, P. Synthesis and in vitro antiproliferative activity of 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts. Eur. J. Med. Chem. 2010, 45, 4733–4739. [Google Scholar] [CrossRef] [PubMed]
- Kisiel-Nawrot, E.; Pindjakova, D.; Latocha, M.; Bak, A.; Kozik, V.; Suwinska, K.; Sochanik, A.; Cizek, A.; Jampilek, J.; Zieba, A. Design, synthesis and antimicrobial properties of new tetracyclic quinobenzothiazine derivatives. Int. J. Mol. Sci. 2022, 23, 15078. [Google Scholar] [CrossRef]
- Dai, X.L.; Voronin, A.P.; Huang, Y.L.; Perlovich, G.L.; Zhao, X.H.; Lu, T.B.; Chen, J.M. 5-Fluorouracil cocrystals with lipophilic hydroxy-2-naphthoic acids: Crystal structures, theoretical computations, and permeation studies. Cryst. Growth Des. 2019, 20, 923–933. [Google Scholar] [CrossRef]
- Prashanth, J.; Drozd, K.V.; Perlovich, G.L.; Balasubramanian, S.; Surov, A. Cocrystal and coamorphous solid forms of enzalutamide with saccharin: Structural characterization and dissolution studies. Cryst. Growth Des. 2022, 22, 6703–6716. [Google Scholar] [CrossRef]
- Wennier, S.T.; Shoudong, J.L.; Masmudur, L.; Rahman, M.; Mona, M.; McFadden, G. Myxoma virus sensitizes cancer cells to gemcitabine and is an effective oncolytic virotherapeutic in models of disseminated pancreatic cancer. Mol. Ther. 2012, 20, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Nattress, C.B.; Hallden, G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett. 2018, 10, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, V. Gemcitabine: Progress in the treatment of pancreatic cancer. Oncology 2001, 60, 8–18. [Google Scholar] [CrossRef] [PubMed]
- May, V.; Berchtold, S.; Berger, A.; Venturelli, S.; Burkard, M.; Leischner, C.; Malek, N.P.; Lauer, U.M. Chemovirotherapy for pancreatic cancer: Gemcitabine plus oncolytic measles vaccine virus. Oncol. Lett. 2019, 18, 5534–5542. [Google Scholar] [CrossRef]
- Perreault, M.; Maltais, R.; Roy, J.; Picard, S.; Popa, I.; Bertrand, N.; Poirier, D. Induction of endoplasmic reticulum stress by aminosteroid derivative RM-581 leads to tumor regression in PANC-1 xenograft model. Investig. New Drugs. 2019, 37, 431–440. [Google Scholar] [CrossRef]
- Valentini, A.M.; Armentano, R.; Pirrelli, M.; Caruso, M.L. Chemotherapeutic agents for colorectal cancer with a defective mismatch repair system: The state of the art. Cancer Treat. Rev. 2006, 32, 607–618. [Google Scholar] [CrossRef]
- Chae, Y.S.; Choi, J.S.; Kim, K.S.; Seong, J.S.; Lee, W.J.; Kim, B.R. Preoperative chemoradiation and pancreaticoduodenectomy with portal vein resection for localized advanced pancreatic cancer. Yonsei Med. J. 2003, 44, 551–556. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Melisi, D.; Macarulla, T.; Pazo Cid, R.; Chandana, S.R.; De La Fouchardiere, C.; Dean, A.; Kiss, I.; Lee, W.J.; Goetze, T.O.; et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): A randomised, open-label, phase 3 trial. Lancet 2023, 7, 1272–1281. [Google Scholar] [CrossRef]
- Pandit, B.; Royzen, M. Recent development of prodrugs of gemcitabine. Genes 2022, 13, 466. [Google Scholar] [CrossRef]
- O’Reilly, E.M.; Ko, A.H.; Friedberg, J.W. Flashback foreword: Gemcitabine for advanced pancreatic cancer. J. Clin. Oncol. 2023, 20, 5479–5480. [Google Scholar] [CrossRef] [PubMed]
- Weniger, M.; Honselmann, K.C.; Liss, A.S. The extracellular matrix and pancreatic cancer: A complex relationship. Cancers 2018, 10, 316. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemical program package. J. Chem. Phys. 2020, 152, 22401. [Google Scholar] [CrossRef] [PubMed]
- Sinnecker, S.; Neeese, F. Theoretical bioinorganic spectroscopy. Top. Curr. Chem. 2007, 268, 47. [Google Scholar]
- Bursch, M.; Mewes, J.M.; Hansen, A.; Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry. Angew. Chem. Int. Ed. 2022, 61, e2020205735. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef]
- Najibi, A.; Goerigk, L. DFT-D4 counterparts of leading meta-generalized-gradient approximation and hybrid density functionals for energetics and geometries. J. Comput. Chem. 2020, 41, 2562. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadrupole zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef]
- Garcia-Rates, M.; Neese, F. Effect of the solute cavity on the solvation energy and its derivatives within the framework of the Gaussian charge system. J. Comput. Chem. 2020, 41, 922. [Google Scholar] [CrossRef] [PubMed]
H-Donor | H-Acceptor | Donor-Acceptor | Angle | |
---|---|---|---|---|
N12–H12···Cl1 | 0.86 | 2.42 | 3.251(9) | 161.6 |
C6–H6···Cl1 1 | 0.93 | 2.64 | 3.53(1) | 160.1 |
C11–H11···Cl1 | 0.93 | 2.67 | 3.48(1) | 146.8 |
C13–H13A···Cl1 1 | 0.96 | 2.88 | 3.77(1) | 154.7 |
C13–H13C···Cl1 2 | 0.96 | 2.70 | 3.47(1) | 137.4 |
Bond Lengths [Å] | |||
---|---|---|---|
S7–C7A | 1.704(11) | N5–C6 | 1.275(12) |
S7–C6A | 1.763(12) | N5–C4A | 1.385(10) |
C12A–C6A | 1.455(14) | N12–C12A | 1.382(12) |
N12–C11A | 1.465(12) | C12A–C12B | 1.437(13) |
C11A–C7A | 1.367(12) | C4A–C12B | 1.340(11) |
C6–C6A | 1.386(12) | C11–C11A | 1.441(13) |
C9–C14 | 1.630(18) | N5–C13 | 1.416(12) |
Bond Angles [°] | |||
C7A–S7–C6A | 102.3(6) | N5–C6–C6A | 119.5(11) |
C7A–C11A–N12 | 121.5(11) | C6–N5–C4A | 124.7(10) |
N12–C12A–C12B | 121.8(10) | C12A–C6A–S7 | 122.2(9) |
C12B–C12A–C6A | 115.4(10) | C12B–C4A–N5 | 119.5(10) |
C12A–N12–C11A | 123.4(10) | N12–C12A–C6A | 122.4(11) |
C4A–C12B–C12A | 120.4(10) | C6–C6A–S7 | 117.3(9) |
C6–C6A–C12A | 120.2(11) | C11A–C7A–S7 | 126.9(10) |
Comp. | IC50 [µM] | |||
---|---|---|---|---|
Panc-1 | AsPC-1 | BxPC-3 | WI38 | |
3 | 0.066 ± 0.03 | 0.222 ± 0.05 | 0.051 ± 0.07 | 0.36 ± 0.1 |
DOX | 0.16 ± 0.02 | 1.829 ± 0.001 | 0.159 ± 0.005 | - |
GEM | 0.022 ± 0.01 | 3.772 ± 0.03 | 0.025 ± 0.01 | 0.01 ± 0.01 |
Cell Line | Time [h] | P WI38 vs. PCCs at Selected Concentrations | ||||||
---|---|---|---|---|---|---|---|---|
10 nM | 25 nM | 50 nM | 100 nM | 250 nM | 500 nM | 1 μM | ||
Panc-1 | 24 | 0.7375 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
48 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.4932 | |
AsPC-1 | 24 | 0.0084 | 0.3019 | 0.7226 | 0.0264 | 0.0005 | <0.0001 | <0.0001 |
48 | <0.0001 | <0.0001 | <0.0001 | 0.0158 | <0.0001 | <0.0001 | 0.4502 | |
BxPC-3 | 24 | 0.0018 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
48 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieba, A.; Kozik, V.; Suwinska, K.; Kawulok, A.; Pluta, T.; Jampilek, J.; Bak, A. Synthesis and Structure of 5-Methyl-9-(trifluoromethyl)-12H-quino[3,4-b][1,4]benzothiazinium Chloride as Anticancer Agent. Molecules 2024, 29, 4337. https://doi.org/10.3390/molecules29184337
Zieba A, Kozik V, Suwinska K, Kawulok A, Pluta T, Jampilek J, Bak A. Synthesis and Structure of 5-Methyl-9-(trifluoromethyl)-12H-quino[3,4-b][1,4]benzothiazinium Chloride as Anticancer Agent. Molecules. 2024; 29(18):4337. https://doi.org/10.3390/molecules29184337
Chicago/Turabian StyleZieba, Andrzej, Violetta Kozik, Kinga Suwinska, Agata Kawulok, Tadeusz Pluta, Josef Jampilek, and Andrzej Bak. 2024. "Synthesis and Structure of 5-Methyl-9-(trifluoromethyl)-12H-quino[3,4-b][1,4]benzothiazinium Chloride as Anticancer Agent" Molecules 29, no. 18: 4337. https://doi.org/10.3390/molecules29184337
APA StyleZieba, A., Kozik, V., Suwinska, K., Kawulok, A., Pluta, T., Jampilek, J., & Bak, A. (2024). Synthesis and Structure of 5-Methyl-9-(trifluoromethyl)-12H-quino[3,4-b][1,4]benzothiazinium Chloride as Anticancer Agent. Molecules, 29(18), 4337. https://doi.org/10.3390/molecules29184337