Rapid Tryptophan Assay as a Screening Procedure for Quality Protein Maize
Abstract
:1. Introduction
2. Results
2.1. Tryptophan Reaction
2.2. Protein Determination
2.3. Characterization of Real Samples
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Plant Material to Be Analyzed
4.3. Instrumentation
4.4. Procedures
4.4.1. Total Protein Determination
4.4.2. Tryptophan Determination in the Biuret Supernatant
4.4.3. Using the Microchip Reader
4.4.4. Other Analytical Methods
4.4.5. Simplified Methods
4.5. Statistics
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurst, J.P.; Sato, S.; Ferris, T.; Yobi, A.; Zhou, Y.; Angelovici, R.; Clemente, T.E.; Holding, D.R. Editing the 19 kDa alpha-zein gene family generates non-opaque2-based quality protein maize. Plant Biotechnol. J. 2024, 22, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.; Bockholt, A.; Smith, J.; Rooney, L.; Waniska, R. Maize endosperm proteins that contribute to endosperm lysine content. Cereal Chem. 1999, 76, 668–672. [Google Scholar] [CrossRef]
- Friedman, M. Analysis, nutrition, and health benefits of tryptophan. Int. J. Tryptophan Res. 2018, 11, 1178646918802282. [Google Scholar] [CrossRef] [PubMed]
- Tufchi, M.; Rashmi, R.; Kumar, A.; Chaudhary, D.P.; Singh, N.K.; Jat, S.L. Breeding quality protein maize (Zea mays): Genetic and analytical perspective. Indian J. Agric. Sci. 2021, 91, 495–502. [Google Scholar] [CrossRef]
- Kodrzycki, R.; Boston, R.S.; Larkins, B.A. The opaque-2 mutation of maize differentially reduces zein gene transcription. Plant Cell 1989, 1, 105–114. [Google Scholar] [PubMed]
- Olakojo, S.A.; Omueti, O.; Ajomale, K.; Ogunbodede, B.A. Development of quality protein maize: Biochemical and agronomic evaluation. Trop. Subtrop. Agroecosys. 2007, 7, 97–104. [Google Scholar]
- Duvnjak, M.; Kljak, K.; Grbeša, D. Nitrogen storage in crops: Case study of zeins in maize. In Nitrogen in Agriculture–Physiological, Agricultural and Ecological Aspect; IntechOpen: London, UK, 2021; pp. 1–15. [Google Scholar]
- Chandrasekharan, N.; Ramanathan, N.; Pukalenthy, B.; Chandran, S.; Manickam, D.; Adhimoolam, K.; Nalliappan, G.K.; Manickam, S.; Rajasekaran, R.; Sampathrajan, V.; et al. Development of β-carotene, lysine, and tryptophan-rich maize (Zea mays) inbreds through marker-assisted gene pyramiding. Sci. Rep. 2022, 12, 8551. [Google Scholar] [CrossRef]
- Motukuri, S.R.K. Quality protein maize: An alternative food to mitigate protein deficiency in developing countries. In Maize-Production and Use; Hossain, A., Ed.; IntechOpen: London, UK, 2019; pp. 33–43. [Google Scholar]
- Vasal, S.K. The quality protein maize story. Food Nutr. Bull. 2000, 21, 445–450. [Google Scholar] [CrossRef]
- Larkins, B.A.; Wu, Y.; Song, R.; Messing, J. Maize Seed Storage Proteins. In Maize Kernel Development; Larkins, B., Ed.; CABI International: Wallingford, UK, 2017; Volume 14, pp. 175–189. [Google Scholar]
- Woo, Y.M.; Hu, D.W.; Larkins, B.A.; Jung, R. Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 2001, 13, 2297–2317. [Google Scholar] [CrossRef]
- Tandzi, L.N.; Mutengwa, C.S.; Ngonkeu, E.L.M.; Woïn, N.; Gracen, V. Breeding for quality protein maize (QPM) varieties: A review. Agronomy 2017, 7, 80. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Vasal, S.K.; Kassahun, B.; Singh, N.N. Quality protein maize. Curr. Sci. 2001, 81, 1308–1319. [Google Scholar]
- Bjarnason, M.; Vasal, S.K. Breeding for quality protein maize. Plant Breed. Rev. 1992, 9, 181–216. [Google Scholar]
- So, P.A.; Wani, S.A.; Rather, A.G.; Wani, S.H. Review article: Quality protein maize (QPM): Genetic manipulation for the nutritional fortification of maize. J. Plant Breed. Crop Sci. 2009, 1, 244–253. [Google Scholar]
- Maqbool, M.A.; Beshir Issa, A.; Khokhar, E.S. Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breed. 2021, 140, 375–399. [Google Scholar] [CrossRef]
- Amegbor, I.; Van Biljon, A.; Shargie, N.; Tarekegne, A.; Labuschagne, M. Identifying quality protein maize inbred lines for improved nutritional value of maize in Southern Africa. Foods 2022, 11, 898. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Quality protein maize for Africa: Closing the protein inadequacy gap in vulnerable populations. Adv. Nutr. 2011, 2, 217–224. [Google Scholar] [CrossRef]
- Mebratu, A.; Wegary, D.; Teklewold, A.; Tarekegne, A. Testcross performance and combining ability of early-medium maturing quality protein maize inbred lines in Eastern and Southern Africa. Sci. Rep. 2024, 14, 9151. [Google Scholar] [CrossRef]
- D’Amico, S.; Schoenlechner, R.; Tömösköszi, S.; Langó, B. Proteins and amino acids of kernels. Pseudocereals Chem. Technol. 2017, 94–118. [Google Scholar]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How important is tryptophan in human health? Crit. Rev. Food Sci. 2019, 59, 72–88. [Google Scholar] [CrossRef]
- Tomičić, Z.; Spasevski, N.; Lazarević, J.; Čabarkapa, I.; Tomičić, R. Diversity of amino acids composition in cereals. Food Feed Res. 2022, 49, 11–22. [Google Scholar] [CrossRef]
- Biel, W.; Kazimierska, K.; Bashutska, U. Nutritional value of wheat, triticale, barley and oat grains. Acta Sci. Pol. Zootech. 2020, 19, 19–28. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Bains, K.; Moughan, P.J. Available lysine and digestible amino acid contents of proteinaceous foods of India. Brit. J. Nutr. 2012, 108, S59–S68. [Google Scholar] [CrossRef] [PubMed]
- Abdulwahed, M.; Mamoly, L.; Bosnali, W. A simple spectrophotometric method for determination of glyoxylic acid in its synthesis mixture. Int. J. Anal. Chem. 2020, 2020, 5417549. [Google Scholar] [CrossRef] [PubMed]
- Nurit, E.; Tiessen, A.; Pixley, K.V.; Palacios-Rojas, N. Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels. J. Agric. Food Chem. 2009, 57, 7233–7238. [Google Scholar] [CrossRef] [PubMed]
- García Rodríguez, J.G.; Cervantes Ortiz, F.; Ramírez Pimentel, J.G.; Aguirre Mancilla, C.; Rodríguez Perez, G.; Ochoa, F.; Mendoza Elos, M. Determination of lysine, tryptophan and protein in germinated of creole and QPM maize. Rev. Mex. Cienc. Agric. 2017, 8, 877–890. [Google Scholar]
- Delhaye, S.; Landry, J. Determination of tryptophan in pure proteins and plant material by three methods. Analyst 1992, 117, 1875–1877. [Google Scholar] [CrossRef]
- Bourigua, S.; Boussema, F.; Bouaazi, D.; Mzoughi, Z.; Barhoumi, H.; Majdoub, H.; Maaref, A.; Jaffrezic-Renault, N. Sensitive electrochemical detection of l-tryptophan using a glassy carbon electrode modified with pectin extracted from Arthrocnemum indicum leaves. J. Electroanal. Chem. 2024, 953, 117998. [Google Scholar] [CrossRef]
- Mokole, S.J.; Aliyu, A.; Fayemi, O.E. Electrochemical detection of tryptophan in pineapple fruit using a green and chemically synthesized PANI/CuO nanocomposite modified electrode. Sci. Afr. 2024, 24, e02233. [Google Scholar] [CrossRef]
- Xiao, X.; Hong, D.; Cao, J.; Ma, A.; Jia, Y. Fluorescence analytical techniques for sensing tryptophan in food and biological samples: Mechanisms, applications, and challenges. Food Rev. Int. 2024, 1–30. [Google Scholar] [CrossRef]
- Pandit, S.K.; Das, G. Fluorescent detection of Tryptophan in Physiological media: Potential Applications in Environmental Samples and Living Systems. Sens. Actuat. B-Chem. 2024, 417, 136131. [Google Scholar] [CrossRef]
- Prongmanee, W.; Alam, I.; Asanithi, P. Hydroxyapatite/graphene oxide composite for electrochemical detection of L-tryptophan. J. Taiwan Inst. Chem. Eng. 2019, 102, 415–423. [Google Scholar] [CrossRef]
- Asakaviciute, R.; Maknickiene, Z. Influence of the storage duration on the health promoting tyrosine, tryptophan, and total phenolics in potato tubers. Czech J. Food Sci. 2024, 42, 93–99. [Google Scholar] [CrossRef]
- Teo, M.; Khoo, L.W.; Chew, W. A simplified small-scale workflow for determination of complete protein-bound amino acids using pre-column derivatization HPLC method. J. Food Compos. Anal. 2024, 135, 106571. [Google Scholar] [CrossRef]
- Held, P.G. Nucleic acid and protein quantitation in the microplate format. Chimia 2001, 55, 40. [Google Scholar] [CrossRef]
- Hernández, H.H.; Bates, L.S. A modified method for rapid tryptophan analysis of maize. CIMMYT Res. Bull. 1969, 13, 1–7. [Google Scholar]
- Moosavi, S.M.; Ghassabian, S. Linearity of calibration curves for analytical methods: A review of criteria for assessment of method reliability. In Calibration and Validation of Analytical Methods—A Sampling of Current Approaches; Stauffer, M.T., Ed.; InTech: London, UK, 2018; pp. 109–127. [Google Scholar]
- Doğan, N.Ö. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turk. J. Emerg. Med. 2018, 18, 139–141. [Google Scholar] [CrossRef]
- Miranda, M.P. Comparison of the effect of sodium chloride concentration on protein determination: Bradford and biuret methods. Anal. Biochem. 2024, 687, 115450. [Google Scholar] [CrossRef]
- Chang, S.K.; Zhang, Y. Protein analysis. In Food Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 315–331. [Google Scholar]
- Chaudhary, D.P.; Singh, A.; Sekhar, J.C.; Kaul, J.; Yadav, S.; Tufchi, M.; Sethi, M.; Devi, V.; Kumar, R.; Rakshit, S. Analysis of maize populations for developing quality protein maize. Maize J. 2022, 11, 1–9. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Agricultural Chemists: Washington, DC, USA, 1975. [Google Scholar]
- Tsai, C.Y.; Dalby, A.; Jones, R.A. Lysine and tryptophan increases during germination of maize seed. Cereal Chem. 1975, 52, 356–360. [Google Scholar]
- Villegas, E.; Ortega, E.; Bauer, R. Chemical Methods Used at CIMMYT for Determining Protein Quality in Cereal Grains; Folleto Técnico; CIMMYT: Mexico City, Mexico, 1984; p. 35. [Google Scholar]
- Drochioiu, G.; Ciobanu, C.I.; Bancila, S.; Ion, L.; Petre, B.A.; Andries, C.; Gradinaru, R.V.; Murariu, M. Ultrasound-based protein determination in maize seeds. Ultrason. Sonochem. 2016, 29, 93–103. [Google Scholar] [CrossRef]
- Darie-Ion, L.; Jayathirtha, M.; Hitruc, G.E.; Zaharia, M.M.; Gradinaru, R.V.; Darie, C.C.; Pui, A.; Petre, B.A. A proteomic approach to identify zein proteins upon eco-friendly ultrasound-based extraction. Biomolecules 2021, 11, 1838. [Google Scholar] [CrossRef] [PubMed]
- Bancila, S.; Ciobanu, C.I.; Murariu, M.; Drochioiu, G. Ultrasound-assisted zein extraction and determination in some patented maize flours. Rev. Roum. Chim. 2016, 61, 725–731. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Drochioiu, G. Process for Separating Floury Fractions of High Biological or Industrial Quality. Romania Patent RO128468, 2013; International Patent Classification: A21D-002/14, BOPI 12, 2015, 30 April 2014. [Google Scholar]
Volume 1 | Blank1 | Blank2 | Trp1 | Trp2 | Trp1−Blank1 | Trp1−Blank2 | Mean |
---|---|---|---|---|---|---|---|
100 μL | 0.072 | 0.072 | 0.224 | 0.217 | 0.151 | 0.145 | 0.148 |
100 μL | 0.073 | 0.074 | 0.221 | 0.215 | 0.149 | 0.141 | 0.145 |
250 μL | 0.064 | 0.065 | 0.421 | 0.438 | 0.358 | 0.373 | 0.365 |
250 μL | 0.062 | 0.060 | 0.411 | 0.409 | 0.349 | 0.349 | 0.349 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drochioiu, G.; Mihalcea, E.; Lagobo, J.; Ciobanu, C.-I. Rapid Tryptophan Assay as a Screening Procedure for Quality Protein Maize. Molecules 2024, 29, 4341. https://doi.org/10.3390/molecules29184341
Drochioiu G, Mihalcea E, Lagobo J, Ciobanu C-I. Rapid Tryptophan Assay as a Screening Procedure for Quality Protein Maize. Molecules. 2024; 29(18):4341. https://doi.org/10.3390/molecules29184341
Chicago/Turabian StyleDrochioiu, Gabi, Elena Mihalcea, Jeanclaude Lagobo, and Catalina-Ionica Ciobanu. 2024. "Rapid Tryptophan Assay as a Screening Procedure for Quality Protein Maize" Molecules 29, no. 18: 4341. https://doi.org/10.3390/molecules29184341
APA StyleDrochioiu, G., Mihalcea, E., Lagobo, J., & Ciobanu, C. -I. (2024). Rapid Tryptophan Assay as a Screening Procedure for Quality Protein Maize. Molecules, 29(18), 4341. https://doi.org/10.3390/molecules29184341