Efficient Flotation Separation of Ilmenite and Olivine in a Weak Alkaline Pulp Using a Ternary Combination Collector Centered around Al3+
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microflotation Tests
2.2. Calculation of Self-Assembly Behavior of ABN
2.2.1. MD Simulation of ABN Solution Model
2.2.2. DFT Calculation
2.3. SEM
2.4. XPS Analysis
2.5. TOF-SIMS Analysis
3. Experimental
3.1. Materials
3.2. Microflotation Tests
3.3. Calculation and Simulation Details
3.3.1. Molecular Dynamics (MD) Simulation
3.3.2. Density Functional Theory (DFT) Calculation
3.4. Scanning Electron Microscopy (SEM)
3.5. X-ray Photoelectron Spectroscopy (XPS) Analysis
3.6. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) Analysis
4. Conclusions
- The ternary combined collector ABN holds significant promise in ilmenite flotation due to its ease of preparation, high selectivity, strong collecting ability, multiple active components, and environmental friendliness. This study addresses the research gap regarding highly selective collectors for the separation of ilmenite and olivine under acid-free conditions. Additionally, it offers theoretical guidance for investigating the synergistic effects of combined collectors and for developing new collectors. The ternary combination collector ABN exhibits excellent selective enrichment for ilmenite in weak alkaline conditions (pH = 8). The recovery rate of ilmenite exceeds 90%, whereas the recovery rate of olivine, which shares similar surface properties, is only about 20%.
- Al3+, BHA, and NaOL can undergo self-assembly at room temperature to form BHA-Al-NaOL and Al(BHA)ₙ, with chemical bonds and weak interactions between the components.
- SEM–EDS and XPS analyses revealed that ABN chemically adsorbs onto Ti and Fe sites on the ilmenite surface, resulting in the deprotonation of the Fe/Ti-OH structure and the formation of Fe-O-Al and Ti-O-Al structures.
- The TOF-SIMS analysis of the ilmenite surface confirmed the synergistic adsorption configuration of the ternary combination collector. Additionally, it was observed that the pre-assembled reagent adsorption on the mineral surface was not entirely uniform but exhibited various forms of co-adsorption.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, D.-S.; Zhao, L.-S.; Qi, T.; Hu, G.-P.; Zhao, H.-X.; Li, J.; Wang, L.-N. Desilication from titanium–vanadium slag by alkaline leaching. Trans. Nonferrous Met. Soc. China 2013, 23, 3076–3082. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Mehdilo, A.; Irannajad, M.; Rezai, B. Effect of chemical composition and crystal chemistry on the zeta potential of ilmenite. Colloids Surf. Physicochem. Eng. Asp. 2013, 428, 111–119. [Google Scholar] [CrossRef]
- Prakash, R.; Majumder, S.K.; Singh, A. Flotation technique: Its mechanisms and design parameters. Chem. Eng. Process.-Process Intensif. 2018, 127, 249–270. [Google Scholar] [CrossRef]
- Pattanaik, A.; Venugopal, R. Investigation of Adsorption Mechanism of Reagents (Surfactants) System and its Applicability in Iron Ore Flotation—An Overview. Colloid Interface Sci. Commun. 2018, 25, 41–65. [Google Scholar] [CrossRef]
- Zhai, J.; Chen, P.; Sun, W.; Chen, W.; Wan, S. A review of mineral processing of ilmenite by flotation. Miner. Eng. 2020, 157, 106558. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Wei, D.; Li, M.; Zhao, Q.; Xu, S. Synthesis of N,N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz. Chem. Eng. J. 2017, 309, 63–69. [Google Scholar] [CrossRef]
- Dong, X.; Price, M.; Dai, Z.; Xu, M.; Pelton, R. Mineral-mineral particle collisions during flotation remove adsorbed nanoparticle flotation collectors. J. Colloid Interface Sci. 2017, 504, 178–185. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, G.; Mai, Q.; Liu, H.; Li, C.; Feng, H. Flotation separation of smithsonite from calcite using depressant sodium alginate and mixed cationic/anionic collectors. Colloids Surfaces Physicochem. Eng. Asp. 2019, 586, 124227. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.; Yang, Y.; Liu, J.; Zeng, X.; Deng, W. Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors. Int. J. Miner. Process. 2017, 166, 102–107. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.; Deng, W.; Jiang, H.; Gao, Z.; Hu, Y. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chem. Eng. Sci. 2017, 164, 99–107. [Google Scholar] [CrossRef]
- Xu, L.; Wu, H.; Dong, F.; Wang, L.; Wang, Z.; Xiao, J. Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Miner. Eng. 2013, 41, 41–45. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Yin, Z.; Wang, J.; Hu, Y. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 2017, 512, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Zhang, C.; Wang, T.; Deng, J.; Cao, Y.; Chang, L.; Zhou, G.; Wu, Y.; Li, P. New insight into surface adsorption thermodynamic, kinetic properties and adsorption mechanisms of sodium oleate on ilmenite and titanaugite. Adv. Powder Technol. 2020, 31, 3628–3639. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, C.; Wang, H.; Xu, L.; Li, P.; Li, J.; Li, G.; Peng, W.; Zhang, F.; Fan, G.; et al. A novel sodium trans-2-nonene hydroxamate for the flotation separation of ilmenite and forsterite: Superior collecting and selectivity. Sep. Purif. Technol. 2024, 333, 125830. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Cao, Y.; Hao, H.; Peng, W.; Teng, D.; Fan, G. Synthesis of sodium oleate hydroxamate and its application as a novel flotation collector on the ilmenite-forsterite separation. Sep. Purif. Technol. 2021, 284, 120283. [Google Scholar] [CrossRef]
- Li, L.; Zhang, C.; Yuan, Z.; Liu, Z.; Li, C. Selectivity of Benzyl Hydroxamic Acid in the Flotation of Ilmenite. Front. Chem. 2019, 7, 886. [Google Scholar] [CrossRef]
- Cai, J.; Wu, B.; Wang, G.; Deng, J.; Qiu, H.; Sun, X.; Yang, L.; Hu, M. Improvement of ilmenite flotation via the benzohydroxamic acid synergistic mechanical activation. Miner. Eng. 2022, 189, 107898. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, H.; Tang, Q.; Wang, S.; Zhao, G.; Liu, G. A novel collector 2-ethyl-2-hexenoic hydroxamic acid: Flotation performance and adsorption mechanism to ilmenite. Appl. Surf. Sci. 2015, 353, 882–889. [Google Scholar] [CrossRef]
- Fang, S.; Xu, L.; Wu, H.; Tian, J.; Lu, Z.; Sun, W.; Hu, Y. Adsorption of Pb(II)/benzohydroxamic acid collector complexes for ilmenite flotation. Miner. Eng. 2018, 126, 16–23. [Google Scholar] [CrossRef]
- Fang, S.; Xu, L.; Wu, H.; Shu, K.; Xu, Y.; Zhang, Z.; Chi, R.; Sun, W. Comparative studies of flotation and adsorption of Pb(II)/benzohydroxamic acid collector complexes on ilmenite and titanaugite. Powder Technol. 2018, 345, 35–42. [Google Scholar] [CrossRef]
- Chai, X.; Lin, S.; Zhai, J.; Kang, J.; Chen, P.; Liu, R. A new combined collector for flotation separation of ilmenite from titanaugite in acidic pulp. Sep. Purif. Technol. 2021, 278, 119647. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Y.; Liu, C.; Soraya, D.A.; Li, C.; Li, H. Investigations on the synergistic effect of combined NaOl/SPA collector in ilmenite flotation. Colloids Surfaces Physicochem. Eng. Asp. 2021, 628, 127267. [Google Scholar] [CrossRef]
- Wu, H.; Luo, L.; Zhang, Y.; Meng, J.; Huo, X.; Zhou, H.; Xu, L. New insight into adsorption of novel ternary mixed collector in ilmenite–titanaugite flotation system. Miner. Eng. 2021, 176, 107319. [Google Scholar] [CrossRef]
- Du, Y.; Meng, Q.; Yuan, Z.; Ma, L.; Zhao, X.; Xu, Y. Study on the flotation behavior and mechanism of ilmenite and titanaugite with sodium oleate. Miner. Eng. 2020, 152, 106366. [Google Scholar] [CrossRef]
- Li, Y.; Xia, W.; Peng, Y.; Xie, G. A novel coal tar-based collector for effective flotation cleaning of low rank coal. J. Clean. Prod. 2020, 273, 123172. [Google Scholar] [CrossRef]
- Xu, L.; Jiao, F.; Jia, W.; Pan, Z.; Hu, C.; Qin, W. Selective flotation separation of spodumene from feldspar using mixed anionic/nonionic collector. Colloids Surf. Physicochem. Eng. Asp. 2020, 594, 124605. [Google Scholar] [CrossRef]
- Xiao, W.; Shao, Y.; Yu, J.; Zhang, B.; Shu, H.; Zhang, Y. Activation of ilmenite flotation by Al3+ in the benzohydroxamic acid (BHA) system. Sep. Purif. Technol. 2022, 299, 121770. [Google Scholar] [CrossRef]
- Xiao, W.; Shao, Y.; Yu, J.; He, H.; Zhang, B.; Zhang, Y.; Shu, H. Adsorption differences and mechanism of Pb-BHA and Al-BHA in the flotation separation of ilmenite and titanaugite. Miner. Eng. 2023, 197, 108072. [Google Scholar] [CrossRef]
- Li, J.; Shao, Y.; Xiao, W.; Liu, C.; Li, R.; Shu, H.; Zhang, Y. Novel insights into the microstructure of Al-BHA on the surface of ilmenite. Colloids Surf. Physicochem. Eng. Asp. 2023, 677, 132341. [Google Scholar] [CrossRef]
- Rick, S.W.; Stuart, S.J.; Berne, B.J. Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys. 1994, 101, 6141–6156. [Google Scholar] [CrossRef]
- Han, L.; Liu, K.; Wang, M.; Wang, K.; Fang, L.; Chen, H.; Zhou, J.; Lu, X. Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance. Adv. Funct. Mater. 2017, 28, 1704195. [Google Scholar] [CrossRef]
- Taty-Costodes, V.; Fauduet, H.; Porte, C.; Delacroix, A. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 2003, 105, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Yekeler, M.; Ulusoy, U.; Hiçyılmaz, C. Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability. Powder Technol. 2004, 140, 68–78. [Google Scholar] [CrossRef]
- Belu, A.M.; Graham, D.J.; Castner, D.G. Time-of-flight secondary ion mass spectrometry: Techniques and applications for the characterization of biomaterial surfaces. Biomaterials 2003, 24, 3635–3653. [Google Scholar] [CrossRef]
- Wagner, M.S.; Castner, D.G. Characterization of Adsorbed Protein Films by Time-of-Flight Secondary Ion Mass Spectrometry with Principal Component Analysis. Langmuir 2001, 17, 4649–4660. [Google Scholar] [CrossRef]
- Feng, H.; Lin, Y.; Sun, Y.; Cao, H.; Fu, J.; Gao, K.; Zhang, A. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface. Water Res. 2017, 114, 144–150. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef]
- Nosé, S. Constant Temperature Molecular Dynamics Methods. Prog. Theor. Phys. Suppl. 1991, 103, 1–46. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Auckenthaler, T.; Blum, V.; Bungartz, H.-J.; Huckle, T.; Johanni, R.; Krämer, L.; Lang, B.; Lederer, H.; Willems, P.R. Parallel solution of partial symmetrix eigenvalue problems from electronic structure calculations. Parallel Comput. 2011, 37, 783–794. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993, 48, 4978. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K.; Pople, J.A. Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities. J. Chem. Phys. 1998, 109, 42–55. [Google Scholar] [CrossRef]
- Basha, A.F.; Khan, F.L.A.; Muthu, S.; Raja, M. Computational evaluation on molecular structure (Monomer, Dimer), RDG, ELF, electronic (HOMO-LUMO, MEP) properties, and spectroscopic profiling of 8-Quinolinesulfonamide with molecular docking studies. Comput. Theor. Chem. 2021, 1198, 113169. [Google Scholar] [CrossRef]
Reactant | BHA− | Al3+ | OL− |
---|---|---|---|
ETcorr298.15K (Ha) | −475.475364 | −240.411413 | −855.6647469 |
Product | Al(BHA)2+ | Al(BHA)2+ | ABN+ |
ETcorr298.15K (Ha) | −717.2709 | −1193.3451 | −1573.5211 |
∆Greaction298.15K(kcal/mol) | −868.5887 | −1244.3754 | −1235.2661 |
E(OL) | E(ABN) | E(ABN-OL) | Eint | Charge Transfer |
---|---|---|---|---|
−855.9163 Ha | −1572.7877 Ha | −2428.7803 Ha | −47.8231 kcal/mol | 0.1082 e |
Samples | Element (Mass %) | ||||||
---|---|---|---|---|---|---|---|
C1s | O1s | Fe2p | Ti2p | Al2p | N1s | ||
Ilmenite | 22.18 | 57.62 | 6.99 | 10.12 | 2.96 | - | |
Ilmenite + ABN | 25.06 | 54.91 | 5.76 | 9.03 | 3.56 | 1.67 | |
C1s | O1s | Fe2p | Mg2p | Al2p | N1s | Si2p | |
Olivine | 18.4 | 52.9 | 1.7 | 15.1 | 0.2 | 1.6 | 10.1 |
Olivine + ABN | 18.5 | 53.3 | 1.1 | 15.3 | 0.6 | 1.4 | 9.6 |
Sample | TiO2 | Fe | SiO2 | CaO | MgO | Al2O3 |
---|---|---|---|---|---|---|
Ilmenite | 50.12 | 25.36 | 1.86 | 0.21 | 0.09 | 0.56 |
Olivine | 0.02 | 8.47 | 43.52 | 0.04 | 47.23 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; He, H.; Shao, Y.; Liu, C.; Li, R.; Chen, H.; Meng, X. Efficient Flotation Separation of Ilmenite and Olivine in a Weak Alkaline Pulp Using a Ternary Combination Collector Centered around Al3+. Molecules 2024, 29, 4379. https://doi.org/10.3390/molecules29184379
Li J, He H, Shao Y, Liu C, Li R, Chen H, Meng X. Efficient Flotation Separation of Ilmenite and Olivine in a Weak Alkaline Pulp Using a Ternary Combination Collector Centered around Al3+. Molecules. 2024; 29(18):4379. https://doi.org/10.3390/molecules29184379
Chicago/Turabian StyleLi, Jinhui, Hao He, Yanhai Shao, Chenjie Liu, Rui Li, Hongqin Chen, and Xiao Meng. 2024. "Efficient Flotation Separation of Ilmenite and Olivine in a Weak Alkaline Pulp Using a Ternary Combination Collector Centered around Al3+" Molecules 29, no. 18: 4379. https://doi.org/10.3390/molecules29184379
APA StyleLi, J., He, H., Shao, Y., Liu, C., Li, R., Chen, H., & Meng, X. (2024). Efficient Flotation Separation of Ilmenite and Olivine in a Weak Alkaline Pulp Using a Ternary Combination Collector Centered around Al3+. Molecules, 29(18), 4379. https://doi.org/10.3390/molecules29184379