Evaluation of Adsorption Ability of Lewatit® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ion Exchange Resins Characterization
2.2. Batch Adsorption Method—Experimental Conditions Effect on Pd(II) and Cu(II) Adsorption
- -
- The amount of M(II) ions sorbed after time t (qt) (mg/g) per weight unit of sorbent under the non-equilibrium conditions:
- -
- The adsorption capacity (qe) (mg/g):
- -
- The percentage removal (R) (%):
2.2.1. Effect of Agitation Speed on Pd(II) Adsorption
2.2.2. Effects of Initial Pd(II) Concentration
2.2.3. Effects of Ion Exchangers Bead Size
2.2.4. Effects of Temperature on Pd(II) Adsorption
2.2.5. Effects of Experimental Conditions on the Cu(II) Adsorption
2.3. Kinetic Parameters for Pd(II) Adsorption
2.4. Isotherm Parameters for Pd(II) and Cu(II) Adsorption
2.5. Column Studies
- 0.1 mol/L HCl: Pd(II)—Lewatit® VP OC 1065 > Pd(II)—Diaion™ CR20 >> Cu(II)—Lewatit® VP OC 1065 > Cu(II)—Diaion™ CR20;
- 1–6 mol/L HCl: Pd(II)—Diaion™ CR20 > Pd(II)—Lewatit® VP OC 1065 >> Cu(II)—Lewatit® VP OC 1065 ≥ Cu(II)—Diaion™ CR20;
- 0.1–0.9 mol/L HCl—0.9–0.1 mol/L HNO3: Pd(II)—Diaion™ CR20 > Pd(II)—Lewatit® VP OC 1065 > Cu(II)—Lewatit® VP OC 1065 ≈ Cu(II)—Diaion™ CR20.
2.6. Desorption Studies
2.7. Metal Adsorption from the Bi-Component Solutions
3. Materials and Methods
3.1. Materials
- Chloride solutions (systems S1–S4):
- Chloride-nitrate(V) solutions (systems S5–S9):
- Lewatit® VP OC 1065—a polystyrene–divinylbenzene macroporous matrix with the primary amine functional groups, weakly basic, bead size of 1.25–0.315 mm, total exchange capacity 2.2 eq/L, water content 65–70%, ionic form as shipped free base, and appearance of opaque beads.
- Diaion™ CR20—a polystyrene–divinylbenzene macroporous matrix with polyamine amine functional groups, chelating ion exchanger, bead size of 1.2–0.300 mm, total exchange capacity toward copper min. 0.4 mmol/mL, water content 50–60%, ionic form as shipped free base, and appearance of opaque beads.
3.2. Batch Adsorption Method—Experimental Conditions
3.3. Column Adsorption Procedure and Calculation
3.4. Desorption Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Change 2016, 39, 305–315. [Google Scholar] [CrossRef]
- Galos, K.; Smakowski, T.; Galos, K.; Smakowski, T. Wstępna propozycja metodyki identyfikacji surowców kluczowych dla polskiej gospodarki. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energi Pol. Akad. Nauk. 2014, 88, 59–79. (In Polish) [Google Scholar]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU A Foresight Study. Tech. Rep. 2020. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Q.; Cao, J.; Li, H.; Bian, Z. Precious metal recovery. Joule 2021, 5, 3097–3115. [Google Scholar] [CrossRef]
- Watari, T.; Nansai, K.; Nakajima, K. Major metals demand, supply, and environmental impacts to 2100: A critical review. Resour. Conserv. Recycl. 2021, 164, 105107. [Google Scholar] [CrossRef]
- Ahirwar, R.; Tripathi, A.K. E-waste management: A review of recycling process, environmental and occupational health hazards, and potential solutions. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100409. [Google Scholar] [CrossRef]
- McCarthy, S.; Braddock, D.C.; Wilton-Ely, J.D.E.T. Strategies for sustainable palladium catalysis. Coord. Chem. Rev. 2021, 442, 213925. [Google Scholar] [CrossRef]
- Liu, G.; Wu, Y.; Tang, A.; Pan, D.; Li, B. Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: A review. Hydrometallurgy 2020, 197, 105460. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Lee, J.; Kurniawan; Hong, H.-J.; Chung, K.W.; Kim, S. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Sep. Purif. Technol. 2020, 246, 116896. [Google Scholar] [CrossRef]
- Ajiboye, E.A.; Aishvarya, V.; Petersen, J. Selective recovery of copper from the mixed metals leach liquor of e-waste materials by ion-exchange: Batch and column study. Minerals 2023, 13, 1285. [Google Scholar] [CrossRef]
- Xu, B.; Chen, Y.; Zhou, Y.; Zhang, B.; Liu, G.; Li, Q.; Yang, Y.; Jiang, T. A Review of Recovery of Palladium from the Spent Automobile Catalysts. Metals 2022, 12, 533. [Google Scholar] [CrossRef]
- Krstić, V.; Urošević, T.; Pešovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, V.; Sharma, K.; Kumar, V.; Choudhary, S.; Mankotia, P.; Kumar, B.; Mishra, H.; Moulick, A.; Ekielski, A.; et al. A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment. Materials 2021, 14, 4702. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Hu, Y.H. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: A review. J. Mater. Chem. A 2022, 10, 1047–1085. [Google Scholar] [CrossRef]
- Tofan, L.; Wenkert, R. Chelating polymers with valuable sorption potential for development of precious metal recycling technologies. Rev. Chem. Eng. 2020, 38, 167–183. [Google Scholar] [CrossRef]
- Kołodyńska, D. Chelating ion exchange resins in removal of heavy metal ions from waters and wastewaters in presence of a complexing agent. Przem. Chem. 2009, 88, 182–189. (In Polish) [Google Scholar]
- Sud, D. Chelating Ion Exchangers: Theory and Applications. In Ion Exchange Technology I; Dr, I., Luqman, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 373–401. [Google Scholar] [CrossRef]
- Sengupta, A.K.; Zhu, Y.; Hauze, D. Metal(II) ion binding onto chelating exchangers with nitrogen donor atoms: Some new observations and related implications. Environ. Sci. Technol. 1991, 25, 481–488. [Google Scholar] [CrossRef]
- Afolabi, F.O.; Musonge, P.; Bakare, B.F. Adsorption of Copper and Lead Ions in a Binary System onto Orange Peels: Optimization, Equilibrium, and Kinetic Study. Sustainability 2022, 14, 10860. [Google Scholar] [CrossRef]
- Zaimee, M.Z.A.; Sarjadi, M.S.; Rahman, M.L. Heavy Metals Removal from Water by Efficient Adsorbents. Water 2021, 13, 2659. [Google Scholar] [CrossRef]
- Product Data Sheet Lewatit VP OC 1065. Available online: https://lanxess.com/en-us/products-and-brands/products/l/lewatit--vp-oc-1065 (accessed on 25 July 2024).
- Product Data Sheet DiaionTM CR20. Available online: https://www.diaion.com.tw/upload-files/pdf/CR20.pdf (accessed on 25 July 2024).
- Wójcik, G. Sorption and reduction of chromium ions by the chelating ion exchanger Diaion CR20. Physicochem. Probl. Miner. Process. 2019, 55, 1382–1393. [Google Scholar] [CrossRef]
- Alesi, W.R.; Kitchin, J.R. Evaluation of a Primary Amine-Functionalized Ion-Exchange Resin for CO2 Capture. Ind. Eng. Chem Res. 2012, 51, 6907–6915. [Google Scholar] [CrossRef]
- Wołowicz, A.; Wawrzkiewicz, M.; Hubicki, Z. Toxic Heavy Metal Ions and Metal-Complex Dyes Removal from Aqueous Solutions Using an Ion Exchanger and Titanium Dioxide. Fibres Text. East. Eur. 2018, 26, 108–114. [Google Scholar] [CrossRef]
- Fiol, N.; Villaescusa, I. Determination of sorbent point zero charge: Usefulness in sorption studies. Environ. Chem. Lett. 2008, 7, 79–84. [Google Scholar] [CrossRef]
- Kosmulski, M. The pH dependent surface charging and points of zero charge. X. Update. Adv. Colloid Interface Sci. 2023, 319, 102973. [Google Scholar] [CrossRef]
- Giacomni, F.; Menegazzo, M.A.B.; da Silva, M.G.; da Silva, A.B.; Dornellas de Barros, M.A.S. Importância da determinação do ponto de carga zero como característica de tingimento de fibras proteicas [Point of zero charge of protein fibers, an important characteristic for dyeing]. Matéria 2017, 22, e11827. [Google Scholar] [CrossRef]
- Kosmulski, M. Surface Charging and Points of Zero Charge; CRC: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Sarbak, Z. Adsorption and Adsorbents: Theory and Application; Polish Scientific Publishers UAM: Poznań, Poland, 2000. (In Polish) [Google Scholar]
- Ling, P.; Liu, F.; Li, L.; Jing, X.; Yin, B.; Chen, K.; Li, A. Adsorption of divalent heavy metal ions onto IDA-chelating resins: Simulation of physicochemical structures and elucidation of interaction mechanisms. Talanta 2010, 81, 424–432. [Google Scholar] [CrossRef]
- Bąk, J.; Sofińska-Chmiel, W.; Gajewska, M.; Malinowska, P.; Kołodyńska, D. Determination of the Ni(II) Ions Sorption Mechanism on Dowex PSR2 and Dowex PSR3 Ion Exchangers Based on Spectroscopic Studies. Materials 2023, 16, 644. [Google Scholar] [CrossRef]
- Shi, J.; Yi, S.; He, H.; Long, C.; Li, A. Preparation of Nanoscale Zero-Valent Iron Supported on Chelating Resin with Nitrogen Donor Atoms for Simultaneous Reduction of Pb2+ and NO3−. Chem. Eng. J. 2013, 230, 166–171. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Fila, D.; Hubicki, Z. Recovery of Lanthanum(III) and Nickel(II) Ions from Acidic Solutions by the Highly Effective Ion Exchanger. Molecules 2020, 25, 3718. [Google Scholar] [CrossRef]
- Zong, L.; Liu, F.; Chen, D.; Zhang, X.; Ling, C.; Li, A. A Novel Pyridine Based Polymer for Highly Efficient Separation of Nickel from High-Acidity and High-Concentration Cobalt Solutions. Chem. Eng. J. 2018, 334, 995–1005. [Google Scholar] [CrossRef]
- Zagorodni, A.A.; Kotova, D.L.; Selemenev, V.F. Infrared Spectroscopy of Ion Exchange Resins: Chemical Deterioration of the Resins. React. Funct. Polym. 2002, 53, 157–171. [Google Scholar] [CrossRef]
- Kononova, O.N.; Duba, E.V.; Shnaider, N.I.; Pozdnyakov, I.A. Ion exchange extraction of platinum(IV) and palladium(II) from hydrochloric acid solutions. Russ. J. Appl. Chem. 2017, 90, 1239–1245. [Google Scholar] [CrossRef]
- Bernardis, F.L.; Grant, R.A.; Sherrington, D.C. A review of methods of separation of the platinum-group metals through their chloro-complexes. React. Funct. Polym. 2005, 65, 205–217. [Google Scholar] [CrossRef]
- Nikoloski, A.N.; Ang, K.-L. Review of the Application of Ion Exchange Resins for the Recovery of Platinum-Group Metals from Hydrochloric Acid Solutions. Miner. Process. Extr. Metall. Rev. 2013, 35, 369–389. [Google Scholar] [CrossRef]
- Gala, A.; Sanak-Rydlewska, S. Sorpcja jonów metali toksycznych z roztworów wodnych na odpadach naturalnych—Przegląd literaturowy. Górnictwo Geoinżynieria 2010, 34, 49–59. (In Polish) [Google Scholar]
- Ampiaw, R.E.; Lee, W. Persimmon tannins as biosorbents for precious and heavy metal adsorption in wastewater: A review. Int. J. Environ. Sci. Technol. 2020, 17, 3835–3846. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Selective adsorption of palladium(II) complexes onto the chelating ion exchange resin Dowex M 4195—Kinetic studies. Solv. Extr. Ion Exch. 2010, 28, 124–159. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. The use of the chelating resin of a new generation Lewatit MonoPlus TP-220 with the bis-picolylamine functional groups in the removal of selected metal ions from acidic solutions. Chem. Eng. J. 2012, 197, 493–508. [Google Scholar] [CrossRef]
- Yang, B.; Tong, X.; Deng, Z.; Lv, X. The Adsorption of Cu Species onto Pyrite Surface and Its Effect on Pyrite Flotation. J. Chem. 2016, 2016, 4627929. [Google Scholar] [CrossRef]
- Islam, M.A.; Angove, M.J.; Morton, D.W. Macroscopic and modeling evidence for nickel(II) adsorption onto selected manganese oxides and boehmite. J. Water Proc. Eng. 2019, 32, 100964. [Google Scholar] [CrossRef]
- El-Taib Heakal, F.; Abd-Ellatif, W.R.; Tantawy, N.S.; Taha, A.A. Impact of pH and temperature on the electrochemical and semiconducting properties of zinc in alkaline buffer media. RSC Adv. 2018, 8, 3816–3827. [Google Scholar] [CrossRef]
- Nguyen, V.N.H.; Song, S.J.; Lee, M.S. Selective Precipitation of Ammonium Hexachloropalladate from leaching solutions of cemented palladium with zinc. J. Min. Metall. Sect. B Metall. 2022, 58, 311–319. [Google Scholar] [CrossRef]
- Önder, T.; Wang, X.; Zimmermann, P.; Burheim, O.S.; Deng, L. Tailoring anion exchange membranes for palladium recovery from industrial solutions using electrodialysis. Chem. Eng. J. 2024, 488, 151037. [Google Scholar] [CrossRef]
- Kononova, O.N.; Duba, E.V.; Medovikov, D.V.; Krylov, A.S. Ion-Exchange Sorption of Palladium(II) from Hydrochloric Acid Solutions in the Presence of Silver(I). Russ. J. Phys. Chem. 2018, 92, 2053–2059. [Google Scholar] [CrossRef]
- Kononova, O.N.; Mikhaylova, N.V.; Melnikov, A.M.; Kononov, Y.S. Ion exchange recovery of zinc from chloride and chloride–sulfate solutions. Desalination 2011, 274, 150–155. [Google Scholar] [CrossRef]
- Wołowicz, A.; Wawrzkiewicz, M. Screening of Ion Exchange Resins for Hazardous Ni(II) Removal from Aqueous Solutions: Kinetic and Equilibrium Batch Adsorption Method. Processes 2021, 9, 285. [Google Scholar] [CrossRef]
- Chouchane, T.; Boukari, A.; Khireddine, O.; Chibani, S.; Chouchane, S. Equilibrium, kinetics, and thermodynamics of batch adsorption of Mn(II) ions on blast furnace slag (BFS) and kaolin (KGA). J. Eng. Appl. Sci. 2023, 70, 58. [Google Scholar] [CrossRef]
- Kakavandi, B.; Kalantary, R.R.; Farzadkia, M.; Mahvi, A.H.; Esrafili, A.; Azari, A.; Yari, A.R.; Javid, A.B. Enhanced chromium(VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. J. Environ. Health Sci. Eng. 2014, 12, 115. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Ion Exchange Recovery of Palladium(II) from Acidic Solutions Using Monodisperse Lewatit SR-7. Ind. Eng. Chem. Res. 2012, 51, 16688–16696. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Sorption behavior of Dowex PSR-2 and Dowex PSR-3 resins of different structures for metal(II) removal. Solvent Extr. Ion Exch. 2016, 34, 375–397. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Adsorption characteristics of noble metals on the strongly basic anion exchanger Purolite A-400TL. J. Mater. Sci. 2014, 49, 6191–6202. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Applicability of new acrylic, weakly basic anion exchanger Purolite A-830 of very high capacity in removal of palladium(II) chloro-complexes. Ind. Eng. Chem. Res. 2012, 51, 7223–7230. [Google Scholar] [CrossRef]
- Omidinasab, M.; Rahbar, N.; Ahmadi, M.; Kakavandi, B.; Ghanbari, F.; Kyzas, G.Z.; Martinez, S.S.; Jaafarzadeh, N. Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. Environ. Sci. Pollut. Res. 2018, 25, 34262–34276. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Carbon-based adsorber resin Lewatit AF 5 applicability in metal ion recovery. Micropor. Mesopor. Mater. 2016, 224, 400–414. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient adsorption of lead(II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef]
- Scheffler, A. Lewatit-MonoPlus. The Latest Generation of Monodisperse Ion Exchange Resin with Outstanding Properties for Optimizing Water Treatment System; Technical Bulletin; Bayer AG: Barmen, Germany, 1996. [Google Scholar]
- Dubois, I.; Holgersson, S.; Allars, S.; Malmström, M.E. Correlation between Particle Size and Surface Area for Chlorite and K-feldspar. Water-Rock Interaction; Birkle, P., Torres-Alvarado, I.S., Eds.; Taylor & Francis Group: London, UK, 2010. [Google Scholar]
- Liu, Y.; Miao, J.; Han, H.; Xu, P. Differences in Influence of Particle Size on the Adsorption Capacity between Deformed and Undeformed Coal. ACS Omega 2021, 6, 5886–5897. [Google Scholar] [CrossRef]
- Ten Hulscher, T.E.M.; Cornelissen, G. Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants—A review. Chemosphere 1996, 32, 609–626. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Hidalgo, M.; Salvadó, V. The separation of Au(III) and Pd(II) in hydrochloric acid solutions by strong anion type II exchange resin: The effect of counter ion concentration and temperature. Solvent Extr. Ion Exch. 2000, 18, 1199–1217. [Google Scholar] [CrossRef]
- Patel, H. Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Sci. Rep. 2020, 10, 16895. [Google Scholar] [CrossRef] [PubMed]
- Wasewar, K.L. Adsorption of metals onto tea factory waste: A review. Int. J. Res. Rev. Appl. Sci. 2010, 3, 303–32254. [Google Scholar]
- Jachuła, J.; Kołodyńska, D.; Hubicki, Z. Sorption of Cu(II) and Ni(II) ions in the presence of the methylglycinediacetic acid by microporous ion exchangers and sorbents from aqueous solutions. Open Chem. 2011, 9, 52–65. [Google Scholar] [CrossRef]
- Shen, C.; Chang, Y.; Fang, L.; Min, M.; Xiong, C.H. Selective removal of copper with polystyrene–1,3-diaminourea chelating resin: Synthesis and adsorption studies. New J. Chem. 2016, 40, 3588–3596. [Google Scholar] [CrossRef]
- Bień, T.; Kołodyńska, D.; Franus, W. Functionalization of Zeolite NaP1 for Simultaneous Acid Red 18 and Cu(II) Removal. Materials 2021, 14, 7817. [Google Scholar] [CrossRef]
- Ciesielczyk, F.; Bartczak, P.; Klapiszewski, Ł.; Jesionowski, T. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent. J. Hazard. Mater. 2017, 328, 150–159. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Marković, D.D.; Lekić, B.M.; Rajaković-Ognjanović, V.N.; Onjia, A.E.; Rajaković, L.V. A new approach in regression analysis for modeling adsorption isotherms. Sci. World. J. 2014, 2014, 930879. [Google Scholar] [CrossRef] [PubMed]
- Sivarajasekar, N.; Baskar, R. Adsorption of Basic Magenta II onto H2SO4 activated immature Gossypium hirsutum seeds: Kinetics. isotherms. mass transfer. thermodynamics and process design. Arab. J. Chem. 2019, 12, 1322–1337. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Aydin, S.; Kajjumba, G.W.; Emik, S.; Öngen, A.; Kurtulus Özcan, H.; Aydın, S. Modelling of adsorption kinetic processes-Errors, theory and application. In Advanced Sorption Process Applications; Edebali, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm models for adsorption of heavy metals from water—A review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef]
- Parodi, A.; Vincent, T.; Pilsniak, M.; Trochimczuk, A.W.; Guibal, E. Palladium and platinum binding on an imidazol containing resin. Hydrometallurgy 2008, 92, 1–10. [Google Scholar] [CrossRef]
- Nikoloski, A.N.; Ang, K.-L.; Li, D. Recovery of platinum, palladium and rhodium from acidic chloride leach solution using ion exchange resins. Hydrometallurgy 2015, 152, 20–32. [Google Scholar] [CrossRef]
- Agarwal, B.; Balomajumder, C.; Thakur, P.K. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon. Chem. Eng. J. 2013, 228, 655–664. [Google Scholar] [CrossRef]
- Istratie, R.; Stoia, M.; Păcurariu, C.; Locovei, C. Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arab. J. Chem. 2019, 12, 3704–3722. [Google Scholar] [CrossRef]
- Rakitskaya, T.L.; Vasylechko, V.O.; Kiose, T.A.; Dzhyga, G.M.; Gryshchouk, G.V.; Volkova, V.Y. Some features of Pd(II) and Cu(II) adsorption on bentonites. Ads. Sci. Technol. 2017, 35, 482–489. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, C.; Zhao, J.; Wang, S.; Zhou, Y.; Zhang, L. Adsorption behavior of Pd(II) ions from aqueous solution onto pyromellitic acid modified-UiO-66-NH2. Arab. J. Chem. 2020, 13, 7007–7019. [Google Scholar] [CrossRef]
Properties | Lewatit® VP OC 1065 | Diaion™ CR20 |
---|---|---|
Type | weakly basic anion exchanger | chelating ion exchanger |
Matrix | polystyrene–divinylbenzene (8–10% DVB) [26] | polystyrene–divinylbenzene |
Structure | macroporous | macroporous |
Functional groups | primary amine (benzylamine) | polyamine |
Ionic form as shipped | free base (FB) | free base (FB) |
Appearance | opaque beads | opaque beads |
Bead size | 0.315–1.25 mm (>90%) | 0.300–1.2 mm (min. 95%) particle size distribution on 1.18 mm (max. 5%), mean particle size 0.57 mm |
Fines | max. vol. 3% (<0.315 mm) | max. vol. 1% (<0.300 mm) |
Effective size | 0.47–0.57 mm | 0.4 mm |
Uniformity coefficient | max. 1.8 | 1.6 |
Total capacity | min. 2.2 eq/L | 1.4 eq/L min. 0.4 mmol/mL for Cu |
Operating temperature | max. 100 °C | max. 100 °C |
Effective pH range | - | 4 *–10 ** [24], 2–6 [25] |
Shipping density | 630–710 g/L | 640 g/L |
Total swelling, FB to Cl− | - | 10% |
Application | -selective adsorption of compounds containing acidic groups, -decolorization of sugar starch and protein solutions, -adsorption of atmospheric CO2 and aldehydes | -chemical process separations, -metals removal and recovery from wastewater: the selectivity towards metal ions: Hg2+ > Fe3+ > Cu2+ > Zn2+ > Cd2+ > Ni2+ > Co2+ > Ag+ > Mn2+ |
Ion Exchanger | Textural Parameters | ||
---|---|---|---|
SBET (m2/g) | Vtot (mL/g) | D (nm) | |
Lewatit® VP OC 1065 | 3.194 | 0.0285 | 35.74 |
BET approx. 50 [22] BET 1 26.2, 2 11.9 [25] | approx. 0.27 [22] BJH 1 0.26, 2 0.08 [25] | Pore diameter: avg. 25 [22] Pore radius: BJH 1 15.4; 2 15.2 [25] | |
Diaion™ CR20 | 44.538 | 0.7668 | 68.87 |
Sorbent | Types | Properties | Conditions | Optimal Agitation Speeds | Ref. |
---|---|---|---|---|---|
Dowex M4195 | chelating resin | M: St-DVB, S: macroporous, FG: bis-picolylamine | systems: 0.1 mol/L HCl–1.0 mol/L NaCl, 2.0 mol/L HCl–1.0 mol/L NaCl, 1.0 mol/L NaCl, m = 0.5 ± 0.0005 g, C0 = 100 mg Pd(II)/L, V = 0.05 L, Vas = 180 rpm, A = 8 and 350 rpm, A = 4, T = ambient, t = 1–720 min | 180 rpm, qe increases with Va increases up to 360 min, the system reaches equilibrium after a shorter period of time at 350 rpm | [43] |
Lewatit MonoPlus TP220 | chelating resin | M: St-DVB, S: macroporous, FG: bis-picolylamine | systems: 0.1 mol/L HCl (S1), m = 0.5 ± 0.0005 g, C0 = 500 mg Pd(II)/L, V = 0.05 L, Vas = 120, 150, 180 rpm, A = 8, T = ambient, t = 1–1440 min | 180 rpm, qe sligtly increases with phase contact time at 120 rpm; for 150 and 180 rpm, qe increases are not evident | [44] |
Lewatit MonoPlus SR7 | strongly basic anion exchanger | M: polistyrene, S: macroporous, FG: quaternary ammonium | systems: 0.1 mol/L HCl (S1), 0.9 mol/L HCl–0.1 mol/L HNO3 (S9), m = 0.5 ± 0.0005 g, C0 = 100 mg Pd(II)/L, V = 0.05 L, Vas = 120, 150, 180 rpm, A = 8, T = 298 ± 2 K, t = 1–1440 min | 180 rpm, qe increases with Va increases up to 60–120 min, qe = 9.99 mg/g at 1440 min, increase in the total concentration of the Cl− leads to the slowest kinetics | [55] |
Dowex PSR2 | strongly basic anion exchanger | M: St-DVB, S: micro- (PSR2) and macro- (PSR3) porous FG: tri-n-butylamine | systems: 0.1 mol/L HCl (S1), 0.9 mol/L HCl–0.1 mol/L HNO3 (S9), m = 0.5 ± 0.0005 g, C0 = 500 mg Pd(II)/L, V = 0.05 L, Vas = 120, 150, 180 rpm, A = 8, T = ambient, t = 1–240 min | 180 rpm, qe changes negligibly, the highest qe changes are observed for Pd(II) adsorption on Dowex PSR2 from S9 (qe increases from 23.9 to 26.3 mg/g); in S9, Va increases up to 60 min for the 120 rpm for Dowex PSR3 | [56] |
Dowex PSR3 | |||||
Purolite A400TL | strongly basic anion exchanger | M: St-DVB, S: microporous FG: quaternary ammonium | systems: 0.1 mol/L HCl (S1), 0.9 mol/L HCl–0.1 mol/L HNO3 (S9), m = 0.5 ± 0.0005 g, C0 = 500 mg Pd(II)/L, V = 0.05 L, Vas = 120, 150, 180 rpm, A = 8, T = ambient, t = 1–240 min, Sb = 0.425–0.85 mm | 180 rpm, qe increases with Va increases up to 60–120 min, then varies by less than 0.5% for S1 and 3% for S9; when Va increases, the time required to reach an equilibrium decreases from 60–120 min to 30 min (S1,S9) | [56] |
Purolite A830 | weakly basic anion exchanger | M: Pac-DVB, S: macroporous, FG: complex amine | systems: 0.1 mol/L HCl (S1), 0.9 mol/L HCl–0.1 mol/L HNO3 (S9), m = 0.5 ± 0.0005 g, C0 = 100 mg Pd(II)/L, V = 0.05 L, Vas = 120, 150, 180 rpm, A = 8, T = 298 ± 2 K, t = 1–1440 min | 180 rpm, qe increases with Va increases up to 60–120 min, qe = 9.7–10 mg/g; when Va increases, the system reaches equilibrium after a shorter period of time, i.e., after 15 (S1) and 120 min (S9) | [58] |
Fe3O4-CSN | magnetic chitosan nanoparticles | m = 1.5 g/L of Fe3O4-CSN, C0 = 10 mg Pd(II)/L, V = 0.05 L, Vas = 100–1400 rpm, t = 10 min, pH 6, T = 20 ± 1 °C | 500 rpm, qe sligtly decreases at Va above 500 rpm | [59] | |
Lewatit AF5 | resin without FG | M: carbonaceous, S: microporous, FG: none | systems: 0.1 mol/L HCl (S1), 0.9 mol/L HCl–0.1 mol/L HNO3 (S9), m = 0.5 ± 0.0005 g, C0 = 500 mg Pd(II)/L, V = 0.05 L, Vas = 120,140,180 rpm, A = 8, T = ambient, t = 1–240 min | 180 rpm, qe sligtly increases with Va, tendency is much more marked in S1 than S9 solutions at the beginning of the adsorption process | [60] |
Kinetic Model | Non-Linear Equation | Linear Equation | Parameters | |||||
---|---|---|---|---|---|---|---|---|
The pseudo-first-order kinetic model, PFO | (10) | (11) | k1 = −2.303 × slope qe = 10intercept | |||||
The pseudo-second-order kinetic model, PSO | (12) | (13) | k2 = slope2/interceptqe = 1/slope | |||||
The intraparticle diffusion model, IPD | - | (15) | ki = slope C = intercept | |||||
Error analysis | ||||||||
(16) | (17) | (18) |
Parameters | Diaion™ CR20 | Lewatit® VP OC 1065 | |||||||
---|---|---|---|---|---|---|---|---|---|
0.1 mol/L HCl | 1 mol/L HCl | 3 mol/L HCl | 6 mol/L HCl | 0.1 mol/L HCl | 1 mol/L HCl | 3 mol/L HCl | 6 mol/L HCl | ||
qe exp (mg/g) | 9.90 | 9.90 | 7.70 | 5.90 | 9.97 | 9.38 | 7.29 | 5.89 | |
PSO LN | qe cal (mg/g) | 9.939 | 9.938 | 7.868 | 5.807 | 9.987 | 9.438 | 7.370 | 6.037 |
k2 (g/mg min) | 0.149 | 0.047 | 0.025 | 0.023 | 0.373 | 0.085 | 0.048 | 0.018 | |
R2 | 1.000 | 1.000 | 1.000 | 0.995 | 1.000 | 1.000 | 1.000 | 0.999 | |
h | 37.18 | 7.53 | 2.61 | 0.65 | 14.74 | 4.60 | 1.54 | 0.78 | |
PSO Non—LN | qe cal (mg/g) | 10.29 | 9.90 | 7.34 | 5.42 | 10.12 | 9.63 | 6.78 | 5.42 |
k2 (g/mg min) | 0.068 | 0.046 | 0.040 | 0.038 | 0.185 | 0.060 | 0.103 | 0.038 | |
MPSD | 0.011 | 0.013 | 0.051 | 0.038 | 0.003 | 0.008 | 0.103 | 0.234 | |
R2 | 0.974 | 0.991 | 0.966 | 0.977 | 0.976 | 0.986 | 0.873 | 0.942 | |
R2adj | 0.966 | 0.989 | 0.956 | 0.970 | 0.969 | 0.982 | 0.837 | 0.925 |
Model | Parameters | Diaion™ CR20 | Lewatit® VP OC 1065 |
---|---|---|---|
Pd(II) | Pd(II) | ||
qe exp (mg/g) | 208.20 | 289.68 | |
Linear regression | |||
Langmuir | Q0 (mg/g) | 207.59 | 288.13 |
kL (L/mg) | 0.190 | 0.032 | |
R2 | 1.000 | 0.998 | |
Freundlich | kF (mg1−1/n L1/n/g) | 50.35 | 29.84 |
1/n | 0.207 | 0.337 | |
R2 | 0.776 | 0.830 | |
Non-linear regression | |||
Langmuir | Q0 (mg/g) | 183.48 | 258.85 |
kL (L/mg) | 1.286 | 0.087 | |
MPSD | 0.719 | 0.215 | |
R2 | 0.918 | 0.964 | |
R2adj | 0.877 | 0.946 | |
Freundlich | kF (mg1−1/n L1/n/g) | 29.73 | 18.95 |
1/n | 0.267 | 0.383 | |
MPSD | 1.233 | 1.078 | |
R2 | 0.857 | 0.860 | |
R2adj | 0.785 | 0.790 |
Eluting Agent | 0.1 M HCl—100 mg Pd(II)/L | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diaion™ CR20 | Lewatit® VP OC 1065 | ||||||||||||
%S1 | %D1 | %S2 | %D2 | %S3 | %D3 | %S1 | %D1 | %S2 | %D2 | %S3 | %D3 | ||
1 | 0.1 mol/L HNO3 | 99.88 | 0.04 | 99.85 | 0.04 | 99.72 | 0.35 | 99.86 | 0.18 | 99.67 | 0.19 | 99.64 | 0.17 |
2 | 1 mol/L HNO3 | 99.88 | 0.08 | 99.77 | 0.10 | 99.75 | 0.30 | 99.86 | 2.76 | 99.65 | 12.77 | 99.54 | 11.71 |
3 | 2 mol/L HNO3 | 99.88 | 0.47 | 99.70 | 0.40 | 99.71 | 0.91 | 99.86 | 4.10 | 99.36 | 14.60 | 98.50 | 16.31 |
4 | 0.1 mol/L HCl | 99.88 | 0.00 | 99.78 | 0.06 | 99.75 | 0.10 | 99.86 | 0.16 | 99.83 | 0.20 | 99.74 | 0.18 |
5 | 1 mol/L HCl | 99.88 | 0.82 | 99.70 | 1.23 | 99.81 | 1.53 | 99.86 | 3.13 | 99.74 | 3.59 | 99.05 | 4.82 |
6 | 2 mol/L HCl | 99.88 | 7.72 | 99.88 | 8.73 | 99.78 | 9.74 | 99.86 | 7.98 | 99.71 | 13.38 | 99.37 | 14.73 |
7 | 0.1 mol/L NH3·H2O | 99.88 | 2.90 | 99.62 | 6.80 | 98.75 | 6.78 | 99.86 | 0.26 | 99.87 | 0.34 | 99.75 | 0.45 |
8 | 1 mol/L NH3·H2O | 99.88 | 17.52 | 99.54 | 19.92 | 90.24 | 23.37 | 99.86 | 15.95 | 95.79 | 18.47 | 93.39 | 19.35 |
9 | 2 mol/L NH3·H2O | 99.88 | 23.77 | 99.55 | 27.85 | 85.49 | 27.89 | 99.86 | 33.57 | 92.51 | 34.18 | 92.02 | 37.12 |
Figure 14a | Figure 14b | ||||||||||||
10 | 0.1 mol/L NaOH | 99.88 | 1.43 | 99.63 | 1.18 | 99.53 | 1.23 | 99.86 | 2.15 | 99.50 | 1.54 | 99.55 | 1.20 |
11 | 1 mol/L NaOH | 99.88 | 1.52 | 99.59 | 1.13 | 99.49 | 1.48 | 99.86 | 0.76 | 99.84 | 0.50 | 99.82 | 0.45 |
12 | 2 mol/L NaOH | 99.88 | 0.47 | 99.53 | 1.13 | 99.68 | 1.54 | 99.86 | 0.32 | 99.87 | 0.14 | 99.91 | 0.13 |
13 | 0.1 mol/L H2SO4 | 99.88 | 0.30 | 99.43 | 0.47 | 99.64 | 0.26 | 99.86 | 0.65 | 99.55 | 0.58 | 99.31 | 0.53 |
14 | 1 mol/L H2SO4 | 99.88 | 0.23 | 99.62 | 0.22 | 99.52 | 0.33 | 99.86 | 1.46 | 98.84 | 3.44 | 97.58 | 5.03 |
15 | 2 mol/L H2SO4 | 99.88 | 0.26 | 99.57 | 0.25 | 99.51 | 0.39 | 99.86 | 3.05 | 97.50 | 7.79 | 95.83 | 9.66 |
System | Lewatit® VP OC 1065 | Diaion™ CR20 | ||||
---|---|---|---|---|---|---|
Cw (g/mL) | Dw (mL/g) | Db | Cw (g/mL) | Dw (mL/g) | Db | |
Pd(II) | ||||||
0.1 mol/L HCl | 0.1050 | 3821.7 | 1273.4 | 0.0545 | 2077.3 | 668.9 |
1 mol/L HCl | 0.0140 | 694.5 | 231.4 | 0.0280 | 1184.5 | 381.4 |
3 mol/L HCl | 0.0040 | 214.3 | 71.4 | 0.0050 | 296.3 | 95.4 |
6 mol/L HCl | 0.0010 | 127.3 | 42.4 | 0.0020 | 137.9 | 44.4 |
0.1 mol/L HCl–0.9 mol/L HNO3 | 0.0050 | 292.3 | 97.4 | 0.0310 | 1327.3 | 427.4 |
0.2 mol/L HCl–0.8 mol/L HNO3 | 0.0070 | 298.3 | 99.4 | 0.0180 | 1122.4 | 361.4 |
0.5 mol/L HCl–0.5 mol/L HNO3 | 0.0070 | 298.3 | 99.4 | 0.0140 | 701.6 | 225.9 |
0.8 mol/L HCl–0.2 mol/L HNO3 | 0.0090 | 491.9 | 163.9 | 0.0184 | 928.3 | 298.9 |
0.9 mol/L HCl–0.1 mol/L HNO3 | 0.0140 | 584.9 | 194.9 | 0.0230 | 1007.5 | 324.4 |
Cu(II) | ||||||
0.1 mol/L HCl | 0.0002 | 16.2 | 5.4 | 0.0001 | 6.2 | 2.0 |
1 mol/L HCl | 0.0002 | 4.8 | 1.6 | 0.0001 | 6.2 | 2.0 |
3 mol/L HCl | 0.0002 | 4.2 | 1.4 | 0.0001 | 6.5 | 2.1 |
6 mol/L HCl | 0.0001 | 19.8 | 6.6 | 0.0001 | 10.9 | 3.5 |
0.1 mol/L HCl–0.9 mol/L HNO3 | 0.0003 | 6.3 | 2.1 | 0.0003 | 6.6 | 2.1 |
0.2 mol/L HCl–0.8 mol/L HNO3 | 0.0002 | 3.3 | 1.1 | 0.0003 | 5.3 | 1.7 |
0.5 mol/L HCl–0.5 mol/L HNO3 | 0.0002 | 5.4 | 1.8 | 0.0002 | 5.2 | 1.7 |
0.8 mol/L HCl–0.2 mol/L HNO3 | 0.0002 | 4.8 | 1.6 | 0.0002 | 6.7 | 2.2 |
0.9 mol/L HCl–0.1 mol/L HNO3 | 0.0003 | 6.3 | 2.1 | 0.0002 | 5.2 | 1.7 |
Process | Parameters | Plot | Additional Information | |||
---|---|---|---|---|---|---|
Adsorption | effects of HCl, HNO3 concentration | m = 0.5 ± 0.0005 g, C0 = 100 mg M(II)/L, V = 0.05 L, Vas = 180 rpm, A = 8, T = 293 K, t = 1 min–4 h | qt vs. t | Pd(II) S1–S9 | 0.1–6.0 mol/L HCl—100 mg M(II)/L; 0.1–0.9 mol/L HCl—0.9–0.1 mol/L HNO3—100 mg M(II)/L | |
Sb = 0.300–1.2 mm Diaion™ CR20 | Sb = 0.315–1.25 mm Lewatit® VP OC 1065 | Cu(II) S1 *–S9 * | ||||
Kinetics | initial Pd(II) concentration | m = 0.5 ± 0.0005 g, C0 = 100, 500 mg/L, 1000 mg/L, V = 0.05 L, Vas = 180 rpm, A = 8, T = 293 K, t = 1 min–4 h | qt vs. t | 0.1 mol/L HCl—x mg Pd(II)/L; 0.9 mol/L HCl–0.1 mol/L HNO3—x mg Pd(II)/L, x—100, 500 mg/L, 1000 mg/L | ||
Sb = 0.300–1.2 mm Diaion™ CR20 | Sb = 0.315–1.25 mm Lewatit® VP OC 1065 | |||||
agitation speed | m = 0.5 ± 0.0005 g, C0 = 500 mg/L, V = 0.05 L, Vas = 120, 150, 180 rpm, A = 8, T = 293 K, t = 1 min–4 h | qt vs. t | 0.1 mol/L HCl—500 mg Pd(II)/L; 0.9 mol/L HCl–0.1 mol/L HNO3—500 mg Pd(II)/L | |||
Sb = 0.300–1.2 mm Diaion™ CR20 | Sb = 0.315–1.25 mm Lewatit® VP OC 1065 | |||||
bead size | m = 0.5 ± 0.0005 g, C0 = 500 mg/L, V = 0.05 L, Vas = 180 rpm, A = 8, T = 293 K | qt vs. t | 0.1 mol/L HCl—500 mg Pd(II)/L; 0.9 mol/L HCl–0.1 mol/L HNO3—500 mg Pd(II)/L | |||
t = 1 min–4 h for f2, f3, t = 4 h for f1, f4, f5 Diaion™ CR20 | t = 1 min–4 h for f1, f2, f3, t = 4 h for f4, f5 Lewatit® VP OC 1065 | |||||
temperature | m = 0.5 ± 0.0005 g, C0 = 500 mg/L, V = 0.05 L, Vas = 180 rpm, A = 8, T = 293, 313, 333 K | qt vs. t | 0.1 mol/L HCl—500 mg Pd(II)/L; 0.9 mol/L HCl–0.1 mol/L HNO3—500 mg Pd(II)/L | |||
Sb = 0.300–1.2 mm Diaion™ CR20 | Sb = 0.315–1.25 mm Lewatit® VP OC 1065 | |||||
Isotherm | initial M(II) concentration | m = 0.5 ± 0.0005 g, C0 = 1–5000 mg/L, V = 0.05 L, Vas = 180 rpm, A = 8, T = 293 K, t = 24 h | qe vs. Ce | 0.1 mol/L HCl—x mg M(II)/L; Pd(II) C0 = 100–5000 mg/L; Ni(II), Zn(II) C0 = 20–500 mg/L; Cu(II) C0 = 1–80 mg/L. | ||
Sb = 0.300–1.2 mm Diaion™ CR20 | Sb = 0.315–1.25 mm Lewatit® VP OC 1065 | |||||
Desorption | eluting agent type and concentration | m = 0.5 ± 0.0005 g, V = 0.05 L, Vas = 180 rpm, A = 8, T = 293 K, t = 4 h, eluting agents: 0.1, 1, 2 mol/L HNO3, HCl, NH3∙H2O, NaOH, H2SO4 | %S or %D vs. Co and type | Adsorption S: 0.1 mol/L HCl—100 mg Pd(II)/L; 6 mol/L HCl—100 mg Cu(II)/L; Desorption D: 0.1, 1, 2 mol/L HNO3, HCl, NH3∙H2O, NaOH, H2SO4 | ||
Sb = 0.300–1.2 mm Diaion™ CR20 | Sb = 0.315–1.25 mm Lewatit® VP OC 1065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołowicz, A.; Hubicki, Z. Evaluation of Adsorption Ability of Lewatit® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II). Molecules 2024, 29, 4386. https://doi.org/10.3390/molecules29184386
Wołowicz A, Hubicki Z. Evaluation of Adsorption Ability of Lewatit® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II). Molecules. 2024; 29(18):4386. https://doi.org/10.3390/molecules29184386
Chicago/Turabian StyleWołowicz, Anna, and Zbigniew Hubicki. 2024. "Evaluation of Adsorption Ability of Lewatit® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II)" Molecules 29, no. 18: 4386. https://doi.org/10.3390/molecules29184386
APA StyleWołowicz, A., & Hubicki, Z. (2024). Evaluation of Adsorption Ability of Lewatit® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II). Molecules, 29(18), 4386. https://doi.org/10.3390/molecules29184386