Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS Procedure
2.2. Extraction Optimization
2.3. Variables Affecting PLE
2.4. Model Verification
2.5. Application of Mathematically Designed Optimal PLE Conditions to Extract Vitamin K1 from Various Vegetables and Fruits
2.6. Effect of Water on the Efficiency of Vitamin K1 Extraction from Plant Matrices
3. Materials and Methods
3.1. Plant Materials and Chemicals
3.2. Pressurized Liquid Extraction
3.3. Ultrasound-Assisted Solvent Extraction
3.4. LC-MS Analysis, Validation, and Statistical Analysis
3.5. Experimental Design and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popa, D.S.; Bigman, G.; Rusu, M.E. The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants 2021, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. Int. J. Mol. Sci. 2019, 20, 4150. [Google Scholar] [CrossRef]
- Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a diet supplement with impact in human health: Current evidence in age-related diseases. Nutrients 2020, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Nimptsch, K.; Rohrmann, S.; Linseisen, J. Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am. J. Clin. Nutr. 2008, 87, 985–992. [Google Scholar] [CrossRef]
- Fusaro, M.; Gallieni, M.; Porta, C.; Nickolas, T.L.; Khairallah, P. Vitamin K effects in human health: New insights beyond bone and cardiovascular health. J. Nephrol. 2020, 33, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Dofferhoff, A.S.M.; Piscaer, I.; Schurgers, L.J.; Visser, M.P.J.; van den Ouweland, J.M.W.; de Jong, P.A.; Gosens, R.; Hackeng, T.M.; van Daal, H.; Lux, P.; et al. Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease. Clin. Infect. Dis. 2020, 73, e4039–e4046. [Google Scholar] [CrossRef]
- Wianowska, D.; Bryshten, I. New insights into vitamin K—From its natural sources through biological properties and chemical methods of quantitative determination. Crit. Rev. Anal. Chem. 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Bala, V.; Mao, Z.; Chhonker, Y.S.; Murry, D.J. Aconcise Reviev of Quantification Methods for Determination of Vitamin K in Various Biological Matrices. J. Pharm. Biomed. Anal. 2019, 169, 133–141. [Google Scholar] [CrossRef]
- Karl, J.P.; Fu, X.; Dolnikowski, G.G.; Saltzman, E.; Booth, S.L. Quantification of Phylloquinone and Menaquinones in Feces, Serum, and Food by High-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 963, 128–133. [Google Scholar] [CrossRef]
- Huang, B.; Wang, Z.; Yao, J.; Ke, X.; Xu, J.; Pan, X.-D.; Xu, X.; Lu, M.; Ren, Y. Quantitative Analysis of Vitamin K1 in Fruits and Vegetables by Isotope Dilution LC-MS/MS. Anal. Methods 2016, 8, 5707–5711. [Google Scholar] [CrossRef]
- Riphagen, I.J.; van der Molen, J.C.; van Faassen, M.; Navis, G.; de Borst, M.H.; Muskiet, F.A.J.; de Jong, W.H.A.; Bakker, S.J.L.; Kema, I.P. Measurement of plasma vitamin K1 (phylloquinone) and K2 (menaquinones-4 and -7) using HPLC-tandem mass spectrometry. Clin. Chem. Lab. Med. 2016, 54, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Rishipal, S.; Alka, P.; Mojeer, H.; Bibhu Prasad, P. Development of a Rapid HPLC-UV Method for Analysis of Menaquinone-7 in Soy Nutraceutical. Pharm. Anal. Acta 2016, 7, 7–12. [Google Scholar] [CrossRef]
- Klapkova, E.; Cepova, J.; Dunovska, K.; Prusa, R. Determination of vitamins K 1, MK-4, and MK-7 in human serum of postmenopausal women by HPLC with fluorescence detection. J. Clin. Lab. Anal. 2018, 32, e22381. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Li, Y.; Ding, R.; Zhai, Y.; Chem, L.; Qian, W.; Yang, J. A simple, sensitive, and high-throughput LC-APCI-MS/MS method for simultaneous determination of vitamin K1, Vitamin K1 2,3-epoxide in human plasma and its application to a clinical pharmacodynamics study of warfarin. J. Pharm. Biomed. Anal. 2018, 159, 82–91. [Google Scholar] [CrossRef]
- Dunovska, K.; Klapkova, E.; Sopko, B.; Cepova, J.; Prusa, R. LC-MS/MS quantitative analysis of phylloquinone, menaquinone-4 and menaquinone-7 in the human serum of a healthy population. PeerJ 2019, 7, e7695. [Google Scholar] [CrossRef]
- Paprotny, Ł.; Szewczak, D.; Bryshten, I.; Wianowska, D. Development, Validation, and Two-Year Application of Rapid and Simple LC-MS/MS-Based Method for the Determination of K2MK-7 in Blood Samples. Molecules 2023, 28, 6523. [Google Scholar] [CrossRef]
- Viñas, P.; Bravo-Bravo, M.; López-García, I.; Hernández-Córdoba, M. Dispersive Liquid-Liquid Microextraction for the Determination of Vitamins D and K in Foods by Liquid Chromatography with Diode-Array and Atmospheric Pressure Chemical Ionization-Mass Spectrometry Detection. Talanta 2013, 115, 806–813. [Google Scholar] [CrossRef]
- Viñas, P.; Campillo, N.; López-García, I.; Hernández-Córdoba, M. Dispersive Liquid-Liquid Microextraction in Food Analysis. A Critical Review Microextraction Techniques. Anal. Bioanal. Chem. 2014, 406, 2067–2099. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Jakobsen, J. Analysis of vitamin K1 in Fruits and Vegetables Using Accelerated Solvent Extraction and Liquid Chromatography Tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization. Food Chem. 2016, 192, 402–408. [Google Scholar] [CrossRef]
- Elder, S.J.; Haytowitz, D.B.; Howe, J.; Peterson, J.W.; Booth, S.L. Vitamin K Contents of Meat Dairy and Fast Food in the U.S. Diet. J. Agric. Food Chem. 2006, 54, 463–467. [Google Scholar] [CrossRef]
- Dismore, M.L.; Haytowitz, D.B.; Gebhardt, S.E.; Peterson, J.W.; Booth, S.L. Vitamin K Content of Nuts and Fruits in the US Diet. J. Am. Diet. Assoc. 2003, 103, 1650–1652. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, C.; Raes, J.; van ’t Hoofd, C.; Knapen, M.H.J.; Xanthoulea, S. Menaquinone Content of Cheese. Nutrients 2018, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Wianowska, D.; Gil, M. Critical Approach to PLE Technique Application in the Analysis of Secondary Metabolites in Plants. TrAC Trends Anal. Chem. 2019, 114, 314–325. [Google Scholar] [CrossRef]
- Wianowska, D.; Olszowy-Tomczyk, M.; Garbaczewska, S. A Central Composite Design in increasing the quercetin content in the aqueous onion waste isolates with antifungal and antioxidant properties. Eur. Food Res. Technol. 2022, 248, 497–505. [Google Scholar] [CrossRef]
- What Are Response Surface Designs, Central Composite Designs, and Box-Behnken Designs? Available online: https://support.minitab.com/en-us/minitab/help-and-how-to/statistical-modeling/doe/supporting-topics/response-surface-designs/response-surface-central-composite-and-box-behnken-designs/ (accessed on 29 August 2024).
- Bryshten, I.; Paprotny, Ł.; Olszowy-Tomczyk, M.; Wianowska, D. Antioxidant Properties of Green Plants with Different Vitamin K Contents. Molecules 2024, 29, 3655. [Google Scholar] [CrossRef]
- Kamao, M.; Suhara, Y.; Tsugawa, N.; Uwano, M.; Yamagichi, N.; Uenishi, K.; Ishida, H.; Sasaki, S.; Okano, T. Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J. Nutr. Sci. Vitaminol. 2007, 53, 464–470. [Google Scholar] [PubMed]
- Xu, Y.; Zhang, L.; Yang, R.; Yu, X.; Yu, L.; Ma, F.; Hui, L.; Wang, X.; Li, P. Extraction and determination of vitamin K1 in foods by ultrasound-assisted extraction, SPE, and LC-MS/MS. Molecules 2020, 25, 839. [Google Scholar] [CrossRef]
- Buniowska, M.; Arrigoni, E.; Znamirowska, A.; Blesa, J.; Frígola, A.; Esteve, M.J. Liberation and micellarization of carotenoids from different smoothies after thermal and ultrasound Treatments. Foods 2019, 8, 492. [Google Scholar] [CrossRef]
- Hornero-Méndez, D.; Mínguez-Mosquera, M.I. Bioaccessibility of carotenes from carrots: Effect of cooking and addition of oil. Innov. Food Sci. Emerg. Technol. 2007, 8, 407–412. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation; FDA: Silver Spring, MD, USA, 2001; pp. 4–10. Available online: http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf (accessed on 12 August 2022).
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
Validation Parameter | Phylloquinone Analysis |
---|---|
Linearity (R2) | 0.9968 |
Intraday precision (% CV) | 3.95–5.55 |
Interday precision (% CV) | 5.08–5.84 |
Intraday accuracy (% BIAS) | −3.88–10.72 |
Interday accuracy (% BIAS) | −4.36–8.15 |
LOD (ng/mL) | 0.024 |
LOQ (ng/mL) | 0.072 |
Recovery | Recovery percentages estimated using optimal extraction conditions were more than 90% |
Matrix effect | No significant differences were found between the signal ratios of analyte to IS at both analyte concentration levels; therefore, the presented method is not subject to matrix influence. |
Selectivity | The absence of peaks in the retention time of the analyte and IS and/or significant interferences in the chromatogram confirms the selectivity of the presented method. |
Run | Independent Variables | Vitamin K1 Yield (Y) [µg/g] | |||
---|---|---|---|---|---|
Temperature | Pressure | Time | Experimental | Predicted | |
X1 | X2 | X3 | |||
1 | 50 | 40 | 5 | 17.45 | 17.72 |
2 | 50 | 40 | 10 | 18.37 | 18.62 |
3 | 50 | 40 | 15 | 20.26 | 19.95 |
4 | 50 | 60 | 5 | 17.70 | 18.27 |
5 | 50 | 60 | 10 | 18.72 | 19.38 |
6 | 50 | 60 | 15 | 21.81 | 20.90 |
7 | 50 | 100 | 5 | 17.45 | 16.62 |
8 | 50 | 100 | 10 | 17.73 | 18.12 |
9 | 50 | 100 | 15 | 20.11 | 20.03 |
10 | 100 | 40 | 5 | 21.56 | 21.13 |
11 | 100 | 40 | 10 | 20.15 | 19.98 |
12 | 100 | 40 | 15 | 18.37 | 19.25 |
13 | 100 | 60 | 5 | 23.85 | 21.70 |
14 | 100 | 60 | 10 | 20.53 | 20.74 |
15 | 100 | 60 | 15 | 19.95 | 20.21 |
16 | 100 | 100 | 5 | 18.79 | 20.07 |
17 | 100 | 100 | 10 | 19.57 | 19.51 |
18 | 100 | 100 | 15 | 19.19 | 19.37 |
19 | 150 | 40 | 5 | 15.41 | 16.06 |
20 | 150 | 40 | 10 | 13.76 | 12.85 |
21 | 150 | 40 | 15 | 10.31 | 10.07 |
22 | 150 | 60 | 5 | 15.83 | 16.64 |
23 | 150 | 60 | 10 | 13.18 | 13.63 |
24 | 150 | 60 | 15 | 10.93 | 11.04 |
25 | 150 | 100 | 5 | 15.21 | 15.04 |
26 | 150 | 100 | 10 | 13.26 | 12.42 |
27 | 150 | 100 | 15 | 10.10 | 10.22 |
Variation Source | The Vitamin K1 Yield | ||||
---|---|---|---|---|---|
Sum of Square (SS) | Degree of Freedom (df) | Mean Square (MS) | F-Value | p-Value | |
X1 | 145.22 | 1 | 145.22 | 190.15 | <0.0001 |
X2 | 0.99 | 1 | 0.99 | 1.29 | 0.2716 * |
X3 | 7.41 | 1 | 7.41 | 9.71 | 0.0063 |
X12 | 107.50 | 1 | 107.50 | 141.34 | <0.0001 |
X22 | 4.91 | 1 | 4.91 | 6.42 | 0.0214 |
X32 | 0.26 | 1 | 0.26 | 0.34 | 0.5651 * |
X1 X2 | 0.01 | 1 | 0.01 | 0.01 | 0.9361 * |
X1 X3 | 50.71 | 1 | 50.71 | 66.41 | <0.0001 |
X2 X3 | 1.07 | 1 | 1.07 | 1.40 | 0.2524 * |
Residual | 12.98 | 17 | 44.49 | ||
Cor total | 336.32 | 26 | |||
R2 | 0.9614 | ||||
Radj2 | 0.9410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryshten, I.; Paprotny, Ł.; Olszowy-Tomczyk, M.; Wianowska, D. Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS. Molecules 2024, 29, 4420. https://doi.org/10.3390/molecules29184420
Bryshten I, Paprotny Ł, Olszowy-Tomczyk M, Wianowska D. Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS. Molecules. 2024; 29(18):4420. https://doi.org/10.3390/molecules29184420
Chicago/Turabian StyleBryshten, Iryna, Łukasz Paprotny, Małgorzata Olszowy-Tomczyk, and Dorota Wianowska. 2024. "Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS" Molecules 29, no. 18: 4420. https://doi.org/10.3390/molecules29184420
APA StyleBryshten, I., Paprotny, Ł., Olszowy-Tomczyk, M., & Wianowska, D. (2024). Quantitative Study of Vitamin K in Plants by Pressurized Liquid Extraction and LC-MS/MS. Molecules, 29(18), 4420. https://doi.org/10.3390/molecules29184420