Unrevealing Lithium Repositioning in the Hallmarks of Cancer: Effects of Lithium Salts (LiCl and Li2CO3) in an In Vitro Cervical Cancer Model
Abstract
:1. Introduction
2. Results
2.1. Effect of Lithium Salts over Cell Proliferation of CC
2.2. Effect of Lithium Salts over the DNA Fragmentation of CC Cell Lines
2.2.1. Effect of Lithium Salts over the Apoptotic Protein’s Expression of CC Cell Lines
2.2.2. TUNEL Assay of LiCl- and Li2CO3-Treated Cells
2.2.3. Flow Cytometry Apoptosis Assay (Annexin V/IP)
2.3. Effect of Lithium Salts on Cellular Migration of CC Cell Lines (Wound-Healing Assay)
2.4. Effect of Lithium Salts over the Cell Cycle Progression of CC Cell Lines
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Reactive and Materials
4.3. Proliferation Assay
4.4. Determination of IC50
4.5. Western Blot Assay (Apoptosis)
4.6. TUNEL Assay (Apoptosis)
4.7. Flow Cytometry (Annexin V/IP)
4.8. Wound-Healing Assay
4.9. Flow Cytometry (Cell Cycle Analysis)
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ©International Agency for Research on Cancer (IARC). Dataviz. Available online: https://gco.iarc.fr/today/en/dataviz/tables?mode=population&cancers=23&types=1 (accessed on 4 March 2022).
- Campos, N.G.; Sharma, M.; Clark, A.; Lee, K.; Geng, F.; Regan, C.; Kim, J.; Resch, S. The health and economic impact of scaling cervical cancer prevention in 50 low-and lower-middle-income countries. Int. J. Gynecol. Obstet. 2017, 138, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023, 11, e197–e206. [Google Scholar] [CrossRef]
- Wilailak, S.; Kengsakul, M.; Kehoe, S. Worldwide initiatives to eliminate cervical cancer. Int. J. Gynecol. Obstet. 2021, 155, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Tortolero-Luna, G.; Franco, E.L. Epidemiology of Cervical, Vulvar, and Vaginal Cancers. In Gynecologic Cancer; Gershenson, D.M., McGuire, W.P., Gore, M., Quinn, M.A., Thomas, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 3–30. ISBN 9780443071423. [Google Scholar]
- Kessler, T.A. Cervical cancer: Prevention and early detection. Semin. Oncol. Nurs. 2017, 33, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Monk, B.; Devouassoux-Shisheboran, M. Adenocarcinoma of the uterine cervix: Why is it different? Curr. Oncol. Rep. 2014, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.-J.; Greer, B.E.; Abu-Rustum, N.R.; Apte, S.M.; Campos, S.M.; Cho, K.R.; Chu, C.; Cohn, D.; Crispens, M.A.; Dorigo, O. Cervical cancer, version 2. J. Natl. Compr. Cancer Netw. 2015, 13, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Landoni, F.; Maneo, A.; Colombo, A.; Placa, F.; Milani, R.; Perego, P.; Favini, G.; Ferri, L.; Mangioni, C. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet 1997, 350, 535–540. [Google Scholar] [CrossRef]
- Small, W., Jr.; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N. Cervical cancer: A global health crisis. Cancer 2017, 123, 2404–2412. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol. 2017, 69, 5–23. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat. Rev. 2020, 86, 102019. [Google Scholar] [CrossRef]
- Bahrami, A.; Hasanzadeh, M.; ShahidSales, S.; Yousefi, Z.; Kadkhodayan, S.; Farazestanian, M.; Joudi Mashhad, M.; Gharib, M.; Mahdi Hassanian, S.; Avan, A. Clinical significance and prognosis value of Wnt signaling pathway in cervical cancer. J. Cell. Biochem. 2017, 118, 3028–3033. [Google Scholar] [CrossRef] [PubMed]
- Kabacs, N.; Memon, A.; Obinwa, T.; Stochl, J.; Perez, J. Lithium in drinking water and suicide rates across the East of England. Br. J. Psychiatry 2011, 198, 406–407. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Terao, T.; Araki, Y.; Kohno, K.; Mizokami, Y.; Shiotsuki, I.; Hatano, K.; Makino, M.; Kodama, K.; Iwata, N. Low risk of male suicide and lithium in drinking water. J. Clin. Psychiatry 2015, 76, 10893. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, N.D.; Mossaheb, N.; Etzersdorfer, E.; Hlavin, G.; Thau, K.; Willeit, M.; Praschak-Rieder, N.; Sonneck, G.; Leithner-Dziubas, K. Lithium in drinking water and suicide mortality. Br. J. Psychiatry 2011, 198, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Villegas-Vázquez, E.Y.; Quintas-Granados, L.I.; Cortés, H.; González-Del Carmen, M.; Leyva-Gómez, G.; Rodríguez-Morales, M.; Bustamante-Montes, L.P.; Silva-Adaya, D.; Pérez-Plasencia, C.; Jacobo-Herrera, N. Lithium: A promising anticancer agent. Life 2023, 13, 537. [Google Scholar] [CrossRef]
- Azimian-Zavareh, V.; Hossein, G.; Janzamin, E. Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells. Indian J. Pharmacol. 2012, 44, 714. [Google Scholar]
- Kim, H.Y.; Li, S.; Lee, D.J.; Park, J.H.; Muramatsu, T.; Harada, H.; Jung, Y.S.; Jung, H.S. Activation of Wnt signalling reduces the population of cancer stem cells in ameloblastoma. Cell Prolif. 2021, 54, e13073. [Google Scholar] [CrossRef]
- Yao, R.; Sun, X.; Xie, Y.; Liu, L.; Han, D.; Yao, Y.; Li, H.; Li, Z.; Xu, K. Lithium chloride inhibits cell survival, overcomes drug resistance, and triggers apoptosis in multiple myeloma via activation of the Wnt/β-catenin pathway. Am. J. Transl. Res. 2018, 10, 2610. [Google Scholar]
- Zubčić, V.; Rinčić, N.; Kurtović, M.; Trnski, D.; Musani, V.; Ozretić, P.; Levanat, S.; Leović, D.; Sabol, M. GANT61 and lithium chloride inhibit the growth of head and neck cancer cell lines through the regulation of GLI3 processing by GSK3β. Int. J. Mol. Sci. 2020, 21, 6410. [Google Scholar] [CrossRef]
- O’Donovan, T.R.; Rajendran, S.; O’Reilly, S.; O’Sullivan, G.C.; McKenna, S.L. Lithium modulates autophagy in esophageal and colorectal cancer cells and enhances the efficacy of therapeutic agents in vitro and in vivo. PLoS ONE 2015, 10, e0134676. [Google Scholar] [CrossRef]
- Han, S.; Meng, L.; Jiang, Y.; Cheng, W.; Tie, X.; Xia, J.; Wu, A. Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br. J. Cancer 2017, 116, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Razmi, M.; Rabbani-Chadegani, A.; Hashemi-Niasari, F.; Ghadam, P. Lithium chloride attenuates mitomycin C induced necrotic cell death in MDA-MB-231 breast cancer cells via HMGB1 and Bax signaling. J. Trace Elem. Med. Biol. 2018, 48, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, F.; Conte, A.; Aversano, A.; Muto, P.; Ametrano, G.; Riccio, P.; Turano, M.; Valente, V.; Delrio, P.; Izzo, P. Lithium chloride increases sensitivity to photon irradiation treatment in primary mesenchymal colon cancer cells. Mol. Med. Rep. 2020, 21, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Vijay, G.V.; Zhao, N.; Den Hollander, P.; Toneff, M.J.; Joseph, R.; Pietila, M.; Taube, J.H.; Sarkar, T.R.; Ramirez-Pena, E.; Werden, S.J. GSK3β regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res. 2019, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bgatova, N.; Gavrilova, Y.S.; Lykov, A.; Solovieva, A.; Makarova, V.; Borodin, Y.I.; Konenkov, V. Apoptosis and autophagy in hepatocarcinoma cells induced by different forms of lithium salts. Cell Tissue Biol. 2017, 11, 261–267. [Google Scholar] [CrossRef]
- Taskaeva, Y.; Bgatova, N.; Dossymbekova, R.; Solovieva, A.; Miroshnichenko, S.; Sharipov, K.; Tungushbaeva, Z. In vitro effects of lithium carbonate on cell cycle, apoptosis, and autophagy in hepatocellular carcinoma-29 cells. Bull. Exp. Biol. Med. 2020, 170, 246–250. [Google Scholar] [CrossRef]
- Taskaeva, I.; Gogaeva, I.; Shatruk, A.; Bgatova, N. Lithium enhances autophagy and cell death in skin melanoma: An ultrastructural and immunohistochemical study. Microsc. Microanal. 2022, 28, 1703–1711. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 2016, pdb-prot087379. [Google Scholar] [CrossRef]
- Chaitanya, G.V.; Alexander, J.S.; Babu, P.P. PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 2010, 8, 1–11. [Google Scholar] [CrossRef]
- Jamwal, S.; Kumar, P.; Kakkar, V.; Kumari, P.; Chahal, S.K. Protocols in apoptosis identification and affirmation. In Clinical Perspectives and Targeted Therapies in Apoptosis; Rupinder, K.S., Jitender, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 127–152. ISBN 9780128157626. [Google Scholar]
- Feng, Z.; Chen, B.; Tang, S.-C.; Liao, K.; Chen, W.N.; Chan, V. Effect of cytoskeleton inhibitors on deadhesion kinetics of HepG2 cells on biomimetic surface. Colloids Surf. B Biointerfaces 2010, 75, 67–74. [Google Scholar] [CrossRef]
- Moore, C.L.; Savenka, A.V.; Basnakian, A.G. TUNEL assay: A powerful tool for kidney injury evaluation. Int. J. Mol. Sci. 2021, 22, 412. [Google Scholar] [CrossRef] [PubMed]
- Kabakov, A.E.; Gabai, V.L. Cell death and survival assays. Chaperones Methods Protoc. 2018, 107–127. [Google Scholar]
- Bouchalova, P.; Bouchal, P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int. 2022, 22, 394. [Google Scholar] [CrossRef] [PubMed]
- Ormerod, M.G. Cell-cycle analysis of asynchronous populations. Flow Cytom. Protoc. 2004, 345–354. [Google Scholar]
- Pronin, A.; Gogoleva, I.; Torshin, I.Y.; Gromovа, O. Neurotrophic effects of lithium stimulate the reduction of ischemic and neurodegenerative brain damage. Zhurnal Nevrol. I Psikhiatrii Im. SS Korsakova 2016, 116, 99–108. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y. Activation of the Wnt/β-catenin signaling pathway may contribute to cervical cancer pathogenesis via upregulation of Twist. Oncol. Lett. 2017, 14, 4841–4844. [Google Scholar] [CrossRef]
- Pizarro, J.G.; Folch, J.; Esparza, J.L.; Jordan, J.; Pallàs, M.; Camins, A. A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286. J. Cell. Mol. Med. 2009, 13, 3906–3917. [Google Scholar] [CrossRef]
- Liu, X.; Zou, H.; Slaughter, C.; Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997, 89, 175–184. [Google Scholar] [CrossRef]
- Tait, S.W.G.; Green, D.R. Caspase-independent cell death: Leaving the set without the final cut. Oncogene 2008, 27, 6452–6461. [Google Scholar] [CrossRef]
- Naser, R.; Aldehaiman, A.; Díaz-Galicia, E.; Arold, S.T. Endogenous control mechanisms of FAK and PYK2 and their relevance to cancer development. Cancers 2018, 10, 196. [Google Scholar] [CrossRef]
- Qi, J.; Shi, L.; Zhu, L.; Chen, Y.; Zhu, H.; Cheng, W.; Chen, A.F.; Fu, C. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP5 and InsP8 in mammalian cells. J. Cardiovasc. Transl. Res. 2024, 17, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, M.O.; Dmitrieva, N.; Stein, A.M.; Cutter, J.L.; Godlewski, J.; Saeki, Y.; Nita, M.; Berens, M.E.; Sander, L.M.; Newton, H.B. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro-Oncol. 2008, 10, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Rennoll, S.A.; Raup-Konsavage, W.M.; Yochum, G.S. A dynamic exchange of TCF3 and TCF4 transcription factors controls MYC expression in colorectal cancer cells. Cell Cycle 2015, 14, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Geller, D. Cross-regulation between Wnt and NF-κB signaling pathways. Onco Ther. 2010, 1, 155–181. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
Cell Line | IC50 Values (mM) | |
---|---|---|
LiCl | Li2CO3 | |
HeLa | 23.14 ± 1.344 | 11.52 ± 1.062 |
SiHa | 23.43 ± 1.370 | 20.57 ± 1.313 |
HaCaT | 15.10 ± 1.19 | 10.52 ± 1.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Acosta, J.C.; Castillo-Montoya, A.I.; Rostro-Alonso, G.O.; Villegas-Vázquez, E.Y.; Quintas-Granados, L.I.; Sánchez-Sánchez, L.; López-Muñóz, H.; Cariño-Calvo, L.; López-Reyes, I.; Bustamante-Montes, L.P.; et al. Unrevealing Lithium Repositioning in the Hallmarks of Cancer: Effects of Lithium Salts (LiCl and Li2CO3) in an In Vitro Cervical Cancer Model. Molecules 2024, 29, 4476. https://doi.org/10.3390/molecules29184476
García-Acosta JC, Castillo-Montoya AI, Rostro-Alonso GO, Villegas-Vázquez EY, Quintas-Granados LI, Sánchez-Sánchez L, López-Muñóz H, Cariño-Calvo L, López-Reyes I, Bustamante-Montes LP, et al. Unrevealing Lithium Repositioning in the Hallmarks of Cancer: Effects of Lithium Salts (LiCl and Li2CO3) in an In Vitro Cervical Cancer Model. Molecules. 2024; 29(18):4476. https://doi.org/10.3390/molecules29184476
Chicago/Turabian StyleGarcía-Acosta, Juan Carlos, Alejando Israel Castillo-Montoya, Gareth Omar Rostro-Alonso, Edgar Yebrán Villegas-Vázquez, Laura Itzel Quintas-Granados, Luis Sánchez-Sánchez, Hugo López-Muñóz, Lizbeth Cariño-Calvo, Israel López-Reyes, Lilia Patricia Bustamante-Montes, and et al. 2024. "Unrevealing Lithium Repositioning in the Hallmarks of Cancer: Effects of Lithium Salts (LiCl and Li2CO3) in an In Vitro Cervical Cancer Model" Molecules 29, no. 18: 4476. https://doi.org/10.3390/molecules29184476
APA StyleGarcía-Acosta, J. C., Castillo-Montoya, A. I., Rostro-Alonso, G. O., Villegas-Vázquez, E. Y., Quintas-Granados, L. I., Sánchez-Sánchez, L., López-Muñóz, H., Cariño-Calvo, L., López-Reyes, I., Bustamante-Montes, L. P., Leyva-Gómez, G., Cortés, H., Jacobo-Herrera, N. J., García-Aguilar, R., Reyes-Hernández, O. D., & Figueroa-González, G. (2024). Unrevealing Lithium Repositioning in the Hallmarks of Cancer: Effects of Lithium Salts (LiCl and Li2CO3) in an In Vitro Cervical Cancer Model. Molecules, 29(18), 4476. https://doi.org/10.3390/molecules29184476