Development of a Simple and Validated LC–MS/MS Method for Quantitative Determination of Ketotifen in Beagle Dog Plasma and Its Application to Bioequivalence Study of Ketotifen Syrup Dosage Form
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.1.1. Mass Spectrometry
2.1.2. Chromatographic Conditions
2.1.3. Plasma Sample Preparation
2.2. Method Validation
2.2.1. Selectivity and Lower Limit of Quantitation
2.2.2. Linearity and Carryover
2.2.3. Precision and Accuracy
2.2.4. Recovery and Matrix Effect
2.2.5. Stability
2.2.6. Dilution Integrity
2.3. Incurred Sample Reanalysis (ISR)
2.4. Application to a Bioequivalence Study
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Liquid Chromatographic Conditions
3.3. Mass Spectrometric Conditions
3.4. Preparation of Calibration Standard Solutions and Quality Control Samples
3.5. Plasma Sample Preparation
3.6. Method Validation
3.6.1. Selectivity and Lower Limit of Quantitation
3.6.2. Linearity and Carryover
3.6.3. Precision and Accuracy
3.6.4. Recovery and Matrix Effect
3.6.5. Stability
3.6.6. Dilution Validation
3.7. Application to a Bioequivalence Study
3.8. Incurred Sample Reanalysis
3.9. Statistical Analysis of Bioequivalence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alali, F.Q.; Tashtoush, B.M.; Najib, N.M. Determination of ketotifen in human plasma by LC-MS. J. Pharm. Biomed. Anal. 2004, 34, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Frag, E.Y.; Mohamed, G.G.; Khalil, M.M.; Hwehy, M.M. Potentiometric determination of ketotifen fumarate in pharmaceutical preparations and urine using carbon paste and PVC membrane selective electrodes. Int. J. Anal. Chem. 2011, 2011, 604741. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.M.; Goa, K.L.; Fitton, A.; Sorkin, E.M. Ketotifen: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in asthma and allergic disorders. Drugs 1990, 40, 412–448. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.; Pfleger, K. Identification and differentiation of alkylamine antihistamines and their metabolites in urine by computerized gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1988, 430, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Waheed, N.A.; Waheed, S.A. Molecular Docking Study and Structure Based Design of Ketotifen and Some of its Analogues Including ADME and Toxicity Study. Int. J. Pharm. Res. 2020, 12, 1498. [Google Scholar]
- Zhang, L.; Peng, Y.; Ren, M.; Li, Y.; Tang, H. In vitro and in vivo Research of Sustained Release ketotifen fumarate for Treatment of asthma. J. Nanoparticle Res. 2022, 24, 94. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, D.; Liu, D.; Wang, Y.; Han, Y.; Gu, J. Determination of ketotifen and its conjugated metabolite in human plasma by liquid chromatography/tandem mass spectrometry: Application to a pharmacokinetic study. Rapid Commun. Mass Spectrom. 2003, 17, 2459–2463. [Google Scholar] [CrossRef]
- Le Bigot, J.F.; Begue, J.M.; Kiechel, J.R.; Guillouzo, A. Species differences in metabolism of ketotifen in rat, rabbit and man: Demonstration of similar pathways in vivo and in cultured hepatocytes. Life Sci. 1987, 40, 883–890. [Google Scholar] [CrossRef]
- Nam, K.-D.; Tak, S.-K.; Park, J.-S.; Cho, M.-H.; Yim, S.-V.; Shim, W.-S.; Cho, H.-S.; Park, M.-S.; Lee, K.-T. Bioequivalence assessment of Fumatifen® tablet to Zaditen® tablet (ketotifen fumarate 1 mg) by liquid chromatography tandem mass spectrometry. J. Pharm. Investig. 2012, 42, 221–228. [Google Scholar] [CrossRef]
- Yagi, N.; Taniuchi, Y.; Hamada, K.; Sudo, J.; Sekikawa, H. Pharmacokinetics of ketotifen fumarate after intravenous, intranasal, oral and rectal administration in rabbits. Biol. Pharm. Bull. 2002, 25, 1614–1618. [Google Scholar] [CrossRef]
- Grahnen, A.; Lonnebo, A.; Beck, O.; Eckernas, S.A.; Dahlstrom, B.; Lindstrom, B. Pharmacokinetics of ketotifen after oral administration to healthy male subjects. Biopharm. Drug Dispos. 1992, 13, 255–262. [Google Scholar] [CrossRef]
- Julien-Larose, C.; Guerret, M.; Lavene, D.; Kiechel, J. Quantification of ketotifen and its metabolites in human plasma by gas chromatography mass spectrometry. Biomed. Mass Spectrom. 1983, 10, 136–142. [Google Scholar] [CrossRef]
- Paulson, S.K.; Vaughn, M.B.; Jessen, S.M.; Lawal, Y.; Gresk, C.J.; Yan, B.; Maziasz, T.J.; Cook, C.S.; Karim, A. Pharmacokinetics of celecoxib after oral administration in dogs and humans: Effect of food and site of absorption. J. Pharmacol. Exp. Ther. 2001, 297, 638–645. [Google Scholar]
- Tzvetanov, S.; Vatsova, M.; Drenska, A.; Gorantcheva, J.; Tyutyulkova, N. Gas chromatographic-mass spectrometric method for quantitative determination of ketotifen in human plasma after enzyme hydrolysis of conjugated ketotifen. J. Chromatogr. B Biomed. Sci. Appl. 1999, 732, 251–256. [Google Scholar] [CrossRef]
- Elsayed, M.M. Development and validation of a rapid HPLC method for the determination of ketotifen in pharmaceuticals. Drug Dev. Ind. Pharm. 2006, 32, 457–461. [Google Scholar] [CrossRef]
- Matsui, K.; Takeuchi, S.; Haruna, Y.; Yamane, M.; Shimizu, T.; Hatsuma, Y.; Shimono, N.; Sunada, M.; Hayakawa, M.; Nishida, T. Transverse comparison of mannitol content in marketed drug products: Implication for no-effect dose of sugar alcohols on oral drug absorption. J. Drug Deliv. Sci. Technol. 2020, 57, 101728. [Google Scholar] [CrossRef]
- Yamane, M.; Matsui, K.; Sugihara, M.; Tokunaga, Y. The provisional no-effect threshold of sugar alcohols on oral drug absorption estimated by physiologically based biopharmaceutics model. J. Pharm. Sci. 2021, 110, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Alpert, A.J. Hydrophilic-Interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Chauve, B.; Guillarme, D.; Cleon, P.; Veuthey, J.L. Evaluation of various HILIC materials for the fast separation of polar compounds. J. Sep. Sci. 2010, 33, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Henion, J.; Brewer, E.; Rule, G. Peer reviewed: Sample preparation for LC/MS/MS: Analyzing biological and environmental samples. Anal. Chem. 1998, 70, 650A–656A. [Google Scholar] [CrossRef]
- Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. US Department of Health and Human Services. 2018. Available online: https://www.fda.gov/media/70858/download (accessed on 6 December 2021).
- Ministry of Food and Drug Safety. Guideline on Bioanalytical Method Validation. 2013. Available online: https://www.mfds.go.kr/brd/m210/down.do?brd_id=data0010&seq=13054data_tp=A&file_seq=1 (accessed on 6 December 2021).
- de Boer, T.; Wieling, J. Incurred sample accuracy assessment: Design of experiments based on standard addition. Bioanalysis 2011, 3, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs-General Considerations. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). 2014. Available online: https://www.fda.gov/media/88254/download (accessed on 10 May 2023).
- El-Kommos, M.E.; El-Gizawy, S.M.; Atia, N.N.; Hosny, N.M. Analysis for commonly prescribed non-sedating antihistamines. Anal. Chem. Res. 2015, 3, 1–12. [Google Scholar] [CrossRef]
- Sankar, P.R.; Geethika, A.S.; Rachana, G.; Babu, P.S.; Bhargavi, J. Bioanalytical method validation: A comprehensive review. Int. J. Pharm. Sci. Rev. Res. 2019, 9, 50–58. [Google Scholar]
- Shah, V.P.; Midha, K.K.; Findlay, J.W.; Hill, H.M.; Hulse, J.D.; McGilveray, I.J.; McKay, G.; Miller, K.J.; Patnaik, R.N.; Powell, M.L. Bioanalytical method validation—A revisit with a decade of progress. Pharm. Res. 2000, 17, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
Compound | Number | Linearity | |||
---|---|---|---|---|---|
Slope | Intercept | r | r2 | ||
Ketotifen | 1 | 0.588 | −0.001270 | 0.9987 | 0.9974 |
2 | 0.604 | −0.002100 | 0.9995 | 0.9990 | |
3 | 0.584 | −0.000593 | 0.9991 | 0.9982 | |
4 | 0.607 | −0.001070 | 0.9987 | 0.9974 | |
5 | 0.577 | −0.001480 | 0.9981 | 0.9962 | |
6 | 0.557 | 0.001020 | 0.9974 | 0.9948 | |
7 | 0.598 | −0.002820 | 0.9988 | 0.9976 | |
8 | 0.559 | 0.001380 | 0.9984 | 0.9968 | |
9 | 0.567 | −0.000405 | 0.9977 | 0.9954 |
Compound | Nominal Concentration (ng/mL) | Intra-Day (n = 5) | Inter-Day (n = 15) | |||
---|---|---|---|---|---|---|
Mean ± SD (ng/mL) | Precision (CV, %) a | Mean ± SD (ng/mL) | Precision (CV, %) | Accuracy (%) b | ||
Ketotifen | 0.02 | 0.02 ± 0.00 | 6.67 | 0.02 ± 0.00 | 7.56 | 101.07 |
0.06 | 0.06 ± 0.00 | 5.20 | 0.06 ± 0.00 | 5.51 | 97.56 | |
0.4 | 0.39 ± 0.01 | 3.30 | 0.39 ± 0.01 | 3.49 | 97.87 | |
4 | 4.25 ± 0.10 | 2.28 | 4.25 ± 0.13 | 3.14 | 106.31 |
Compounds | Nominal Concentration (ng/mL) | Recovery (%) | Matrix Effect (%) | ||
---|---|---|---|---|---|
Mean ± SD | Precision (CV) | Mean ± SD | Precision (CV) | ||
Ketotifen | 0.06 | 102.30 ± 5.78 | 5.64 | 70.01 ± 4.84 | 6.91 |
0.4 | 99.71 ± 5.00 | 5.01 | 67.22 ± 8.73 | 12.84 | |
4 | 100.69 ± 10.27 | 10.12 | 73.93 ± 8.40 | 11.34 | |
Ketotifen-d3 | 25 | 92.40 ± 8.17 | 7.94 | 71.11 ± 6.84 | 9.58 |
Stability Storage Condition | Concentration | ||
---|---|---|---|
0.06 (Mean ± SD, %) | 0.4 (Mean ± SD, %) | 4 (Mean ± SD, %) | |
Solution stability (%) | |||
Stock room temperature (3 h) | 103.54 ± 5.81 | 97.70 ± 4.33 | |
Working room temperature (7 h) | 96.20 ± 9.22 | 99.83 ± 6.17 | |
Plasma Sample stability (%) | |||
Room temperature (7 h) | 93.33 ± 0.00 | 96.25 ± 0.02 | 102.72 ± 0.12 |
Refrigeration (7 h, 4 °C) | 96.67 ± 0.00 | 97.42 ± 0.01 | 100.93 ± 0.05 |
Freeze-thaw stability (3 cycles) | 105.56 ± 0.00 | 96.25 ± 0.01 | 103.35 ± 0.08 |
Autosampler (10 °C, 30 h) | 88.33 ± 0.14 | 97.67 ± 0.01 | 105.52 ± 0.12 |
Deep freeze (7 h, −70 °C) | 104.44 ± 0.00 | 96.33 ± 0.00 | 102.82 ± 0.10 |
Nominal Concentration (ng/mL) | Dilution Factor 2 | ||
---|---|---|---|
Mean ± SD (ng/mL) | Precision (CV, %) | Accuracy (%) | |
0.06 | 0.06 ± 0.00 | 2.20 | 98.67 |
0.4 | 0.39 ± 0.01 | 3.40 | 98.45 |
4 | 4.03 ± 0.07 | 1.73 | 100.71 |
Compounds | Ion Transition (m/z) | DP (V) | EP (V) | CE (V) | CXP (V) |
---|---|---|---|---|---|
KTF | 310.2 → 96.0 | 116.0 | 10.0 | 35.0 | 16.0 |
KTF-d3 | 313.2 → 99.1 | 121.0 | 10.0 | 35.0 | 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, E.; Shim, W.-S.; Choi, D.; Song, Y.; Jo, H.G.; Lee, S.; Jung, S.H.; Choi, Y.J.; Lee, K.-T. Development of a Simple and Validated LC–MS/MS Method for Quantitative Determination of Ketotifen in Beagle Dog Plasma and Its Application to Bioequivalence Study of Ketotifen Syrup Dosage Form. Molecules 2024, 29, 4505. https://doi.org/10.3390/molecules29184505
Song E, Shim W-S, Choi D, Song Y, Jo HG, Lee S, Jung SH, Choi YJ, Lee K-T. Development of a Simple and Validated LC–MS/MS Method for Quantitative Determination of Ketotifen in Beagle Dog Plasma and Its Application to Bioequivalence Study of Ketotifen Syrup Dosage Form. Molecules. 2024; 29(18):4505. https://doi.org/10.3390/molecules29184505
Chicago/Turabian StyleSong, Eunseo, Wang-Seob Shim, Doowon Choi, Yuna Song, Hyeong Geun Jo, Soobok Lee, Suk Han Jung, Yeo Jin Choi, and Kyung-Tae Lee. 2024. "Development of a Simple and Validated LC–MS/MS Method for Quantitative Determination of Ketotifen in Beagle Dog Plasma and Its Application to Bioequivalence Study of Ketotifen Syrup Dosage Form" Molecules 29, no. 18: 4505. https://doi.org/10.3390/molecules29184505
APA StyleSong, E., Shim, W. -S., Choi, D., Song, Y., Jo, H. G., Lee, S., Jung, S. H., Choi, Y. J., & Lee, K. -T. (2024). Development of a Simple and Validated LC–MS/MS Method for Quantitative Determination of Ketotifen in Beagle Dog Plasma and Its Application to Bioequivalence Study of Ketotifen Syrup Dosage Form. Molecules, 29(18), 4505. https://doi.org/10.3390/molecules29184505