The Influence of Activated Sludge Augmentation on Its Ability to Degrade Paracetamol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Paracetamol Degradation by Free and Encapsulated KB4 Strains
2.2. The Impact of Bioaugmentation on the Parameters of Activated Sludge
3. Materials and Methods
3.1. Encapsulation of Pseudomonas moorei KB4 in SBP Capsules
3.2. Designing the Experiment
3.3. Biochemical Analysis
- SOUR—specific oxygen uptake rate (mg/L∗min)
- DO0—dissolved oxygen at the beginning of the linear portion of the curve (mg/L)
- DOn—dissolved oxygen at the end of the linear portion of the curve (mg/L)
- tn—time at the end of the linear portion of the curve (min)
- t0—time at the beginning of the linear portion of the curve (min)
- TSS—total suspended solids in the sample (g/L)
3.3.1. HPLC Analysis of Paracetamol
3.3.2. Analysis of Activated Sludge Parameters
3.3.3. GC-MS Analysis of Intermediates
3.4. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dargue, R.; Zia, R.; Lau, C.; Nicholls, A.W.; Dare, T.O.; Lee, K.; Jalan, R.; Coen, M.; Wilson, I.D. Metabolism and effects on endogenous metabolism of paracetamol (acetaminophen) in a porcine model of liver failure. Toxicol. Sci. 2020, 175, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galban-Malagon, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Palma, T.; Valentine, J.; Gomes, V.; Faleiro, M.; Costa, M. Batch studies on the biodegradation potential of paracetamol, fluoxetine and 17α-ethinylestradiol by the Micrococcus yunnanensis strain TJPT4 recovered from marine organisms. Water 2022, 14, 3365. [Google Scholar] [CrossRef]
- Żur, J.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Marchlewicz, A.; Guzik, U. Paracetamol—Toxicity and microbial utilisation. Pseudomonas moorei KB4 as a case study for exploring degradation pathway. Chemosphere 2018, 206, 192–202. [Google Scholar]
- Najim, A.A.; Radeef, A.Y.; al-Doori, I.; Jabbar, Z.H. Immobilization: The promising technique to protect and increase the efficiency of microorganisms to remove contaminants. J. Chem. Technol. Biotechnol. 2024, 99, 1707–1733. [Google Scholar] [CrossRef]
- Surma, R.; Wojcieszyńska, D.; Karcz, J.; Guzik, U. Effect of Pseudomonas moorei KB4 cells’ immobilisation on their degradation potential and tolerance towards paracetamol. Molecules 2021, 26, 820. [Google Scholar] [CrossRef]
- Żur, J.; Piński, A.; Michalska, J.; Hupert-Kocurek, K.; Nowa, K.A.; Wojcieszyńska, D.; Guzik, U. A whole-cell simmobilisation system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. Int. Biodeter. Biodegrad. 2020, 149, 104919. [Google Scholar] [CrossRef]
- Menashe, E.; Kurzbaum, E. Small-bioreactor platform technology as a municipal wastewater additive treatment. Water Sci. Technol. 2014, 69, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Kumar, D. Characterization and biodegradation of paracetamol by biomass of Bacillus licheniformis strain PPY-2 isolated from wastewater. Rend. Lincei. Sci. Fis. Nat. 2023, 34, 491–501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chacón, F.J.; Cayuela, M.L.; Sanchez-Monedero, M.A. Paracetamol degradation pathways in soil after biochar addition. Environ. Pollut. 2022, 307, 119546. [Google Scholar] [CrossRef]
- Marchlewicz, A.; Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. Evaluation of the defined bacterial consortium efficacy in the biodegradation of NSAIDs. Molecules 2023, 28, 2185. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Application of simmobilised biocatalysts in the biotransformation of non-steroidal anti-inflammatory drugs. Appl. Sci. 2023, 13, 7789. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Adamczyk-Habrajska, M.; Guzik, U. Enhanced degradation of naproxen by simmobilisation of Bacillus thuringiensis B1 (2015b) on loofah sponge. Molecules 2020, 25, 872. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, E.; Amezcua-Allieri, M.A.; Aburto, J. Assessing the cost of biomass and bioenergy production in agroindustrial processes. Energies 2021, 14, 4181. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Ribeiro, B.D.; Stapelfeldt, D.M.A.; do Nascimento, R.P.; Moreira, M.F.R. Oil biodegradation studies with an simmobilised bacteria consortium in plant biomass for the construction of bench-scale bioreactor. Clean. Chem. Eng. 2023, 6, 100107. [Google Scholar] [CrossRef]
- Tahri, N.; Bahafid, W.; Sayel, H.; El Ghachtouli, N. Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms; InTech: Hyogo, Japan, 2013. [Google Scholar] [CrossRef]
- Michalska, J.; Piński, A.; Żur, J.; Mrozik, A. Analysis of the bioaugmentation potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the sequencing batch reactors fed with the phenolic landfill leachate. Water 2020, 12, 906. [Google Scholar] [CrossRef]
- Woznica, A.; Nowak, A.; Karczewski, J.; Klis, C.; Bernas, T. Automatic biodetector of water toxicity (ABTOW) as a tool for examination of phenol and cyanide contaminated water. Chemosphere 2010, 81, 767–772. [Google Scholar] [CrossRef]
- Janczukowicz, W.; Szewczyk, M.; Krzemieniewski, M.; Pesta, J. Settling properties of activated sludge from a sequencing batch reactor (SBR). Pol. J. Environ. Stud. 2001, 10, 15–20. [Google Scholar]
- Tsang, Y.F.; Sin, S.N.; Chua, H. Nocardia foaming control in activated sludge process treating domestic wastewater. Biores. Technol. 2008, 99, 3381–3388. [Google Scholar] [CrossRef]
- Wongburi, P.; Park, J.K. Prediction of sludge volume index in a wastewater treatment plant using recurrent neural network. Sustainability 2022, 14, 6276. [Google Scholar] [CrossRef]
- Cui, K.; Xu, Q.; Sheng, X.; Meng, Q.; Shang, G.; Ma, Y.; Zhang, Z.; Guo, K. The impact of bioaugmentation on the performance and microbial community dynamics of an industrial-scale activated sludge sequencing batch reactor under various loading shocks of heavy oil refinery wastewater. Water 2021, 13, 2822. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Y.; Zou, L.; Deng, S.; Li, G.; Zhang, D. Monitoring the activated sludge activities affected by industrial toxins via an early-warning system based on the relative oxygen uptake rate (ROUR) Index. Appl. Sci. 2019, 9, 154. [Google Scholar] [CrossRef]
- Kim, I.S.; Young, J.C.; Kim, S.; Kim, S. Development of monitoring methodology to fingerprint the activated sludge processes using oxygen uptake rate. Environ. Eng. Res. 2001, 6, 251–259. [Google Scholar]
- Dai, W.; Pang, J.-W.; Ding, J.; Wang, Y.-Q.; Zhang, L.-Y.; Ren, N.-Q.; Yang, S.-S. Study on the removal characteristics and degradation pathways of highly toxic and refractory organic pollutants in real pharmaceutical factory wastewater treated by a pilot-scale integrated process. Front. Microbiol. 2023, 14, 1128233. [Google Scholar] [CrossRef]
- Park, S.; Oh, S. Inhibitory mechanisms and fate of the analgesic drug acetaminophen in nitrifying activated sludge. J. Hazard. Mater. 2020, 399, 123104. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhu, G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbiol. Biotechnol. 2006, 73, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Menashe, O. Microorganism Comprising Particles and Uses of Same. Patent application number PCT/IL2010/000256; (publication number WO2010/122545),
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology Engineering and Analysis Division. METHOD 1683: Specific Oxygen Uptake Rate in Biosolids; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association, Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Jeong, H.; Park, J.; Kim, H. Determination of NH4+ in environmental water with interfering substances using the modified Nessler method. J. Chem. 2013, 2013, 359217. [Google Scholar] [CrossRef]
- Sen, N.P.; Donaldson, B. Improved colorimetric method for determining nitrate and nitrite in foods. J. Assoc. Off. Anal. Chem. 1978, 61, 1389–1394. [Google Scholar] [CrossRef]
- Petriconi, G.L.; Papee, H.M. On routine colorimetric determination of trace nitrates, by brucine, in the presence of chloride. Water Air Soil Pollut. 1971, 1, 42–49. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Adamczyk-Habrajska, M.; Guzik, U. Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts 2018, 8, 176. [Google Scholar] [CrossRef]
Experimental System | Time (Days) | Sludge Volume Index (mL/g) | Sludge Density Index (100/SVI) | Total Suspended Solids (mg/L) |
---|---|---|---|---|
Activated sludge | Sludge output parameters | 40.47 | 2.47 | 5140.00 |
0 | 40.47 | 2.47 | 1285.00 | |
7 | 83.33 | 1.20 | 1200.00 | |
14 | 101.69 | 0.98 | 1180.00 | |
21 | 57.55 | 1.74 | 2780.00 | |
28 | 85.31 | 1.17 | 2110.00 | |
Activated sludge with free KB4 strain | Sludge output parameters | 86.79 | 1.15 | 10,600.00 |
0 | 86.79 | 1.15 | 2650.00 | |
8 | 86.33 | 1.16 | 1390.00 | |
16 | 69.44 | 1.44 | 2880.00 | |
21 | 60.79 | 1.65 | 3290.00 | |
27 | 60.61 | 1.65 | 3300.00 | |
Activated sludge with SBP capsules with KB4 strain | Sludge output parameters | 167.95 | 0.60 | 3453.33 |
0 | 167.95 | 0.60 | 863.33 | |
9 | 169.49 | 0.59 | 590.00 | |
16 | 99.01 | 1.01 | 1010.00 | |
23 | 125.00 | 0.80 | 1280.00 | |
31 | 129.03 | 0.78 | 1240.00 |
Experimental System | Parameters | Start of the Experiment | End of the Experiment |
---|---|---|---|
Activated sludge | Dry matter content (%) | 0.54 ± 0.00 | 0.34 ± 0.01 |
Water content (%) | 99.46 ± 0.00 | 99.66 ± 0.01 | |
Mineral content (%) | 29.16 ± 1.83 | 34.03 ± 0.80 | |
Organic content (%) | 70.84 ± 1.83 | 65.97 ± 0.80 | |
Activated sludge with free KB4 strain | Dry matter content (%) | 0.89 ± 0.08 | 0.37 ± 0.01 |
Water content (%) | 99.11 ± 0.08 | 99.63 ± 0.01 | |
Mineral content (%) | 26.14 ± 0.67 | 25.93 ± 0.83 | |
Organic content (%) | 73.86 ± 0.67 | 74.07 ± 0.83 | |
Activated sludge with SBP capsules with KB4 strain | Dry matter content (%) | 0.31 ± 0.04 | 0.29 ± 0.04 |
Water content (%) | 99.69 ± 0.04 | 99.71 ± 0.04 | |
Mineral content (%) | 31.11 ± 2.34 | 32.01 ± 2.70 | |
Organic content (%) | 68.89 ± 2.34 | 67.99 ± 2.70 |
Experimental System | Time (Days) | SOUR (mg/g∗h) | COD (mg O2/L) |
---|---|---|---|
Activated sludge | 0 | 2.59 ± 0.60 | 1232.00 ± 31.00 |
7 | 5.39 ± 0.86 | 176.00 ± 31.00 | |
14 | 1.50 ± 0.70 | 99.00 ± 47.00 | |
21 | 1.20 ± 0.24 | 110.00 ± 31.00 | |
28 | 1.10 ± 0.37 | 0.00 ± 0.00 | |
Activated sludge with free KB4 strain | 0 | 2.45 ± 0.00 | 1232.00 ± 31.00 |
8 | 1.24 ± 0.38 | 242.00 ± 16.00 | |
16 | 1.10 ± 0.03 | 165.00 ± 31.00 | |
21 | 1.20 ± 0.19 | 0.00 ± 0.00 | |
27 | 1.64 ± 0.00 | 0.00 ± 0.00 | |
Activated sludge with SBP capsules with KB4 strain | 0 | 3.30 ± 0.53 | 1232.00 ± 31.00 |
9 | 11.15 ± 2.50 | 176.00 ± 31.00 | |
16 | 4.55 ± 0.08 | 220.00 ± 62.00 | |
23 | 13.87 ± 2.27 | 286.00 ± 0.00 | |
31 | 3.62 ± 0.54 | 253.00 ± 47.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzionek, A.; Wojcieszyńska, D.; Menashe, O.; Szada, D.; Potocka, I.; Jesionowski, T.; Guzik, U. The Influence of Activated Sludge Augmentation on Its Ability to Degrade Paracetamol. Molecules 2024, 29, 4520. https://doi.org/10.3390/molecules29194520
Dzionek A, Wojcieszyńska D, Menashe O, Szada D, Potocka I, Jesionowski T, Guzik U. The Influence of Activated Sludge Augmentation on Its Ability to Degrade Paracetamol. Molecules. 2024; 29(19):4520. https://doi.org/10.3390/molecules29194520
Chicago/Turabian StyleDzionek, Anna, Danuta Wojcieszyńska, Ofir Menashe, Daria Szada, Izabela Potocka, Teofil Jesionowski, and Urszula Guzik. 2024. "The Influence of Activated Sludge Augmentation on Its Ability to Degrade Paracetamol" Molecules 29, no. 19: 4520. https://doi.org/10.3390/molecules29194520
APA StyleDzionek, A., Wojcieszyńska, D., Menashe, O., Szada, D., Potocka, I., Jesionowski, T., & Guzik, U. (2024). The Influence of Activated Sludge Augmentation on Its Ability to Degrade Paracetamol. Molecules, 29(19), 4520. https://doi.org/10.3390/molecules29194520