A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing
Abstract
:1. Introduction
2. Synthesis
2.1. Synthesis of Graphene
2.2. Synthesis of MXenes
3. Gas Sensors
3.1. CO2 Gas Sensors
3.2. H2S Gas Sensors
3.3. NO2 Gas Sensors
3.4. NH3 Gas Sensors
3.5. VOC Gas Sensors
3.6. Humidity Sensors
3.7. Challenges and Solutions in the Fabrication of Sensors
4. Gas Sensing Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A Review on Environmental Gas Sensors: Materials and Technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Ryabtsev, S.V.; Shaposhnick, A.V.; Lukin, A.N.; Domashevskaya, E.P. Application of Semiconductor Gas Sensors for Medical Diagnostics. Sens. Actuators B Chem. 1999, 59, 26–29. [Google Scholar] [CrossRef]
- Casanova-Chafer, J.; Garcia-Aboal, R.; Llobet, E.; Atienzar, P. Enhanced CO2 Sensing by Oxygen Plasma-Treated Perovskite-Graphene Nanocomposites. ACS Sens. 2024, 9, 830–839. [Google Scholar] [CrossRef]
- Levitsky, I.A. Porous Silicon Structures as Optical Gas Sensors. Sensors 2015, 15, 19968–19991. [Google Scholar] [CrossRef]
- Cho, S.H.; Suh, J.M.; Eom, T.H.; Kim, T.; Jang, H.W. Colorimetric Sensors for Toxic and Hazardous Gas Detection: A Review. Electron. Mater. Lett. 2021, 17, 1–17. [Google Scholar] [CrossRef]
- Doan, T.H.P.; Ta, Q.T.H.; Sreedhar, A.; Hang, N.T.; Yang, W.; Noh, J.S. Highly Deformable Fabric Gas Sensors Integrating Multidimensional Functional Nanostructures. ACS Sens. 2020, 5, 2255–2262. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ouyang, Z.; Wang, F.; Liu, Y. A Review on Graphene Strain Sensors Based on Fiber Assemblies. SN Appl. Sci. 2020, 2, 862. [Google Scholar] [CrossRef]
- Shirhatti, V.; Nuthalapati, S.; Kedambaimoole, V.; Kumar, S.; Nayak, M.M.; Rajanna, K. Multifunctional Graphene Sensor Ensemble as a Smart Biomonitoring Fashion Accessory. ACS Sens. 2021, 6, 4325–4337. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Du, Z.; Zhu, C.; Ma, C.; Zeng, D. 3D Porous MXene Nanosheet/SnO2 Nanoparticle Composites for H2S Gas Sensing. ACS Appl. Nano Mater. 2024, 7, 5442–5453. [Google Scholar] [CrossRef]
- Bibi, A.; Chen, C.Y.; Huang, K.N.; Sathishkumar, N.; Chen, H.T.; Lin, Y.F.; Yeh, J.M.; Santiago, K.S. Comparative Study on the H2S Gas-Sensing Properties of Graphene Aerogels Synthesized through Hydrothermal and Chemical Reduction. J. Taiwan Inst. Chem. Eng. 2024, 154, 105155. [Google Scholar] [CrossRef]
- Malathi, B.; Aysha Parveen, R.; Nakamura, A.; Archana, J.; Navaneethan, M.; Harish, S. Ultrathin Layered MoS2/N-Doped Graphene Quantum Dots (NGQDs) Heterostructures for Highly Sensitive Room Temperature NO2 Gas Sensor. Sens. Actuators B Chem. 2024, 403, 135083. [Google Scholar] [CrossRef]
- Govind, A.; Bharathi, P.; Harish, S.; Krishna Mohan, M.; Archana, J.; Navaneethan, M. Interface Engineering of a Highly Sensitive Porous CuO Modified RGO Layers for Room Temperature NO2 Gas Sensor. Appl. Surf. Sci. 2024, 657, 159604. [Google Scholar] [CrossRef]
- Chang, J.; Deng, Z.; Fang, X.; Hu, C.; Shi, L.; Dai, T.; Li, M.; Wang, S.; Meng, G. Heterostructural (Sr0.6Bi0.305)2Bi2O7/ZnO for Novel High-Performance H2S Sensor Operating at Low Temperature. J. Hazard. Mater. 2021, 414, 125500. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; An, B.; Bai, J.; Wang, Y.; Cheng, X.; Wang, Q.; Li, J.; Yang, Y.; Wu, Z.; Xie, E. Ultrahigh-Response Hydrogen Sensor Based on PdO/NiO Co-Doped In2O3 Nanotubes. J. Colloid Interface Sci. 2021, 599, 533–542. [Google Scholar] [CrossRef]
- Hung, N.M.; Hung, C.M.; Van Duy, N.; Hoa, N.D.; Hong, H.S.; Dang, T.K.; Viet, N.N.; Thong, L.V.; Phuoc, P.H.; Van Hieu, N. Significantly Enhanced NO2 Gas-Sensing Performance of Nanojunction-Networked SnO2 Nanowires by Pulsed UV-Radiation. Sens. Actuators A Phys. 2021, 327, 112759. [Google Scholar] [CrossRef]
- Michel, C.R.; Martínez-Preciado, A.H. CO Sensing Properties of Novel Nanostructured La2O3 Microspheres. Sens. Actuators B Chem. 2015, 208, 355–362. [Google Scholar] [CrossRef]
- Balasubramani, V.; Chandraleka, S.; Rao, T.S.; Sasikumar, R.; Kuppusamy, M.R.; Sridhar, T.M. Review—Recent Advances in Electrochemical Impedance Spectroscopy Based Toxic Gas Sensors Using Semiconducting Metal Oxides. J. Electrochem. Soc. 2020, 167, 037572. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Baker, A.A.; Boltaev, G.; Ali, A.; Alnaser, A.S. High Sensitivity Low-Temperature Ethanol and Acetone Gas Sensors Based on Silver/Titanium Oxide Decorated Laser-Induced Graphene. J. Mater. Sci. 2024, 59, 4198–4208. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A. An Electronic Nose Based on Carbon Nanotube -Titanium Dioxide Hybrid Nanostructures for Detection and Discrimination of Volatile Organic Compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.B.T.; Ruoff, R.S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Vaishag, P.V.; Ankitha, M.; Rasheed, P.A. Carbon Cloth Yarn Modified with Amino-Functionalized Nb2CTx Nanosheets for the Electrochemical Detection of Mycophenolate Mofetil. ACS Appl. Nano Mater. 2023, 6, 23324–23331. [Google Scholar] [CrossRef]
- Vaishag, P.V.; Bae, Y.H.; Noh, J.S. PMMA Microspheres-Embedded Ti3C2Tx MXene Heterophotocatalysts Synergistically Working for Multiple Dye Degradation. J. Ind. Eng. Chem. 2024; in press. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Yu, W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef]
- Pandey, M.; Deshmukh, K.; Raman, A.; Asok, A.; Appukuttan, S.; Suman, G.R. Prospects of MXene and Graphene for Energy Storage and Conversion. Renew. Sustain. Energy Rev. 2024, 189, 114030. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Cheng, Y.; Chen, X.; Tan, W. MOF-Derived Porous Hierarchical ZnCo2O4 Microflowers for Enhanced Performance Gas Sensor. Ceram. Int. 2021, 47, 9214–9224. [Google Scholar] [CrossRef]
- Bhaviripudi, S.; Jia, X.; Dresselhaus, M.S.; Kong, J. Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Lett. 2010, 10, 4128–4133. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5–12. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, D.; Zhang, D.; Yang, Y.; Yu, H.; Wang, T.; Dong, X. RGO Doped MOFs Derived α-Fe2O3 Nanomaterials for Self-Supporting Ppb-Level NO2 Gas Sensor. Sens. Actuators B Chem. 2024, 405, 135378. [Google Scholar] [CrossRef]
- Okechukwu, V.O.; Njobeh, P.B.; Kappo, A.P.; Mamo, M.A. Room Temperature Detection of Aspergillus Flavus Volatile Organic Compounds (VOCs) under Simulated Conditions Using Graphene Oxide and Tin Oxide Nanorods (SnO2 NRs-GO). Food Chem. 2024, 456, 140068. [Google Scholar] [CrossRef]
- Zhang, H.F.; Xuan, J.Y.; Zhang, Q.; Sun, M.L.; Jia, F.C.; Wang, X.M.; Yin, G.C.; Lu, S.Y. Strategies and Challenges for Enhancing Performance of MXene-Based Gas Sensors: A Review. Rare Met. 2022, 41, 3976–3999. [Google Scholar] [CrossRef]
- Mehdi Aghaei, S.; Aasi, A.; Panchapakesan, B. Experimental and Theoretical Advances in MXene-Based Gas Sensors. ACS Omega 2021, 6, 2450–2461. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Fan, Y.; Li, S.; Zhou, A.; Shinde, N.; Mane, R.S. MXene-Based Chemical Gas Sensors: Recent Developments and Challenges. Diam. Relat. Mater. 2023, 131, 109557. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Zeng, W. Preparation and Application of 2D MXene-Based Gas Sensors: A Review. Chemosensors 2021, 9, 225. [Google Scholar] [CrossRef]
- Feng, G.; Wang, S.; Wang, S.; Wang, P.; Wang, C.; Song, Y.; Xiao, J.; Song, C. Ultra-Sensitive Trace NO2 Detection Based on Quantum Dots-Sensitized Few-Layer MXene: A Novel Convincing Insight into Dynamic Gas-Sensing Mechanism. Sens. Actuators B Chem. 2024, 400, 134852. [Google Scholar] [CrossRef]
- Wu, G.; Du, H.; Pakravan, K.; Kim, W.; Cha, Y.L.; Chiang, S.T.; Beidaghi, M.; Zhang, X.; Kim, S.H.; Pan, X.; et al. Polyaniline/Ti3C2Tx Functionalized Mask Sensors for Monitoring of CO2 and Human Respiration Rate. Chem. Eng. J. 2023, 475, 146228. [Google Scholar] [CrossRef]
- Gaikwad, S.S.; More, M.S.; Khune, A.S.; Mohammed, H.Y.; Tsai, M.L.; Hianik, T.; Shirsat, M.D. Polyvinyl Chloride-Reduced Graphene Oxide Based Chemiresistive Sensor for Sensitive Detection of Ammonia. J. Mater. Sci. Mater. Electron. 2024, 35, 216. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, C.; Zou, Y.; Xu, F.; Sun, L.; Xiang, C. Room-Temperature Humidity-Resistant Highly Sensitive Ammonia Sensor Based on a Porous MXene/Na2Ti3O7 @polyaniline Composite. Sens. Actuators B Chem. 2024, 405, 135323. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Z.; Meng, F.; Huo, S.; Hu, X.; Niu, P.; Wu, E. Strategies and Challenges for Improving the Performance of Two-Dimensional Materials-Based Gas Sensors. Adv. Phys. X 2023, 9, 2288353. [Google Scholar] [CrossRef]
- Jeong, D.W.; Kim, K.H.; Kim, B.S.; Byun, Y.T. Characteristics of Highly Sensitive and Selective Nitric Oxide Gas Sensors Using Defect-Functionalized Single-Walled Carbon Nanotubes at Room Temperature. Appl. Surf. Sci. 2021, 550, 149250. [Google Scholar] [CrossRef]
- Banglani, T.H.; Chandio, I.; Khilji, M.U.N.; Ibrar, A.; Memon, A.A.; Ali, A.; Al-Anzi, B.S.; Thebo, K.H. Graphene-Based Nanocomposites for Gas Sensors: Challenges and Opportunities. Rev. Inorg. Chem. 2024, 44, 1–24. [Google Scholar] [CrossRef]
- Hao, M.; Zeng, W.; Li, Y.Q.; Wang, Z.C. Three-Dimensional Graphene and Its Composite for Gas Sensors. Rare Met. 2021, 40, 1494–1514. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Yang, Z.; Hu, N. Review of Recent Progress on Graphene-Based Composite Gas Sensors. Ceram. Int. 2021, 47, 16367–16384. [Google Scholar] [CrossRef]
- Natarajamani, G.S.; Kannan, V.P.; Madanagurusamy, S. Synergistically Enhanced NH3 Gas Sensing of Graphene Oxide-Decorated Nano-ZnO Thin Films. Mater. Chem. Phys. 2024, 316, 129036. [Google Scholar] [CrossRef]
- Singh, R.; Agrohiya, S.; Rawal, I.; Ohlan, A.; Dahiya, S.; Punia, R.; Maan, A.S. Multifunctional Porous Polyaniline/Phosphorus-Nitrogen Co-Doped Graphene Nanocomposite for Efficient Room Temperature Ammonia Sensing and High-Performance Supercapacitor Applications. Appl. Surf. Sci. 2024, 665, 160368. [Google Scholar] [CrossRef]
- Gautam, M.; Jayatissa, A.H. Gas Sensing Properties of Graphene Synthesized by Chemical Vapor Deposition. Mater. Sci. Eng. C 2011, 31, 1405–1411. [Google Scholar] [CrossRef]
- Santos-Ceballos, J.C.; Salehnia, F.; Romero, A.; Vilanova, X.; Llobet, E. Low Cost, Flexible, Room Temperature Gas Sensor: Polypyrrole-Modified Laser-Induced Graphene for Ammonia Detection. IEEE Sens. J. 2024, 24, 9366–9374. [Google Scholar] [CrossRef]
- Paeng, C.; Shanmugasundaram, A.; We, G.; Kim, T.; Park, J.; Lee, D.W.; Yim, C. Rapid and Flexible Humidity Sensor Based on Laser-Induced Graphene for Monitoring Human Respiration. ACS Appl. Nano Mater. 2024, 7, 4772–4783. [Google Scholar] [CrossRef]
- Balakrishnan, T.; Ang, W.L.; Mahmoudi, E. Highly Sensitive Fluorescent Nitrobenzene Gas Sensing by Nitrogen-Doped Graphene Quantum Dots Embedded in ZIF-8 Nanocomposite. Mater. Sci. Eng. B 2024, 304, 117377. [Google Scholar] [CrossRef]
- Kurtishaj Hamzaj, A.; Donà, E.; M Santhosh, N.; Shvalya, V.; Košiček, M.; Cvelbar, U. Plasma-Modification of Graphene Oxide for Advanced Ammonia Sensing. Appl. Surf. Sci. 2024, 660, 160006. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Ta, Q.T.H.; Sreedhar, A.; Tri, N.N.; Noh, J.S. In Situ Growth of TiO2 on Ti3AlC2 MXene for Improved Gas-Sensing Performances. Ceram. Int. 2024, 50, 27227–27236. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Shen, T.; Sun, J. Flexible Resistive NO2 Gas Sensor of SnO2@Ti3AlC2 MXene for Room Temperature Application. Ceram. Int. 2024, 50, 2459–2466. [Google Scholar] [CrossRef]
- Akhtar, A.; Yao, C.; Zhou, R.; Sadaf, S.; Han, M.; Ling, Q.; Luo, S.; Chen, D. Hydrothermally Synthesized MXene Ti3C2/Zn2SnO4 Based Nanocomposite for H2S Sensing at Room Temperature. Ceram. Int. 2024, 50, 12298–12309. [Google Scholar] [CrossRef]
- Bae, Y.H.; Park, S.; Noh, J.S. Control of Electrical Properties of Ti3C2Tx Mediated by Facile Alkalization. Surf. Interfaces 2023, 41, 103258. [Google Scholar] [CrossRef]
- Rathi, K.; Arkoti, N.K.; Pal, K. Fabrication of Delaminated 2D Metal Carbide MXenes (Nb2CTx) by CTAB-Based NO2 Gas Sensor with Enhanced Stability. Adv. Mater. Interfaces 2022, 9, 2200415. [Google Scholar] [CrossRef]
- Wang, W.; Yao, Y.; Xin, J.; Zhao, X.; Xie, L. Room-Temperature Highly Sensitive Triethylamine Detection by Few-Layer Nb2 CTx MXene Nanosheets. Nanotechnology 2024, 35, 215502. [Google Scholar] [CrossRef]
- Dogra, N.; Gasso, S.; Sharma, A.; Sharma, K.K.; Sharma, S. TiO2 Decorated MXene Nanosheets for High-Performance Ammonia Gas Sensing at Room-Temperature. Surf. Interfaces 2024, 48, 104290. [Google Scholar] [CrossRef]
- An, D.; Dai, J.; Zhang, Z.; Wang, Y.; Liu, N.; Zou, Y. RGO/SnO2 Nanocomposite Based Sensor for Ethanol Detection under Low Temperature. Ceram. Int. 2024, 50, 16272–16283. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lai, S.N.; Yen, C.C.; Jiang, X.; Peroulis, D.; Stanciu, L.A. Surface Functionalization of Ti3C2Tx MXene with Highly Reliable Superhydrophobic Protection for Volatile Organic Compounds Sensing. ACS Nano 2020, 14, 11490–11501. [Google Scholar] [CrossRef]
- Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room Temperature Toluene Gas Sensor Based on TiO2 Nanoparticles Decorated 3D Graphene-Carbon Nanotube Nanostructures. Sens. Actuators B Chem. 2019, 279, 69–78. [Google Scholar] [CrossRef]
- Karmakar, S.; Deepak, M.S.; Nanda, O.P.; Sett, A.; Maity, P.C.; Karmakar, G.; Sha, R.; Badhulika, S.; Bhattacharyya, T.K. 2D V2C MXene Based Flexible Gas Sensor for Highly Selective and Sensitive Toluene Detection at Room Temperature. ACS Appl. Electron. Mater. 2024, 6, 3717–3725. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, A.; Chang, H.; Xia, B. Room-Temperature High-Performance Acetone Gas Sensor Based on Hydrothermal Synthesized SnO2-Reduced Graphene Oxide Hybrid Composite. RSC Adv. 2015, 5, 3016–3022. [Google Scholar] [CrossRef]
- Wang, P.; Guo, S.; Zhao, Y.; Hu, Z.; Tang, Y.; Zhou, L.; Li, T.; Li, H.Y.; Liu, H. WO3 Nanoparticles Supported by Nb2CTx MXene for Superior Acetone Detection under High Humidity. Sens. Actuators B Chem. 2024, 398, 134710. [Google Scholar] [CrossRef]
- He, F.; Zhang, Y.; Chen, H.; Wang, H.; Li, H.; Qin, Q.; Li, Y. Highly Sensitive and Selective Gas Sensor Based on SnO2/Fe2O3@rGO Nanocomposite for Detection of Formaldehyde. Mater. Chem. Phys. 2024, 312, 128646. [Google Scholar] [CrossRef]
- Zhang, D.; Mi, Q.; Wang, D.; Li, T. MXene/Co3O4 Composite Based Formaldehyde Sensor Driven by ZnO/MXene Nanowire Arrays Piezoelectric Nanogenerator. Sens. Actuators B Chem. 2021, 339, 129923. [Google Scholar] [CrossRef]
- Lee, B.; Cho, S.; Jeong, B.J.; Lee, S.H.; Kim, D.; Kim, S.H.; Park, J.H.; Yu, H.K.; Choi, J.Y. Highly Responsive Hydrogen Sensor Based on Pd Nanoparticle-Decorated Transfer-Free 3D Graphene. Sens. Actuators B Chem. 2024, 401, 134913. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, C.; Jiang, F.; Liu, J.; Ma, X.; Liu, P.; Xu, J.; Wang, L.; Huang, R. Flexible and Lightweight Ti3C2Tx MXene@Pd Colloidal Nanoclusters Paper Film as Novel H2 Sensor. J. Hazard. Mater. 2020, 399, 123054. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, J.; Yang, Y.; Li, F.; Yu, H.; Dong, X.; Wang, T. SnO2-Inserted 2D Layered Ti3C2Tx MXene: From Heterostructure Construction to Ultra-High Sensitivity for Ppb-Level H2S Detection. Sens. Actuators B Chem. 2024, 410, 135727. [Google Scholar] [CrossRef]
- Jung, W.T.; Jang, H.S.; Lee, S.M.; Hong, W.G.; Bae, Y.J.; Lee, H.S.; Kim, B.H. High-Response Room-Temperature NO2 Gas Sensor Fabricated with Thermally Reduced Graphene Oxide-Coated Commercial Cotton Fabric. Heliyon 2024, 10, e24425. [Google Scholar] [CrossRef]
- Santos-Betancourt, A.; Santos-Ceballos, J.C.; Alouani, M.A.; Malik, S.B.; Romero, A.; Ramírez, J.L.; Vilanova, X.; Llobet, E. ZnO Decorated Graphene-Based NFC Tag for Personal NO2 Exposure Monitoring during a Workday. Sensors 2024, 24, 1431. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Yang, J.; Lin, C.; Qi, L.; Li, L.; Shi, K. Gas-Sensitive Performance of Metal-Organic Framework-Derived CuO NPs/Ti3C2TX MXene Heterostructures for Efficient NO2 Detection at Room Temperature. J. Alloys Compd. 2024, 980, 173657. [Google Scholar] [CrossRef]
- Shin, K.Y.; Mirzaei, A.; Oum, W.; Kim, E.B.; Kim, H.M.; Moon, S.; Kim, S.S.; Kim, H.W. Enhanced NO2 Gas Response of ZnO–Ti3C2Tx MXene Nanocomposites by Microwave Irradiation. Sens. Actuators B Chem. 2024, 409, 135605. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Lei, H.; Luo, M.; Zhang, Y. Plasmonic Photothermal Driven MXene-Based Gas Sensor for Highly Sensitive NO2 Detection at Room Temperature. Sens. Actuators B Chem. 2024, 407, 135422. [Google Scholar] [CrossRef]
- Yogi, S.; Kumar, A.; Kumar, P.; Kumar, V.; Zulfequar, M.; Jain, V.K. Trace Level Sensitivity and Selectivity of Room Temperature NH3 Gas Sensors Based on RGO/ZnO@SiNWs Heterostructure. Phys. E Low-Dimens. Syst. Nan. 2024, 157, 115864. [Google Scholar] [CrossRef]
- Singh, R.; Agrohiya, S.; Rawal, I.; Ohlan, A.; Dahiya, S.; Punia, R.; Maan, A.S. PEDOT/Flower-like 1 T-2H MoS2/Nitrogen-Doped Graphene Ternary Nanocomposite for Efficient Room Temperature Real-Time Monitoring of Ammonia. J. Mater. Sci. Mater. Electron. 2024, 35, 921. [Google Scholar] [CrossRef]
- Shi, J.; Liu, C.; Lin, M.; Fu, Y.; Wang, D.; Song, J.; Zhang, G.; Liu, H.; Hou, L. Graphene Oxide Nanosheets Modified with TiO2 Nanoparticles for Highly Sensitive NH3 Detection at Room Temperature. J. Alloys Compd. 2024, 1002, 175245. [Google Scholar] [CrossRef]
- Li, S.; Yu, L.; Zhang, Y.; Zhang, C.; Cao, L.; Nan, N.; Fan, X.; Wang, H. Fe2O3 Nanoplate/TiO2 Nanoparticles Supported by 2D Ti3C2Tx MXene Conductive Layers for Sensitive Detection of NH3 at Room Temperature. Sens. Actuators B Chem. 2024, 413, 135890. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Chang, X.; Gao, W.; Chen, X.; Niu, S.; Sun, S. Room Temperature Gas Sensors for NH3 Detection Based on SnO2 Films and Lamellar-Structured Ti3C2Tx MXene Heterojunction Nanocomposites. Appl. Surf. Sci. 2024, 660, 159976. [Google Scholar] [CrossRef]
- Wang, S.; Liu, B.; Duan, Z.; Zhao, Q.; Zhang, Y.; Xie, G.; Jiang, Y.; Li, S.; Tai, H. PANI Nanofibers-Supported Nb2CTx Nanosheets-Enabled Selective NH3 Detection Driven by TENG at Room Temperature. Sens. Actuators B Chem. 2021, 327, 128923. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, F.; Yu, Z.; Cao, H.; Ma, Z.; YeErKenTai, Z.N.; Li, Z.; Han, Y.; Zhu, Z. Fully Transient 3D Origami Paper-Based Ammonia Gas Sensor Obtained by Facile MXene Spray Coating. ACS Sens. 2024, 9, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Huang, P.; Qin, F.; Liu, J.; Lin, J.; Lin, Y.; Huang, H.; Wang, W.; Han, C.; Zhang, S. Exploring Monolayer Ta4C3Tx MXene for Quick Ammonia Detection at Room Temperature. Mater. Lett. 2024, 363, 136250. [Google Scholar] [CrossRef]
- Kumar, M.; Supreet; Sharma, S.; Goyal, S.L.; Kumar, S.; Chauhan, S.; Vidhani, B.; Pal, R. Composite Nanoarchitectonics with Reduced-Graphene Oxide and Polyaniline for a Highly Responsive and Selective Sensing of Methanol Vapors. Mater. Chem. Phys. 2024, 312, 128626. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature. IEEE Sens. J. 2021, 21, 5763–5770. [Google Scholar] [CrossRef]
- Liu, Z.; Mo, X.; Tian, S.; Chen, J.; Liu, Y.; Wu, H.; Zhao, Y.; Wang, Y.; Peng, S. Low-Temperature Gas Sensor with Good Long-Term Stability Based on Co3O4/Ti3C2Tx Heterojunction. Sens. Actuators B Chem. 2024, 400, 134853. [Google Scholar] [CrossRef]
- Geng, W.; Song, P.; Xie, T.; Duan, L. Enhanced N-Butanol Sensing Performance of Metal-Organic Frameworks-Derived Cr2O3/MXene Composites. Appl. Surf. Sci. 2024, 669, 160571. [Google Scholar] [CrossRef]
- Shuvo, S.N.; Ulloa Gomez, A.M.; Mishra, A.; Chen, W.Y.; Dongare, A.M.; Stanciu, L.A. Sulfur-Doped Titanium Carbide MXenes for Room-Temperature Gas Sensing. ACS Sens. 2020, 5, 2915–2924. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, A.; Wang, C.; Liu, F.; He, J.; Li, S.; Wang, J.; You, R.; Yan, X.; Sun, P.; et al. Improvement of Gas and Humidity Sensing Properties of Organ-like Mxene by Alkaline Treatment. ACS Sens. 2019, 4, 1261–1269. [Google Scholar] [CrossRef]
- Gautam, R.; Marriwala, N.; Devi, R. A Review: Study of Mxene and Graphene Together. Meas. Sens. 2023, 25, 100592. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Hermawan, A.; Asakura, Y.; Hasegawa, T.; Kumagai, H.; Kato, H.; Kakihana, M.; Zhu, J.; Yin, S. SnO-SnO2 Modified Two-Dimensional MXene Ti3C2Tx for Acetone Gas Sensor Working at Room Temperature. J. Mater. Sci. Technol. 2021, 73, 128–138. [Google Scholar] [CrossRef]
- Sangeetha, M.; Madhan, D. Ultra Sensitive Molybdenum Disulfide (MoS2)/Graphene Based Hybrid Sensor for the Detection of NO2 and Formaldehyde Gases by Fiber Optic Clad Modified Method. Opt. Laser Technol. 2020, 127, 106193. [Google Scholar] [CrossRef]
- Motora, K.G.; Dileepkumar, V.G.; Wu, C.M.; Ashwini, R.; Chen, G.Y.; Santosh, M.S.; Kumar, S.; Kuo, D.H. Highly Efficient and Stable NiSe2-RGO Composite-Based Room Temperature Hydrogen Gas Sensor. Int. J. Hydrogen Energy 2024, 50, 1174–1183. [Google Scholar] [CrossRef]
- Gasso, S.; Mahajan, A. Development of Highly Sensitive and Humidity Independent Room Temperature NO2 Gas Sensor Using Two Dimensional Ti3C2Tx Nanosheets and One Dimensional WO3 Nanorods Nanocomposite. ACS Sens. 2022, 7, 2454–2464. [Google Scholar] [CrossRef] [PubMed]
Target Gas | Sensing Materials | Synthesis Methods | Advantages | Disadvantages | Response/Recovery Time (s) | Ref. |
---|---|---|---|---|---|---|
CO2 | Graphene OP | Oxygen plasma treatment | Effective surface cleaning | Equipment costs | 300/900 | [3] |
Ti3C2Tx/PANI-PP | HF etching and in situ polymerization | Controlled etch rate and reduced processing steps | Toxic and process complexity | 115/26 | [36] | |
NO2 | rGO/α-Fe2O3 | Solvothermal method | Low temperature | Long reaction times | 32.42/- | [29] |
2D-0D MXene/PbS | Etching and in situ formation | Precise and direct formation | Stringent handling and difficult to precisely control | 27/91 | [35] | |
H2S | Graphene aerogels | Hydrothermal reduction and chemical reduction | Controlled morphology and simple | Difficult to monitor and unwanted by-products | 12 and 13/134 and 165 | [10] |
3D Porous MXene Nanosheet/ SnO2 | HCl-LiF etching and hydrothermal | High selectivity and versatility | Difficult to control and high energy consumption | 44.2/266.7 | [9] | |
NH3 | PVC/rGO | Improved hummers method | Higher yield | Over-oxidation | 46/88 | [37] |
Ti3C2Tx/TiO2 | Selective etching | Highly precise | Surface damage | 205/110 | [58] | |
C2H5OH | rGO/SnO2 | Hydrothermal method | Formation of metastable phases | High-pressure equipment | - | [59] |
Ti3C2Tx-F | HCl-LiF etching | High selectivity | Slow reaction times | 39/139 | [60] | |
Toluene | 3D TiO2/G-CNT) | CVD and sparking method | High purity and rapid processing | High equipment costs and particle aggregation | 9/11 | [61] |
V2C MXene | HF etching | High precision | Hazardous | 14/34 | [62] | |
Acetone | SnO2–RGO | Hydrothermal treatment | Eco-friendly process | Limited solvent options | 107/95 | [63] |
WO3/Nb2CTx | HF etching and hydrolysis calcination | Versatility and simple | Safety risks and limited control over particle size | 9/881 | [64] | |
HCHO | SnO2/Fe2O3-rGO | Microwave-assisted hydrothermal method | Very fast and uniform heating | Challenges with scale up | 32/33 | [65] |
MXene/Co3O4 | Etching and hydrothermal | Functionality and controlled morphology | Safety concerns and limited scalability | 83/5 | [66] | |
H2 | PdNP-decorated 3D graphene | MOCVD | High-quality thin films | Material waste | 8/38 | [67] |
MXene-Pd CNC film | HCL-LiF etching and colloidal solution-based vacuum filtration | Room-temperature processing and cost-effective | Corrosive chemicals and clogging | 32/161 | [68] |
Target Gas | Sensing Materials | Sensitivity (Maximum) | Operating Range (ppm) | Response Time (s) | Recovery Time (s) | Operating Temp. (°C) | Ref. |
---|---|---|---|---|---|---|---|
CO2 | Perovskite—graphene | 0.9 | 20–100 | 300 | 900 | RT | [16] |
Ti3C2Tx/PANI-PP | 0.0304%/ppm | 25–1500 | 115 | 26 | RT | [45] | |
NO2 | CuO/rGO | 200.8%/ppm | 1–5 | 9 | 110 | RT | [29] |
CuO NPs/Ti3C2Tx | ~46 | 0.03–100 | 2.84 | 33.5 | RT | [89] | |
H2S | Graphene HR and CR aerogels | 0.255 and 0.3984/ppm | 1–20 | 43.25 and 40.5 | 329.75 and 519 | RT | [2] |
Ti3C2Tx/Zn2SnO4-5 | 110 | 0.01–8 | 14 | 230 | RT | [27] | |
NH3 | PANI/PNGN 15% | 8.1%/ppm | 0.25–100 | 21 | 56 | RT | [13] |
MNPA-100 | 1.85%/ppm | 10–100 | 231.2 | 165.4 | RT | [26] | |
C2H5OH | 3.3% rGO/SnO2 | 48.3 | 1–200 | - | - | 120 | [28] |
2H-MoS2/Ti3C2Tx MXene | 0.4%/ppm | 50–1000 | 5 | 12 | 140 | [1] | |
Toluene | 3D TiO2/G-CNT | 42% | 50–500 | 9 | 11 | RT | [61] |
S-Ti3C2Tx | 59.1% | 1–50 | - | - | RT | [87] | |
Acetone | SnO2–RGO | - | 10–2000 | 107 | 95 | RT | [63] |
Ti3C2Tx/SnO-SnO2 | 12.1 | 10–100 | 18 | 9 | RT | [90] | |
HCHO | MoS2/graphene | 61% | 0–500 | 22 | 35 | RT | [91] |
Ti3C2Tx/Co3O4 | 9.2% | 0.01–10 | 83 | 5 | RT | [66] | |
H2 | PdNP-decorated 3D graphene | 41.9% | 0.1–3%/air | 8 | 38 | 30–150 | [67] |
Ti3C2Tx/Pd | 23% | 0.5–40%/air | 32 | 161 | RT | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaishag, P.V.; Noh, J.-S. A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing. Molecules 2024, 29, 4558. https://doi.org/10.3390/molecules29194558
Vaishag PV, Noh J-S. A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing. Molecules. 2024; 29(19):4558. https://doi.org/10.3390/molecules29194558
Chicago/Turabian StyleVaishag, Pushpalatha Vijayakumar, and Jin-Seo Noh. 2024. "A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing" Molecules 29, no. 19: 4558. https://doi.org/10.3390/molecules29194558
APA StyleVaishag, P. V., & Noh, J. -S. (2024). A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing. Molecules, 29(19), 4558. https://doi.org/10.3390/molecules29194558