Extended Interfacial Charge Transference in CoFe2O4/WO3 Nanocomposites for the Photocatalytic Degradation of Tetracycline Antibiotics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Analysis
2.2. Morphological Analysis
2.3. Energy Band Structure
2.4. BET Surface Area Analysis
2.5. Photodegradation Study
2.6. Photocatalytic Mechanism
3. Experimental Section
3.1. Synthesis of Materials
3.2. Characterization
3.3. Photocatalytic Activity
3.4. Photoelectrochemical Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lodhi, A.F.; Zhang, Y.; Adil, M.; Deng, Y. Antibiotic discovery: Combining isolation chip (iChip) technology and co-culture technique. Appl. Microbiol. Biotechnol. 2018, 102, 7333–7341. [Google Scholar] [CrossRef]
- Zinner, S.H. Antibiotic use: Present and future. New Microbiol. 2007, 30, 321–325. [Google Scholar] [PubMed]
- Wei, Z.; Liu, J.; Shangguan, W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Kumar, L.; Ragunathan, V.; Chugh, M.; Bharadvaja, N. Nanomaterials for remediation of contaminants: A review. Environ. Chem. Lett. 2021, 19, 3139–3163. [Google Scholar] [CrossRef]
- Peng, X.; Luo, W.; Wu, J.; Hu, F.; Hu, Y.; Xu, L.; Xu, G.; Jian, Y.; Dai, H. Carbon quantum dots decorated heteroatom co-doped core-shell Fe0@POCN for degradation of tetracycline via multiply synergistic mechanisms. Chemosphere 2021, 268, 128806. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, Y.; Liu, X.; Li, Q.; Zheng, Y. A novel PVDF-TiO2@g-C3N4 composite electrospun fiber for efficient photocatalytic degradation of tetracycline under visible light irradiation. Ecotoxicol. Environ. Saf. 2021, 210, 111866. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xia, Y.; Yan, G.; Chen, M.; Wang, X.; Wu, L.; Liang, R. PDI bridged MIL-125(Ti)-NH2 heterojunction with frustrated Lewis pairs: A promising photocatalyst for Cr(VI) reduction and antibacterial application. Appl. Catal. B 2022, 317, 121798. [Google Scholar] [CrossRef]
- Song, J.; Zhang, J.; Zada, A.; Ma, Y.; Qi, K. CoFe2O4/NiFe2O4 S-scheme composite for photocatalytic decomposition of antibiotic contaminants. Ceram. Int. 2023, 49, 12327–12333. [Google Scholar] [CrossRef]
- Zheng, K.; Chen, J.; Gao, X.; Cao, X.; Wu, S.; Su, J. Photocatalytic degradation of tetracycline by Phosphorus-doped carbon nitride tube combined with peroxydisulfate under visible light irradiation. Water Sci. Technol. 2021, 84, 1919–1929. [Google Scholar] [CrossRef]
- Dharman, R.K.; Oh, T.H. Fabrication of g-C3N4@N-doped Bi2MoO6 heterostructure for enhanced visible-light-driven photocatalytic degradation of tetracycline pollutant. Chemosphere 2023, 338, 139513. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Sun, L. Recent advances in photocatalytic decomposition of water and pollutants for sustainable application. Chemosphere 2021, 276, 130201. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, Q.; Lian, Y. Efficient Photocatalytic Degradation of Tetracycline on the MnFe2O4/BGA Composite under Visible Light. Int. J. Mol. Sci. 2023, 24, 9378. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Peng, Q.; Sun, M.; Zuo, N.; Mominou, N.; Li, S.; Jing, C.; Wang, L. Photocatalytic oxidation degradation of tetracycline over La/Co@TiO2 nanospheres under visible light. Environ. Res. 2022, 215, 114297. [Google Scholar] [CrossRef] [PubMed]
- Sreeram, N.; Aruna, V.; Koutavarapu, R.; Lee, D.Y.; Rao, M.C.; Shim, J. Fabrication of InVO4/SnWO4 heterostructured photocatalyst for efficient photocatalytic degradation of tetracycline under visible light. Environ. Res. 2023, 220, 115191. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.Z.; Wang, Y.; Xiao, D. Polymer Nanocomposites for Photocatalytic Degradation and Photoinduced Utilizations of Azo-Dyes. Polymers 2021, 13, 1215. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, X.; Zhu, L.; Tao, X.; Wang, X. One-step fabrication of novel MIL-53(Fe, Al) for synergistic adsorption-photocatalytic degradation of tetracycline. Chemosphere 2022, 291, 133032. [Google Scholar] [CrossRef]
- Lalliansanga; Tiwari, D.; Lee, S.M.; Kim, D.J. Photocatalytic degradation of amoxicillin and tetracycline by template synthesized nano-structured Ce3+@TiO2 thin film catalyst. Environ. Res. 2022, 210, 112914. [Google Scholar] [CrossRef]
- Pandi, K.; Preeyanghaa, M.; Vinesh, V.; Madhavan, J.; Neppolian, B. Complete photocatalytic degradation of tetracycline by carbon doped TiO2 supported with stable metal nitrate hydroxide. Environ. Res. 2022, 207, 112188. [Google Scholar] [CrossRef]
- Guan, X.-H.; Qu, P.; Guan, X.; Wang, G.-S. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties. RSC Adv. 2014, 4, 15579–15585. [Google Scholar] [CrossRef]
- Guan, X.-H.; Yang, L.; Guan, X.; Wang, G.-S. Synthesis of a flower-like CuS/ZnS nanocomposite decorated on reduced graphene oxide and its photocatalytic performance. RSC Adv. 2015, 5, 36185–36191. [Google Scholar] [CrossRef]
- Simonsen, M.E.; Jensen, H.; Li, Z.; Søgaard, E.G. Surface properties and photocatalytic activity of nanocrystalline titania films. J. Photochem. Photobiol. A 2008, 200, 192–200. [Google Scholar] [CrossRef]
- Xiang, Q.; Meng, G.F.; Zhao, H.B.; Zhang, Y.; Li, H.; Ma, W.J.; Xu, J.Q. Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing. J. Phys. Chem. C 2010, 114, 2049–2055. [Google Scholar] [CrossRef]
- Teoh, L.G.; Shieh, J.; Lai, W.H.; Hung, I.M.; Hon, M.H. Structure and optical properties of mesoporous tungsten oxide. J. Alloys Compd. 2005, 396, 251–254. [Google Scholar] [CrossRef]
- Su, J.; Feng, X.; Sloppy, J.D.; Guo, L.; Grimes, C.A. Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Lett. 2011, 11, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Zhang, T.; Qiu, F.; Rong, X.; Zhu, X.; Zhang, X. Preparation of hierarchical micro/nanostructured Bi2S3-WO3 composites for enhanced photocatalytic performance. J. Alloys Compd. 2016, 685, 812–819. [Google Scholar] [CrossRef]
- Khampuanbut, A.; Santalelat, S.; Pankiew, A.; Channei, D.; Pornsuwan, S.; Faungnawakij, K.; Phanichphant, S.; Inceesungvorn, B. Visible-light-driven WO3/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight. J. Colloid Interface Sci. 2020, 560, 213–224. [Google Scholar] [CrossRef]
- Gu, X.; Lin, S.; Qi, K.; Yan, Y.; Li, R.; Popkov, V.; Almjasheva, O. Application of tungsten oxide and its composites in photocatalysis. Sep. Purif. Technol. 2024, 345, 127299. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Rahimpour, E. CoFe2O4 nano-particles functionalized with 8-hydroxyquinoline for dispersive solid-phase micro-extraction and direct fluorometric monitoring of aluminum in human serum and water samples. Anal. Chim. Acta 2015, 881, 54–64. [Google Scholar] [CrossRef]
- Sonia, S.; Kumar, P.; Kumar, A. Multifunctional CoFe2O4/ZnO nanocomposites: Probing magnetic and photocatalytic properties. Nanotechnology 2023, 35, 145705. [Google Scholar] [CrossRef]
- Rezaeivala, Z.; Imanparast, A.; Mohammadi, Z.; Najafabad, B.K.; Sazgarnia, A. The multimodal effect of Photothermal/Photodynamic/Chemo therapies mediated by Au-CoFe2O4@Spiky nanostructure adjacent to mitoxantrone on breast cancer cells. Photodiagn. Photodyn. Ther. 2023, 41, 103269. [Google Scholar] [CrossRef]
- Ajay, K.; Manisha, C.; Arush, S.; Manita, T.; Amit, K.; Deepak, P.; Lakhveer, S. Robust visible light active PANI/LaFeO3/CoFe2O4 ternary heterojunction for the photo-degradation and mineralization of pharmaceutical effluent: Clozapine. Photodiagn. Photodyn. Ther. 2021, 9, 106159. [Google Scholar]
- Naciri, Y.; Hsini, A.; Bouziani, A.; Tanji, K.; El Ibrahimi, B.; Ghazzal, M.N.; Bakiz, B.; Albourine, A.; Benlhachemi, A.; Navío, J.A.; et al. Z-scheme WO3/PANI heterojunctions with enhanced photocatalytic activity under visible light: A depth experimental and DFT studies. Chemosphere 2022, 292, 133468. [Google Scholar] [CrossRef] [PubMed]
- Renukadevi, S.; Jeyakumari, A.P. A one-pot microwave irradiation route to synthesis of CoFe2O4-g-C3N4 heterojunction catalysts for high visible light photocatalytic activity: Exploration of efficiency and stability. Diamond Relat. Mater. 2020, 109, 108012. [Google Scholar] [CrossRef]
- Liu, S.; Dong, S.; Hao, Y.; Qi, K.; Peng, A. Gd-doped ZnFe2O4 multi-shell microspheres for enhancing photocatalytic H2 production or antibiotic degradation. J. Rare Earths 2024, in press. [Google Scholar] [CrossRef]
- Academic MedicineLing, Y.; Dai, Y. Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light. Appl. Surf. Sci. 2020, 509, 145201. [Google Scholar]
- Wang, Z.; Liu, R.; Zhang, J.; Dai, K. S-scheme Porous g-C3N4/Ag2MoO4 Heterojunction Composite for CO2 Photoreduction. Chin. J. Struct. Chem. 2022, 41, 2206015–2206022. [Google Scholar]
- Ehsan, M.F.; Fazal, A.; Hamid, S.; Arfan, M.; Khan, I.; Usman, M.; Shafiee, A.; Ashiq, M.N. CoFe2O4 decorated g-C3N4 nanosheets: New insights into superoxide anion mediated photomineralization of methylene blue. J. Environ. Chem. Eng. 2020, 8, 104556. [Google Scholar] [CrossRef]
- Palanisamy, G.; Bhuvaneswari, K.; Bharathi, G.; Pazhanivel, T.; Grace, A.N.; Pasha, S.K.K. Construction of magnetically recoverable ZnS–WO3–CoFe2O4 nanohybrid enriched photocatalyst for the degradation of MB dye under visible light irradiation. Chemosphere 2021, 273, 129687. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Lin, S.; Qi, K.; Yan, Y.; Ma, Y. Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2. Molecules 2024, 29, 361. [Google Scholar] [CrossRef]
- Huang, J.; Shang, Q.; Huang, Y.; Tang, F.; Zhang, Q.; Liu, Q.; Jiang, S.; Hu, F.; Liu, W.; Luo, Y.; et al. Oxyhydroxide Nanosheets with Highly Efficient Electron–Hole Pair Separation for Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 2137–2141. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Yang, B.; Xu, J.; Yan, Y.; He, J. Synthesis of Zn2+ doped AgInxSy sub-microspheres and its visible light photocatalytic activity. J. Mater. Sci. Mater. Electron. 2019, 30, 15257–15266. [Google Scholar] [CrossRef]
- Cao, X.; Chen, W.; Zhao, P.; Yang, Y.; Yu, D.G. Electrospun Porous Nanofibers: Pore-Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers 2022, 14, 3990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xue, X.; Chen, X. A novel g-C3N4 nanosheet/Ag3PO4/α-Bi2O3 ternary dual Z-scheme heterojunction with increased light absorption and expanded specific surface area for efficient photocatalytic removal of TC. Dalton Trans. 2022, 51, 8015–8027. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Rahman, M.U.; Khan, I.; Khan, J.; Sohail, M.; Yasmeen, H.; Liu, S.; Qi, K.; Lv, W. Conjugated Electron Donor–Acceptor Hybrid Polymeric Carbon Nitride as a Photocatalyst for CO2 Reduction. Molecules 2019, 24, 1779. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, H.-Y.; Shan, L.-W.; Liu, Y.; Cao, M.-C.; Jin, L.-G.; Dong, L.-M. Photocatalysis Meets Piezoelectricity in a Type-I Oxygen Vacancy-Rich BaTiO3/BiOBr Heterojunction: Mechanism Insights from Characterizations to DFT Calculations. Inorg. Chem. 2024, 63, 6500–6513. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Zhang, K.; Zada, A.; Qi, K. Sonocatalytic degradation of tetracycline hydrochloride with CoFe2O4/g-C3N4 composite. Ultrason. Sonochem. 2023, 94, 106325. [Google Scholar] [CrossRef]
- Cui, Q.; Gu, X.; Zhao, Y.; Qi, K.; Yan, Y. S-scheme CuInS2/ZnS heterojunctions for the visible light-driven photocatalytic degradation of tetracycline antibiotic drugs. J. Taiwan Inst. Chem. Eng. 2023, 142, 104679. [Google Scholar] [CrossRef]
- Li, W.; Zhuang, C.; Li, Y.; Gao, C.; Jiang, W.; Sun, Z.; Qi, K. Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting. Ceram. Int. 2021, 47, 21769–21776. [Google Scholar] [CrossRef]
- Li, B.; Xu, H.-Y.; Chi, G.-H.-N.; Dong, L.-M.; Shan, L.-W.; Jin, L.-G.; Zhuang, Y.-L.; Cao, M.-C.; He, X.-L.; Qi, S.-Y. Integrating the confinement effect and bimetallic cycles in a hierarchical Co3O4@Co3O4/Fe3O4 yolk-shell nanoreactor for peroxymonosulfate activation enhancement. Chem. Eng. J. 2024, 483, 149403. [Google Scholar] [CrossRef]
- Mohammad, W.K.; Reda, M.M.; Detlef, W.B. Controlled synthesis of Ag2O/g-C3N4 heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin. Ceram. Int. 2021, 47, 31073–31083. [Google Scholar]
- Li, F.; Liao, B.; Shen, J.; Ke, J.; Zhang, R.; Wang, Y.; Niu, Y. Enhancing Photocatalytic Activities for Sustainable Hydrogen Evolution on Structurally Matched CuInS2/ZnIn2S4 Heterojunctions. Molecules 2024, 29, 2447. [Google Scholar] [CrossRef] [PubMed]
- Albukhari, S.M.; Ismail, A.A. Construction of cobalt ferrite nanoparticles anchored on mesoporous WO3 for accelerated photoreduction of Cr(VI). J. Alloys Compd. 2023, 967, 171788. [Google Scholar] [CrossRef]
- Qiao, H.; Du, R.; Zhou, S.; Wang, Q.; Ren, J.; Wang, D.; Li, H. Efficient Charge Carriers Separation and Transfer Driven by Interface Electric Field in FeS2@ZnIn2S4 Heterojunction Boost Hydrogen Evolution. Molecules 2024, 29, 4269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, Y.; Qi, K.; Liu, S.-y. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation. J. Mater. Sci. Technol. 2024, 172, 145–155. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Zhang, J.; Bifulco, A.; Amato, P.; Imparato, C.; Qi, K. Copper indium sulfide quantum dots in photocatalysis. J. Colloid Interface Sci. 2023, 638, 193–219. [Google Scholar] [CrossRef]
Sample | BET Specific Surface Area (m2/g) | Pore Size (nm) | Pore Volume (mL/g) |
---|---|---|---|
CoFe2O4 | 27.5202 | 52.1106 | 0.4280 |
WO3 | 10.3757 | 22.2659 | 0.0686 |
5%CoFe2O4/WO3 | 4.7766 | 20.0900 | 0.0308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, S.; Dai, J.; Yang, Y.; Zada, A.; Qi, K. Extended Interfacial Charge Transference in CoFe2O4/WO3 Nanocomposites for the Photocatalytic Degradation of Tetracycline Antibiotics. Molecules 2024, 29, 4561. https://doi.org/10.3390/molecules29194561
Dong S, Dai J, Yang Y, Zada A, Qi K. Extended Interfacial Charge Transference in CoFe2O4/WO3 Nanocomposites for the Photocatalytic Degradation of Tetracycline Antibiotics. Molecules. 2024; 29(19):4561. https://doi.org/10.3390/molecules29194561
Chicago/Turabian StyleDong, Suiying, Jiafu Dai, Ying Yang, Amir Zada, and Kezhen Qi. 2024. "Extended Interfacial Charge Transference in CoFe2O4/WO3 Nanocomposites for the Photocatalytic Degradation of Tetracycline Antibiotics" Molecules 29, no. 19: 4561. https://doi.org/10.3390/molecules29194561
APA StyleDong, S., Dai, J., Yang, Y., Zada, A., & Qi, K. (2024). Extended Interfacial Charge Transference in CoFe2O4/WO3 Nanocomposites for the Photocatalytic Degradation of Tetracycline Antibiotics. Molecules, 29(19), 4561. https://doi.org/10.3390/molecules29194561