A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin
Abstract
:1. Introduction
2. Antioxidant Activity of Berberine and Silymarin: Mechanism of Action
2.1. Antioxidant Activity of Berberine
2.1.1. Overview
2.1.2. Enhancement of Endogenous Antioxidant Enzymes
2.1.3. Direct Free Radical Scavenging Activity
2.1.4. Metal Ion Chelation
2.1.5. Activation of the Nrf2 Pathway
2.1.6. Activation of the AMPK Pathway
2.2. Antioxidant Activity of Silymarin
2.2.1. Overview
2.2.2. Free Radical Scavenging and Enzyme Inhibition
2.2.3. Activation of Antioxidant Enzymes and Transcription Factors
2.2.4. Regulation of Stress Response Genes
3. Anti-Inflammatory Activity of Berberine and Silymarin
3.1. Anti-Inflammatory Activity of Berberine
3.1.1. Inhibition of NF-κB and AP-1 Pathways
3.1.2. Activation of AMP-Activated Protein Kinase
3.1.3. Modulation of Gut Microbiota and Treg/Th17 Balance
3.1.4. Inhibition of Mitogen-Activated Protein Kinase (MAPK) Pathways
3.1.5. Inhibition of Pro-Inflammatory Cytokine Production
3.2. Anti-Inflammatory Activity of Silymarin
3.2.1. Modulation of Cytokine Signaling Pathways
3.2.2. Effects on Macrophages and Other Immune Cells
3.2.3. Inhibition of Inflammasome Activation
4. Health Benefits of Berberine
4.1. Health Benefits of Berberine on Cardiovascular Disease Risk Factors
4.2. Berberine and Lipid Profile
4.3. Berberine and Blood Pressure
4.4. Berberine and Endothelial Function
4.5. Berberine as an Antiplatelet Agent
4.6. Effect of Berberine on Type 1 and Type 2 Diabetes Mellitus
4.7. Effect of Berberine on Obesity
4.8. The Effect of Berberine on Apoptosis
5. Health Benefits of Silymarin
5.1. Silymarin and Hepatic Diseases
5.2. Silymarin and Diabetes
5.3. Silymarin in Cardiovascular Diseases
6. Clinical Trials Evaluating the Effects of Berberine and Silymarin: Synergistic and Individual Outcomes
6.1. Synergistic Effects of Berberine and Silymarin
6.2. Effects of Berberine or Silymarin as Single Agents
6.3. Effects in Immunocompromised Patients and Hepatoprotection
7. Conclusions and Future Research Lines
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-J.; Zeng, Y.; Lan, P.; Sun, P.-H.; Chen, W.-M. Advances in Structural Modifications and Biological Activities of Berberine: An Active Compound in Traditional Chinese Medicine. Mini. Rev. Med. Chem. 2011, 11, 1122–1129. [Google Scholar] [CrossRef]
- Kumar, A.; Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current Knowledge and Pharmacological Profile of Berberine: An Update. Eur. J. Pharmacol. 2015, 761, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, F.; Kiani, S.; Rahimi, G.; Boskabady, M.H. Anti-Inflammatory, Antioxidant, and Immunomodulatory Effects of Berberis Vulgaris and Its Constituent Berberine, Experimental and Clinical, a Review. Phytother. Res. 2024, 38, 1882–1902. [Google Scholar] [CrossRef]
- Dubey, V.; Kansagra, J.; Sureja, V.; Kheni, D. Efficacy Evaluation of Berberis Aristata and Silybum Marianum Fixed Dose Combination on Glycaemic and Insulin Resistance Parameters in Adult Population: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Future J. Pharm. Sci. 2024, 10, 28. [Google Scholar] [CrossRef]
- Almani, S.A.; Qureshi, F.; Shaikh, T.Z.; Uqaili, A.A.; Khoharo, H.K. Free Radical Scavenging Activity of Berberine in Acetaminophen Induced Liver Injury. Int. J. Surg. Med. 2017, 3, 27–36. Available online: https://www.researchgate.net/publication/312295874_Free_radical_scavenging_activity_of_Berberine_in_acetaminophen_induced_liver_injury/fulltext/5897da54aca2721f0dae16e6/Free-radical-scavenging-activity-of-Berberine-in-acetaminophen-induced-liver-injury.pdf (accessed on 29 July 2024). [CrossRef]
- Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New Perspectives for Old Remedies. Biochem. Pharmacol. 2012, 84, 1260–1267. [Google Scholar] [CrossRef]
- Polyak, S.J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D.Y.W.; Liu, Y.; Graf, T.N.; Oberlies, N.H. Identification of Hepatoprotective Flavonolignans from Silymarin. Proc. Natl. Acad. Sci. USA 2010, 107, 5995. [Google Scholar] [CrossRef]
- Vargas-Mendoza, N.; Morales-González, Á.; Morales-Martínez, M.; Soriano-Ursúa, M.A.; Delgado-Olivares, L.; Sandoval-Gallegos, E.M.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Madrigal-Santillán, E.; Morales-Gonzalez, J.A. Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications. Biomedicines 2020, 8, 122. [Google Scholar] [CrossRef]
- Stolf, A.M.; Cardoso, C.C.; Acco, A. Effects of Silymarin on Diabetes Mellitus Complications: A Review. Phytother. Res. 2017, 31, 366–374. [Google Scholar] [CrossRef]
- Taleb, A.; Ahmad, K.A.; Ihsan, A.U.; Qu, J.; Lin, N.; Hezam, K.; Koju, N.; Hui, L.; Qilong, D. Antioxidant Effects and Mechanism of Silymarin in Oxidative Stress Induced Cardiovascular Diseases. Biomed. Pharmacother. 2018, 102, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism. Molecules 2017, 22, 1942. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Grassi, D.; Rizzo, M.; Cicero, A.F.G. Metabolic Effect of Berberine–Silymarin Association: A Meta-analysis of Randomized, Double-blind, Placebo-controlled Clinical Trials. Phytother. Res. 2019, 33, 862. [Google Scholar] [CrossRef]
- Tian, E.; Sharma, G.; Dai, C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants 2023, 12, 1883. [Google Scholar] [CrossRef]
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A Review of Its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front. Pharmacol. 2021, 12, 762654. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Chen, Q.; He, Y.; Wang, H.; Yang, L.; Guo, S.; Meng, Z.; Cui, J.; Xue, M.; et al. Monodisperse Microparticles Loaded with the Self-Assembled Berberine-Phospholipid Complex-Based Phytosomes for Improving Oral Bioavailability and Enhancing Hypoglycemic Efficiency. Eur. J. Pharm. Biopharm. 2016, 103, 136–148. [Google Scholar] [CrossRef]
- Cao-Luu, N.H.; Luong-Huynh, V.T.; Nguyen-Thi, B.T.; Nguyen, T.T.; Dang, H.G.; Mac, C.T.; Ha, H.T. Co-Encapsulation of Berberine and Piperine in Coaxial Electrosprayed Chitosan Nanoparticles for Sustained Release and Improved Berberine Bioavailability. Chem. Pap. 2024, 78, 4211–4223. [Google Scholar] [CrossRef]
- Di Costanzo, A.; Angelico, R. Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules 2019, 24, 2155. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crisan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 343970. [Google Scholar] [CrossRef]
- Bashir, S.; Gilani, A.H. Antiurolithic Effect of Berberine Is Mediated through Multiple Pathways. Eur. J. Pharmacol. 2011, 651, 168–175. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Fan, Y. Antioxidant Activities of Berberine Hydrochloride. J. Med. Plants Res. 2011, 5, 3702–3707. [Google Scholar]
- Kim, J.H.; Ryu, A.R.; Kang, M.J.; Lee, M.Y. Berberine-Induced Changes in Protein Expression and Antioxidant Enzymes in Melanoma Cells. Mol. Cell. Toxicol. 2016, 12, 53–61. [Google Scholar] [CrossRef]
- Li, Z.; Geng, Y.N.; Jiang, J.D.; Kong, W.J. Antioxidant and Anti-Inflammatory Activities of Berberine in the Treatment of Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2014, 2014, 289264. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Lebelo, S.L. Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. Oxid. Med. Cell. Longev. 2020, 2020, 1356893. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Fekri, H.S.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Therapeutic and Biological Activities of Berberine: The Involvement of Nrf2 Signaling Pathway. J. Cell. Biochem. 2020, 121, 1575–1585. [Google Scholar] [CrossRef]
- Hammad, M.; Raftari, M.; Cesário, R.; Salma, R.; Godoy, P.; Emami, S.N.; Haghdoost, S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants 2023, 12, 1371. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid. Based Complement. Altern. Med. 2015, 2015, 165457. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Long, S.; Zhang, S.; Tan, Y.; Wang, T.; Wu, Y.; Jiang, T.; Liu, X.; Peng, D.; Liu, Z. Synthesis and Antioxidant Activities of Berberine 9-O-Benzoic Acid Derivatives. RSC Adv. 2021, 11, 17611. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative Stress, Free Radicals and Antioxidants: Potential Crosstalk in the Pathophysiology of Human Diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Gupta, P.; Lakes, A.; Dziubla, T. A Free Radical Primer. In Oxidative Stress and Biomaterials; Academic Press: Cambridge, MA, USA, 2016; pp. 1–33. [Google Scholar] [CrossRef]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef]
- Afzal, S.; Abdul Manap, A.S.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From Imbalance to Impairment: The Central Role of Reactive Oxygen Species in Oxidative Stress-Induced Disorders and Therapeutic Exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef]
- Timoshnikov, V.A.; Selyutina, O.Y.; Polyakov, N.E.; Didichenko, V.; Kontoghiorghes, G.J. Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. Int. J. Mol. Sci. 2022, 23, 1247. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Importance of Iron Chelation in Free Radical-Induced Oxidative Stress and Human Disease. Curr. Pharm. Des. 2011, 17, 3460–3473. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Y.; Xing, X.; Lin, R.; Li, Q.; Zhou, W.; Qiu, W.; Zheng, W. Protective Mechanism of Berberine on Human Retinal Pigment Epithelial Cells against Apoptosis Induced by Hydrogen Peroxide via the Stimulation of Autophagy. Oxid. Med. Cell. Longev. 2021, 2021, 7654143. [Google Scholar] [CrossRef]
- Zgorzynska, E.; Dziedzic, B.; Walczewska, A. An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 9592. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.Y.; Chen, C.S.; Wu, S.N.; Jong, Y.J.; Lo, Y.C. Berberine Activates Nrf2 Nuclear Translocation and Protects against Oxidative Damage via a Phosphatidylinositol 3-Kinase/Akt-Dependent Mechanism in NSC34 Motor Neuron-like Cells. Eur. J. Pharm. Sci. 2012, 46, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Baird, L.; Yamamoto, M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol. Cell. Biol. 2020, 40, e00099-20. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.X.; Zhu, J.Q.; Dou, Y.X.; Xian, Y.F.; Lin, Z.X. Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer Treatment. Int. J. Biol. Sci. 2023, 19, 3029. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO-1 Signaling: An Important Molecular Mechanism of Herbal Medicine in the Treatment of Atherosclerosis via the Protection of Vascular Endothelial Cells from Oxidative Stress. J. Adv. Res. 2021, 34, 43. [Google Scholar] [CrossRef]
- Ryter, S.W. Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants 2022, 11, 555. [Google Scholar] [CrossRef]
- Chen, J.H.; Huang, S.M.; Tan, T.W.; Lin, H.Y.; Chen, P.Y.; Yeh, W.L.; Chou, S.C.; Tsai, C.F.; Wei, I.H.; Lu, D.Y. Berberine Induces Heme Oxygenase-1 up-Regulation through Phosphatidylinositol 3-Kinase/AKT and NF-E2-Related Factor-2 Signaling Pathway in Astrocytes. Int. Immunopharmacol. 2012, 12, 94–100. [Google Scholar] [CrossRef]
- Petsouki, E.; Cabrera, S.N.S.; Heiss, E.H. AMPK and NRF2: Interactive Players in the Same Team for Cellular Homeostasis? Free Radic. Biol. Med. 2022, 190, 75–93. [Google Scholar] [CrossRef]
- Heidary Moghaddam, R.; Samimi, Z.; Asgary, S.; Mohammadi, P.; Hozeifi, S.; Hoseinzadeh-Chahkandak, F.; Xu, S.; Farzaei, M.H. Natural AMPK Activators in Cardiovascular Disease Prevention. Front. Pharmacol. 2022, 12, 738420. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, W.S.; Kim, K.H.; Yoon, M.J.; Cho, H.J.; Shen, Y.; Ye, J.M.; Lee, C.H.; Oh, W.K.; Kim, C.T.; et al. Berberine, a Natural Plant Product, Activates AMP-Activated Protein Kinase with Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States. Diabetes 2006, 55, 2256–2264. [Google Scholar] [CrossRef]
- Li, W.; Hua, B.; Saud, S.M.; Lin, H.; Hou, W.; Matter, M.S.; Jia, L.; Colburn, N.H.; Young, M.R. Berberine Regulates AMP-Activated Protein Kinase Signaling Pathways and Inhibits Colon Tumorigenesis in Mice. Mol. Carcinog. 2015, 54, 1096. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. AMP-Activated Protein Kinase—An Energy Sensor That Regulates All Aspects of Cell Function. Genes Dev. 2011, 25, 1895. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, Q.; Song, P.; Zhu, Y.; Zou, M.H. Redox Regulation of the AMP-Activated Protein Kinase. PLoS ONE 2010, 5, 15420. [Google Scholar] [CrossRef]
- Sedeek, M.; Nasrallah, R.; Touyz, R.M.; Hébert, R.L. NADPH Oxidases, Reactive Oxygen Species, and the Kidney: Friend and Foe. J. Am. Soc. Nephrol. 2013, 24, 1512. [Google Scholar] [CrossRef]
- Pierelli, G.; Stanzione, R.; Forte, M.; Migliarino, S.; Perelli, M.; Volpe, M.; Rubattu, S. Uncoupling Protein 2: A Key Player and a Potential Therapeutic Target in Vascular Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 7348372. [Google Scholar] [CrossRef]
- Karunakaran, U.; Park, K.G. A Systematic Review of Oxidative Stress and Safety of Antioxidants in Diabetes: Focus on Islets and Their Defense. Diabetes Metab. J. 2013, 37, 106–112. [Google Scholar] [CrossRef]
- Hwang, J.; Jin, J.; Jeon, S.; Moon, S.H.; Park, M.Y.; Yum, D.Y.; Kim, J.H.; Kang, J.E.; Park, M.H.; Kim, E.J.; et al. SOD1 Suppresses Pro-Inflammatory Immune Responses by Protecting against Oxidative Stress in Colitis. Redox Biol. 2020, 37, 101760. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, S.; Ma, Q.; Xiao, D.; Chen, L. Berberine Enhances the AMPK Activation and Autophagy and Mitigates High Glucose-Induced Apoptosis of Mouse Podocytes. Eur. J. Pharmacol. 2017, 794, 106–114. [Google Scholar] [CrossRef]
- Mahjoubin-Tehran, M.; De Vincentis, A.; Mikhailidis, D.P.; Atkin, S.L.; Mantzoros, C.S.; Jamialahmadi, T.; Sahebkar, A. Non-Alcoholic Fatty Liver Disease and Steatohepatitis: State of the Art on Effective Therapeutics Based on the Gold Standard Method for Diagnosis. Mol. Metab. 2021, 50, 101049. [Google Scholar] [CrossRef]
- Jaffar, H.M.; Al-Asmari, F.; Khan, F.A.; Rahim, M.A.; Zongo, E. Silymarin: Unveiling Its Pharmacological Spectrum and Therapeutic Potential in Liver Diseases—A Comprehensive Narrative Review. Food Sci. Nutr. 2024, 12, 3097–3111. [Google Scholar] [CrossRef]
- Surai, P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants 2015, 4, 204. [Google Scholar] [CrossRef] [PubMed]
- Anthony, K.P.; Saleh, M.A. Free Radical Scavenging and Antioxidant Activities of Silymarin Components. Antioxidants 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed]
- Shaker, E.; Mahmoud, H.; Mnaa, S. Silymarin, the Antioxidant Component and Silybum Marianum Extracts Prevent Liver Damage. Food Chem. Toxicol. 2010, 48, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Emadi, S.A.; Rahbardar, M.G.; Mehri, S.; Hosseinzadeh, H. A Review of Therapeutic Potentials of Milk Thistle (Silybum marianum L.) and Its Main Constituent, Silymarin, on Cancer, and Their Related Patents. Iran. J. Basic Med. Sci. 2022, 25, 1166. [Google Scholar] [CrossRef]
- Serçe, A.; Toptanci, B.Ç.; Tanrikut, S.E.; Altas, S.; Kizil, G.; Kizil, S.; Kizil, M. Assessment of the Antioxidant Activity of Silybum Marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation. Food Technol. Biotechnol. 2016, 54, 455. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Kapinova, A.; Sargheini, N.; Bojkova, B.; Kapalla, M.; Heinrich, L.; Gkika, E.; Kubatka, P. Mini-Encyclopedia of Mitochondria-Relevant Nutraceuticals Protecting Health in Primary and Secondary Care—Clinically Relevant 3PM Innovation. EPMA J. 2024, 15, 163–205. [Google Scholar] [CrossRef]
- Ligeret, H.; Brault, A.; Vallerand, D.; Haddad, Y.; Haddad, P.S. Antioxidant and Mitochondrial Protective Effects of Silibinin in Cold Preservation-Warm Reperfusion Liver Injury. J. Ethnopharmacol. 2008, 115, 507–514. [Google Scholar] [CrossRef]
- Farjad, E.; Momeni, H.R. Silymarin Ameliorates Oxidative Stress and Enhances Antioxidant System Capacity in Cadmium-Treated Mice. Cell J. 2018, 20, 422. [Google Scholar] [CrossRef]
- Reuland, D.J.; Khademi, S.; Castle, C.J.; Irwin, D.C.; McCord, J.M.; Miller, B.F.; Hamilton, K.L. Upregulation of Phase II Enzymes through Phytochemical Activation of Nrf2 Protects Cardiomyocytes against Oxidant Stress. Free Radic. Biol. Med. 2013, 56, 102–111. [Google Scholar] [CrossRef]
- Wardle, E.N. Cell Defence and Survival. Guide to Signal Pathways in Immune Cells; Humana Press: Totowa, NJ, USA, 2009; pp. 175–199. [Google Scholar] [CrossRef]
- Kim, B.R.; Seo, H.S.; Ku, J.M.; Kim, G.J.; Jeon, C.Y.; Park, J.H.; Jang, B.H.; Park, S.J.; Shin, Y.C.; Ko, S.G. Silibinin Inhibits the Production of Pro-Inflammatory Cytokines through Inhibition of NF-ΚB Signaling Pathway in HMC-1 Human Mast Cells. Inflamm. Res. 2013, 62, 941–950. [Google Scholar] [CrossRef]
- Salinaro, A.T.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; et al. Cellular Stress Response, Redox Status, and Vitagenes in Glaucoma: A Systemic Oxidant Disorder Linked to Alzheimer’s Disease. Front. Pharmacol. 2014, 5, 129. [Google Scholar] [CrossRef]
- Surai, P.F.; Earle-Payne, K. Antioxidant Defences and Redox Homeostasis in Animals. Antioxidants 2022, 11, 1012. [Google Scholar] [CrossRef]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat Shock Proteins: Biological Functions, Pathological Roles, and Therapeutic Opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef]
- Demir, M.; Amanvermez, R.; Kamal Polat, A.; Karabçak, I.; Çnar, H.; Kesicioǧlu, T.; Polat, C. The Effect of Silymarin on Mesenteric Ischemia-Reperfusion Injury. Med. Princ. Pract. 2014, 23, 140. [Google Scholar] [CrossRef]
- Jiao, W.; Bai, M.; Yin, H.; Liu, J.; Sun, J.; Su, X.; Zeng, H.; Wen, J. Therapeutic Effects of an Inhibitor of Thioredoxin Reductase on Liver Fibrosis by Inhibiting the Transforming Growth Factor-β1/Smads Pathway. Front. Mol. Biosci. 2021, 8, 690170. [Google Scholar] [CrossRef]
- Och, A.; Podgórski, R.; Nowak, R. Biological Activity of Berberine—A Summary Update. Toxins 2020, 12, 713. [Google Scholar] [CrossRef]
- Zou, K.; Li, Z.; Zhang, Y.; Zhang, H.Y.; Li, B.; Zhu, W.L.; Shi, J.Y.; Jia, Q.; Li, Y.M. Advances in the Study of Berberine and Its Derivatives: A Focus on Anti-Inflammatory and Anti-Tumor Effects in the Digestive System. Acta Pharmacol. Sin. 2017, 38, 157. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Zhao, Y.; Xu, B.; Qin, W.; Yan, Y.; Yin, B.; Xi, C.; Ma, L. Anti-inflammatory Mechanism of Berberine on Lipopolysaccharide-induced IEC-18 Models Based on Comparative Transcriptomics. Mol. Med. Rep. 2020, 22, 5163–5180. [Google Scholar] [CrossRef]
- Kuo, C.L.; Chi, C.W.; Liu, T.Y. The Anti-Inflammatory Potential of Berberine In Vitro and In Vivo. Cancer Lett. 2004, 203, 127–137. [Google Scholar] [CrossRef]
- Ehteshamfar, S.M.; Akhbari, M.; Afshari, J.T.; Seyedi, M.; Nikfar, B.; Shapouri-Moghaddam, A.; Ghanbarzadeh, E.; Momtazi-Borojeni, A.A. Anti-inflammatory and Immune-modulatory Impacts of Berberine on Activation of Autoreactive T Cells in Autoimmune Inflammation. J. Cell. Mol. Med. 2020, 24, 13573. [Google Scholar] [CrossRef]
- Bull, M.J.; Plummer, N.T. Part 1: The Human Gut Microbiome in Health and Disease. Integr. Med. 2014, 13, 17. [Google Scholar]
- Zhang, L.; Wu, X.; Yang, R.; Chen, F.; Liao, Y.; Zhu, Z.; Wu, Z.; Sun, X.; Wang, L. Effects of Berberine on the Gastrointestinal Microbiota. Front. Cell. Infect. Microbiol. 2021, 10, 588517. [Google Scholar] [CrossRef]
- Cui, H.; Cai, Y.; Wang, L.; Jia, B.; Li, J.; Zhao, S.; Chu, X.; Lin, J.; Zhang, X.; Bian, Y.; et al. Berberine Regulates Treg/Th17 Balance to Treat Ulcerative Colitis through Modulating the Gut Microbiota in the Colon. Front. Pharmacol. 2018, 9, 571. [Google Scholar] [CrossRef]
- Barroso, A.; Mahler, J.V.; Fonseca-Castro, P.H.; Quintana, F.J. The Aryl Hydrocarbon Receptor and the Gut–Brain Axis. Cell. Mol. Immunol. 2021, 18, 259–268. [Google Scholar] [CrossRef]
- Qin, H.; Wang, L.; Feng, T.; Elson, C.O.; Niyongere, S.A.; Lee, S.J.; Reynolds, S.L.; Weaver, C.T.; Roarty, K.; Serra, R.; et al. TGF-β Promotes Th17 Cell Development through Inhibition of SOCS3. J. Immunol. 2009, 183, 97. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, H.T. MAPK Signal Pathways in the Regulation of Cell Proliferation in Mammalian Cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Esmaeil, N.; Anaraki, S.B.; Gharagozloo, M.; Moayedi, B. Silymarin Impacts on Immune System as an Immunomodulator: One Key for Many Locks. Int. Immunopharmacol. 2017, 50, 194–201. [Google Scholar] [CrossRef]
- Lovelace, E.S.; Wagoner, J.; MacDonald, J.; Bammler, T.; Bruckner, J.; Brownell, J.; Beyer, R.P.; Zink, E.M.; Kim, Y.M.; Kyle, J.E.; et al. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling. J. Nat. Prod. 2015, 78, 1990. [Google Scholar] [CrossRef]
- Surai, P.F.; Surai, A.; Earle-Payne, K. Silymarin and Inflammation: Food for Thoughts. Antioxidants 2024, 13, 98. [Google Scholar] [CrossRef]
- Mai, M.; Wang, Y.; Luo, M.; Li, Z.; Wang, D.; Ruan, Y.; Guo, H. Silibinin Ameliorates Deoxycholic Acid-Induced Pyroptosis in Steatotic HepG2 Cells by Inhibiting NLRP3 Inflammasome Activation. Biochem. Biophys. Rep. 2023, 35, 101545. [Google Scholar] [CrossRef]
- Khalili, L.; Centner, A.M.; Salazar, G. Effects of Berries, Phytochemicals, and Probiotics on Atherosclerosis through Gut Microbiota Modification: A Meta-Analysis of Animal Studies. Int. J. Mol. Sci. 2023, 24, 3084. [Google Scholar] [CrossRef]
- Zamani, M.; Zarei, M.; Nikbaf-Shandiz, M.; Hosseini, S.; Shiraseb, F.; Asbaghi, O. The Effects of Berberine Supplementation on Cardiovascular Risk Factors in Adults: A Systematic Review and Dose-Response Meta-Analysis. Front. Nutr. 2022, 9, 1013055. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, Q.; Yu, Y.; Yang, F.; Bai, R.; Fan, X. Efficacy and Underlying Mechanisms of Berberine against Lipid Metabolic Diseases: A Review. Front. Pharmacol. 2023, 14, 1283784. [Google Scholar] [CrossRef]
- Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine Improves Glucose Metabolism in Diabetic Rats by Inhibition of Hepatic Gluconeogenesis. PLoS ONE 2011, 6, e16556. [Google Scholar] [CrossRef]
- Kim, C.W.; Addy, C.; Kusunoki, J.; Anderson, N.N.; Deja, S.; Fu, X.; Burgess, S.C.; Li, C.; Chakravarthy, M.; Previs, S.; et al. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metab. 2017, 26, 394–406.e6. [Google Scholar] [CrossRef]
- Ju, J.; Li, J.; Lin, Q.; Xu, H. Efficacy and Safety of Berberine for Dyslipidaemias: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Phytomedicine 2018, 50, 25–34. [Google Scholar] [CrossRef]
- Dong, H.; Zhao, Y.; Zhao, L.; Lu, F. The Effects of Berberine on Blood Lipids: A Systemic Review and Meta-Analysis of Randomized Controlled Trials. Planta Med. 2013, 79, 437–446. [Google Scholar] [CrossRef]
- Kavyani, Z.; Shahhosseini, E.; Moridpour, A.H.; Falahatzadeh, M.; Vajdi, M.; Musazadeh, V.; Askari, G. The Effect of Berberine Supplementation on Lipid Profile and Obesity Indices: An Umbrella Review of Meta-Analysis. PharmaNutrition 2023, 26, 100364. [Google Scholar] [CrossRef]
- Hernandez, A.V.; Hwang, J.; Nasreen, I.; Sicignano, D.; Pasupuleti, V.; Snow-Caroti, K.; White, C.M. Impact of Berberine or Berberine Combination Products on Lipoprotein, Triglyceride and Biological Safety Marker Concentrations in Patients with Hyperlipidemia: A Systematic Review and Meta-Analysis. J. Diet. Suppl. 2024, 21, 242–259. [Google Scholar] [CrossRef]
- McDonagh, M.; Peterson, K.; Holzhammer, B.; Fazio, S. A Systematic Review of PCSK9 Inhibitors Alirocumab and Evolocumab. J. Manag. Care Spec. Pharm. 2016, 22, 641–653. [Google Scholar] [CrossRef]
- Zhang, L.S.; Zhang, J.H.; Feng, R.; Jin, X.Y.; Yang, F.W.; Ji, Z.C.; Zhao, M.Y.; Zhang, M.Y.; Zhang, B.L.; Li, X.M. Efficacy and Safety of Berberine Alone or Combined with Statins for the Treatment of Hyperlipidemia: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Am. J. Chin. Med. 2019, 47, 751–767. [Google Scholar] [CrossRef]
- Blais, J.E.; Huang, X.; Zhao, J.V. Overall and Sex-Specific Effect of Berberine for the Treatment of Dyslipidemia in Adults: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Drugs 2023, 83, 403–427. [Google Scholar] [CrossRef]
- Wang, L.; Xu, B.; Sagada, G.; Ng, W.K.; Chen, K.; Zhang, J.; Shao, Q. Dietary Berberine Regulates Lipid Metabolism in Muscle and Liver of Black Sea Bream (Acanthopagrus schlegelii) Fed Normal or High-Lipid Diets. Br. J. Nutr. 2021, 125, 481–493. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, D.; Zhu, H.; Zhu, J.; Weng, S.; Dong, L.; Liu, T.; Hu, Y.; Shen, X. Berberine Treatment Increases Akkermansia in the Gut and Improves High-Fat Diet-Induced Atherosclerosis in Apoe-/- Mice. Atherosclerosis 2018, 268, 117–126. [Google Scholar] [CrossRef]
- Suadoni, M.T.; Atherton, I. Berberine for the Treatment of Hypertension: A Systematic Review. Complement. Ther. Clin. Pract. 2021, 42, 101287. [Google Scholar] [CrossRef]
- Klar, A.; Lin, Y.; Immanuel, J.; Yun, S. Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 2023, 12, 1640. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.M.; Li, J.; Meng, Z.J.; Wei, S.N.; Bucala, R.; Li, Y.L.; Chen, L. Berberine Protects against Palmitate-Induced Endothelial Dysfunction: Involvements of Upregulation of AMPK and ENOS and Downregulation of NOX4. Mediators Inflamm. 2013, 2013, 260464. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Lei, Y.; Tzvetkov, N.T.; Liu, X.; Kan Yeung, A.W.; Xu, S.; Atanasov, A.G. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol. Rev. 2019, 71, 596–670. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, Y.; Li, J.; Su, C.; Wu, F.; Xia, W.H.; Yang, Z.; Yu, B.B.; Qiu, Y.X.; Tao, J. Berberine Improves Endothelial Function by Reducing Endothelial Microparticles-Mediated Oxidative Stress in Humans. Int. J. Cardiol. 2013, 167, 936–942. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, Y.; Zhang, Y.; Jin, H.; Zuo, Z.; Wang, A.; Huang, J.; Jiang, J.; Kong, W. Berberine and Its Main Metabolite Berberrubine Inhibit Platelet Activation Through Suppressing the Class I PI3Kβ/Rasa3/Rap1 Pathway. Front. Pharmacol. 2021, 12, 734603. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, Z.; Xie, J.; Lei, Y.; Li, Y.; Huang, J.; Kong, W.; Jiang, J. Integrated Metabolomics and Molecular Docking Reveal Berberrubine Inhibits Thrombosis by Regulating the Vitamin K Catalytic Cycle in Mice. Eur. J. Pharmacol. 2023, 938, 175436. [Google Scholar] [CrossRef]
- Utami, A.R.; Maksum, I.P.; Deawati, Y. Berberine and Its Study as an Antidiabetic Compound. Biology 2023, 12, 973. [Google Scholar] [CrossRef]
- Panigrahi, A.; Mohanty, S. Efficacy and Safety of HIMABERB® Berberine on Glycemic Control in Patients with Prediabetes: Double-Blind, Placebo-Controlled, and Randomized Pilot Trial. BMC Endocr. Disord. 2023, 23, 190. [Google Scholar] [CrossRef]
- Zhao, M.M.; Lu, J.; Li, S.; Wang, H.; Cao, X.; Li, Q.; Shi, T.T.; Matsunaga, K.; Chen, C.; Huang, H.; et al. Berberine Is an Insulin Secretagogue Targeting the KCNH6 Potassium Channel. Nat. Commun. 2021, 12, 5616. [Google Scholar] [CrossRef]
- Pérez-Rubio, K.G.; González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Espinel-Bermúdez, M.C. Effect of Berberine Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion. Metab. Syndr. Relat. Disord. 2013, 11, 366–369. [Google Scholar] [CrossRef]
- Ilyas, Z.; Perna, S.; Al-thawadi, S.; Alalwan, T.A.; Riva, A.; Petrangolini, G.; Gasparri, C.; Infantino, V.; Peroni, G.; Rondanelli, M. The Effect of Berberine on Weight Loss in Order to Prevent Obesity: A Systematic Review. Biomed. Pharmacother. 2020, 127, 110137. [Google Scholar] [CrossRef]
- Hu, Y.; Ehli, E.A.; Kittelsrud, J.; Ronan, P.J.; Munger, K.; Downey, T.; Bohlen, K.; Callahan, L.; Munson, V.; Jahnke, M.; et al. Lipid-Lowering Effect of Berberine in Human Subjects and Rats. Phytomedicine 2012, 19, 861–867. [Google Scholar] [CrossRef]
- Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Bin Emran, T.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; et al. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules 2021, 26, 7368. [Google Scholar] [CrossRef]
- Zhong, X.D.; Chen, L.J.; Xu, X.Y.; Liu, Y.J.; Tao, F.; Zhu, M.H.; Li, C.Y.; Zhao, D.; Yang, G.J.; Chen, J. Berberine as a Potential Agent for Breast Cancer Therapy. Front. Oncol. 2022, 12, 993775. [Google Scholar] [CrossRef]
- Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Patil, B.S. The Natural Alkaloid Berberine Targets Multiple Pathways to Induce Cell Death in Cultured Human Colon Cancer Cells. Eur. J. Pharmacol. 2012, 688, 14–21. [Google Scholar] [CrossRef]
- Xu, M.G.; Wang, J.M.; Chen, L.; Wang, Y.; Yang, Z.; Tao, J. Berberine-Induced Upregulation of Circulating Endothelial Progenitor Cells Is Related to Nitric Oxide Production in Healthy Subjects. Cardiology 2009, 112, 279–286. [Google Scholar] [CrossRef]
- Rui, R.; Yang, H.; Liu, Y.; Zhou, Y.; Xu, X.; Li, C.; Liu, S. Effects of Berberine on Atherosclerosis. Front. Pharmacol. 2021, 12, 764175. [Google Scholar] [CrossRef]
- Ali, M.; Mishra, D.; Singh, R.P. Cancer Pathways Targeted by Berberine: Role of MicroRNAs. Curr. Med. Chem. 2024, 31, 5178–5198. [Google Scholar] [CrossRef]
- Cheng, Z.; Kang, C.; Che, S.; Su, J.; Sun, Q.; Ge, T.; Guo, Y.; Lv, J.; Sun, Z.; Yang, W.; et al. Berberine: A Promising Treatment for Neurodegenerative Diseases. Front. Pharmacol. 2022, 13, 845591. [Google Scholar] [CrossRef]
- Alkholifi, F.K.; Aodah, A.H.; Foudah, A.I.; Alam, A. Exploring the Therapeutic Potential of Berberine and Tocopherol in Managing Diabetic Neuropathy: A Comprehensive Approach towards Alleviating Chronic Neuropathic Pain. Biomedicines 2023, 11, 1726. [Google Scholar] [CrossRef]
- Zan, Y.; Kuai, C.X.; Qiu, Z.X.; Huang, F. Berberine Ameliorates Diabetic Neuropathy: TRPV1 Modulation by PKC Pathway. Am. J. Chin. Med. 2017, 45, 1709–1723. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Qureshi, M.Z.; Khalid, S.; Attar, R.; Martinelli, C.; Uteuliyev, Y.S.; Sadykov, B.N.; Taverna, S.; Poltronieri, P.; Xu, B. Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer Therapy. Cancers 2019, 11, 478. [Google Scholar] [CrossRef]
- Okiljević, B.; Martić, N.; Govedarica, S.; Andrejić Višnjić, B.; Bosanac, M.; Baljak, J.; Pavlić, B.; Milanović, I.; Rašković, A. Cardioprotective and Hepatoprotective Potential of Silymarin in Paracetamol-Induced Oxidative Stress. Pharmaceutics 2024, 16, 520. [Google Scholar] [CrossRef]
- Younis, N.; Shaheen, M.A.; Abdallah, M.H. Silymarin-Loaded Eudragit® RS100 Nanoparticles Improved the Ability of Silymarin to Resolve Hepatic Fibrosis in Bile Duct Ligated Rats. Biomed. Pharmacother. 2016, 81, 93–103. [Google Scholar] [CrossRef]
- Fraschini, F.; Demartini, G.; Esposti, D. Pharmacology of Silymarin. Clin. Drug Investig. 2002, 22, 51–65. [Google Scholar] [CrossRef]
- Hellerbrand, C.; Schattenberg, J.M.; Peterburs, P.; Lechner, A.; Brignoli, R. The Potential of Silymarin for the Treatment of Hepatic Disorders. Clin. Phytoscience 2016, 2, 7. [Google Scholar] [CrossRef]
- Federico, A.; Dallio, M.; Loguercio, C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 191. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Tee, V. Role of Silymarin in the Management of Deranged Liver Function in Non-Alcoholic Steatohepatitis: A Case Report. Drugs Context 2023, 12, 2023-2-10. [Google Scholar] [CrossRef]
- Aghemo, A.; Alekseeva, O.P.; Angelico, F.; Bakulin, I.G.; Bakulina, N.V.; Bordin, D.; Bueverov, A.O.; Drapkina, O.M.; Gillessen, A.; Kagarmanova, E.M.; et al. Role of Silymarin as Antioxidant in Clinical Management of Chronic Liver Diseases: A Narrative Review. Ann. Med. 2022, 54, 1548. [Google Scholar] [CrossRef]
- De Avelar, C.R.; Pereira, E.M.; De Farias Costa, P.R.; De Jesus, R.P.; De Oliveira, L.P.M. Effect of Silymarin on Biochemical Indicators in Patients with Liver Disease: Systematic Review with Meta-Analysis. World J. Gastroenterol. 2017, 23, 5004. [Google Scholar] [CrossRef]
- Bahari, H.; Shahraki Jazinaki, M.; Rashidmayvan, M.; Taheri, S.; Amini, M.R.; Malekahmadi, M. The Effects of Silymarin Consumption on Inflammation and Oxidative Stress in Adults: A Systematic Review and Meta-Analysis. Inflammopharmacology 2024, 32, 949–963. [Google Scholar] [CrossRef]
- Gillessen, A.; Schmidt, H.H.J. Silymarin as Supportive Treatment in Liver Diseases: A Narrative Review. Adv. Ther. 2020, 37, 1279–1301. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Mohammadi, H.; Symonds, M.; Miraghajani, M. The Effects of Silymarin Supplementation on Metabolic Status and Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Clinical Trials. Complement. Ther. Med. 2018, 41, 311–319. [Google Scholar] [CrossRef]
- Ebrahimpour-koujan, S.; Gargari, B.P.; Mobasseri, M.; Valizadeh, H.; Asghari-Jafarabadi, M. Lower Glycemic Indices and Lipid Profile among Type 2 Diabetes Mellitus Patients Who Received Novel Dose of Silybum marianum (L.) Gaertn. (Silymarin) Extract Supplement: A Triple-Blinded Randomized Controlled Clinical Trial. Phytomedicine 2018, 44, 39–44. [Google Scholar] [CrossRef]
- Khan, S.; Salman, M.; Ali, I.; Fatima, N.; Mastoor, M.; Sayed, T.M. Analyze the Efficacy of Silymarin in Treating Newly Diagnosed Cases of Type 2 Diabetes Mellitus by Contrasting Its Effects on Glycemic Control and Insulin Resistance. Pak. J. Med. Health Sci. 2022, 16, 365. [Google Scholar] [CrossRef]
- Voroneanu, L.; Nistor, I.; Dumea, R.; Apetrii, M.; Covic, A. Silymarin in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Diabetes. Res. 2016, 2016, 5147468. [Google Scholar] [CrossRef]
- Bellavite, P.; Fazio, S.; Affuso, F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023, 28, 4491. [Google Scholar] [CrossRef]
- Rahimi, R.; Karimi, J.; Khodadadi, I.; Tayebinia, H.; Kheiripour, N.; Hashemnia, M.; Goli, F. Silymarin Ameliorates Expression of Urotensin II (U-II) and Its Receptor (UTR) and Attenuates Toxic Oxidative Stress in the Heart of Rats with Type 2 Diabetes. Biomed. Pharmacother. 2018, 101, 244–250. [Google Scholar] [CrossRef]
- Soleymani, S.; Ayati, M.H.; Mansourzadeh, M.J.; Namazi, N.; Zargaran, A. The Effects of Silymarin on the Features of Cardiometabolic Syndrome in Adults: A Systematic Review and Meta-Analysis. Phytother. Res. 2022, 36, 842–856. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Panayiotou, C.; Vardas, M.; Balaskas, N.; Kostomitsopoulos, N.G.; Tsaroucha, A.K.; Valsami, G. A Comprehensive Review of the Cardiovascular Protective Properties of Silibinin/Silymarin: A New Kid on the Block. Pharmaceuticals 2022, 15, 538. [Google Scholar] [CrossRef]
- Bayat, G.; Mazloom, R.; Hashemi, S.A.; Pourkhalili, K.; Fallah, P.; Shams, A.; Esmaeili, P.; Khalili, A. Silymarin Administration Attenuates Cirrhotic-Induced Cardiac Abnormality in the Rats: A Possible Role of Β1-Adrenergic Receptors and L-Type Voltage-Dependent Calcium Channels. Iran. J. Med. Sci. 2022, 47, 367–378. [Google Scholar]
- Al-Rasheed, N.M.; Al-Rasheed, N.M.; Faddah, L.M.; Mohamed, A.M.; Mohammad, R.A.; Al-Amin, M. Potential Impact of Silymarin in Combination with Chlorogenic Acid and/or Melatonin in Combating Cardiomyopathy Induced by Carbon Tetrachloride. Saudi. J. Biol. Sci. 2014, 21, 265–274. [Google Scholar] [CrossRef]
- Palomino, O.M.; Gouveia, N.M.; Ramos, S.; Martín, M.A.; Goya, L. Protective Effect of Silybum Marianum and Silibinin on Endothelial Cells Submitted to High Glucose Concentration. Planta. Med. 2017, 83, 97–103. [Google Scholar] [CrossRef]
- Guarino, G.; Strollo, F.; Carbone, L.; Della Corte, T.; Letizia, M.; Marino, G.; Gentile, S. Bioimpedance Analysis, Metabolic Effects and Safety of the Association Berberis Aristata/Bilybum Marianum: A 52-Week Double-Blind, Placebo-Controlled Study in Obese Patients with Type 2 Diabetes. J. Biol. Regul. Homeost. Agents 2017, 31, 495–502. [Google Scholar]
- Derosa, G.; Romano, D.; D’Angelo, A.; Maffioli, P. Berberis Aristata Combined with Silybum Marianum on Lipid Profile in Patients Not Tolerating Statins at High Doses. Atherosclerosis 2015, 239, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Romano, D.; D’Angelo, A.; Maffioli, P. Berberis Aristata/Silybum Marianum Fixed Combination (Berberol®) Effects on Lipid Profile in Dyslipidemic Patients Intolerant to Statins at High Dosages: A Randomized, Placebo-Controlled, Clinical Trial. Phytomedicine 2015, 22, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Formisano, E.; Pasta, A.; Cremonini, A.L.; Favari, E.; Ronca, A.; Carbone, F.; Semino, T.; Di Pierro, F.; Sukkar, S.G.; Pisciotta, L. Efficacy of Nutraceutical Combination of Monacolin K, Berberine, and Silymarin on Lipid Profile and PCSK9 Plasma Level in a Cohort of Hypercholesterolemic Patients. J. Med. Food 2020, 23, 658–666. [Google Scholar] [CrossRef]
- Ghiasian, M.; Nafisi, H.; Ranjbar, A.; Mohammadi, Y.; Ataei, S. Antioxidative Effects of Silymarin on the Reduction of Liver Complications of Fingolimod in Patients with Relapsing–Remitting Multiple Sclerosis: A Clinical Trial Study. J. Biochem. Mol. Toxicol. 2021, 35, e22800. [Google Scholar] [CrossRef]
- Rondanelli, M.; Gasparri, C.; Petrangolini, G.; Allegrini, P.; Avenoso, D.; Fazia, T.; Bernardinelli, L.; Peroni, G.; Patelli, Z.; Mansueto, F.; et al. Berberine Phospholipid Exerts a Positive Effect on the Glycemic Profile of Overweight Subjects with Impaired Fasting Blood Glucose (IFG): A Randomized Double-Blind Placebo-Controlled Clinical Trial. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 6718–6727. [Google Scholar] [CrossRef]
- Chen, S.; Shen, W.; Liu, Y.; Dong, Q.; Shi, Y. Efficacy and Safety of Triple Therapy Containing Berberine, Amoxicillin, and Vonoprazan for Helicobacter Pylori Initial Treatment: A Randomized Controlled Trial. Chin. Med. J. 2023, 136, 1690–1698. [Google Scholar] [CrossRef]
- Chen, X.X.; Chen, Y.X.; Bi, H.X.; Zhao, X.; Zhang, L.F.; Liu, J.Y.; Shi, Y.Q. Efficacy and Safety of Triple Therapy Containing Berberine Hydrochloride, Amoxicillin, and Rabeprazole in the Eradication of Helicobacter Pylori. J. Dig. Dis. 2022, 23, 568–576. [Google Scholar] [CrossRef]
- Nehmi-Filho, V.; Santamarina, A.B.; de Freitas, J.A.; Trarbach, E.B.; de Oliveira, D.R.; Palace-Berl, F.; de Souza, E.; de Miranda, D.A.; Escamilla-Garcia, A.; Otoch, J.P.; et al. Novel Nutraceutical Supplements with Yeast β-Glucan, Prebiotics, Minerals, and Silybum marianum (Silymarin) Ameliorate Obesity-Related Metabolic and Clinical Parameters: A Double-Blind Randomized Trial. Front. Endocrinol. 2023, 13, 1089938. [Google Scholar] [CrossRef]
- Ruiz-Herrera, V.V.; Navarro-Lara, S.A.; Andrade-Villanueva, J.F.; Alvarez-Zavala, M.; Sánchez-Reyes, K.; Toscano-Piña, M.; Méndez-Clemente, A.S.; Martínez-Ayala, P.; Valle-Rodríguez, A.; González-Hernández, L.A. Pilot Study on the Efficacy and Safety of Berberine in People with Metabolic Syndrome and Human Immunodeficiency Virus Infection. Int. J. STD AIDS 2023, 34, 1042–1052. [Google Scholar] [CrossRef]
- Kowdley, K.V.; Forman, L.; Eksteen, B.; Gunn, N.; Sundaram, V.; Landis, C.; Harrison, S.A.; Levy, C.; Liberman, A.; Di Bisceglie, A.M.; et al. A Randomized, Dose-Finding, Proof-of-Concept Study of Berberine Ursodeoxycholate in Patients With Primary Sclerosing Cholangitis. Am. J. Gastroenterol. 2022, 117, 1805–1815. [Google Scholar] [CrossRef]
- Li, M.; Qiu, Y.; Zhang, J.; Zhang, Y.; Liu, Y.; Zhao, Y.; Jia, Q.; Fan, X.; Li, J. Improvement of Adjunctive Berberine Treatment on Negative Symptoms in Patients with Schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Sun, Y.; Jiang, H.; Hou, Q.; Yan, H.; Wen, H.; Li, G. Effects of Berberine on Gut Microbiota in Patients with Mild Metabolic Disorders Induced by Olanzapine. Am. J. Chin. Med. 2021, 49, 1949–1963. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Y.; Qin, Z.; Man, S.C.; Lam, M.; Lai, W.H.; Ng, R.M.K.; Lee, C.K.; Wong, T.L.; Lee, E.H.M.; Wong, H.K.; et al. Adjunctive Berberine Reduces Antipsychotic-Associated Weight Gain and Metabolic Syndrome in Patients with Schizophrenia: A Randomized Controlled Trial. Psychiatry Clin. Neurosci. 2022, 76, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, P.; Zhang, J.; He, M. Effect of Berberine Hydrochloride on the Diversity of Intestinal Flora in Parkinson’s Disease Patients. Contrast Media Mol. Imaging 2022, 2022, 8381870. [Google Scholar] [CrossRef]
- Darvishi-Khezri, H.; Kosaryan, M.; Karami, H.; Salehifar, E.; Mahdavi, M.; Alipour, A.; Aliasgharian, A. Can Use of Silymarin Improve Inflammatory Status in Patients with β-Thalassemia Major? A Crossover, Randomized Controlled Trial. Complement. Med. Res. 2021, 28, 123–130. [Google Scholar] [CrossRef]
- Navarro, V.J.; Belle, S.H.; D’Amato, M.; Adfhal, N.; Brunt, E.M.; Fried, M.W.; Rajender Reddy, K.; Wahed, A.S.; Harrison, S. Silymarin in Non-Cirrhotics with Non-Alcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo Controlled Trial. PLoS ONE 2019, 14, e0223915. [Google Scholar] [CrossRef]
- Moezian, G.S.A.; Javadinia, S.A.; Sales, S.S.; Fanipakdel, A.; Elyasi, S.; Karimi, G. Oral Silymarin Formulation Efficacy in Management of AC-T Protocol Induced Hepatotoxicity in Breast Cancer Patients: A Randomized, Triple Blind, Placebo-Controlled Clinical Trial. J. Oncol. Pharm. Pract. 2022, 28, 827–835. [Google Scholar] [CrossRef]
- Ahmed, S.; Ullah, N.; Parveen, S.; Javed, I.; Jalil, N.A.C.; Das Murtey, M.; Sheikh, I.S.; Khan, S.; Ojha, S.C.; Chen, K. Effect of Silymarin as an Adjunct Therapy in Combination with Sofosbuvir and Ribavirin in Hepatitis C Patients: A Miniature Clinical Trial. Oxid. Med. Cell. Longev. 2022, 2022, 9199190. [Google Scholar] [CrossRef]
Extract | Function | Mechanism | References |
---|---|---|---|
Berberine | Antioxidant | Enhancement of endogenous antioxidant enzymes (SOD, CAT, GPx) via Nrf2 and AMPK pathways. Upregulation of antioxidant gene expression and enzyme stabilization. | [20,22,23,24,27,29,30] |
Direct scavenging of free radicals by donating electrons or hydrogen atoms, reducing oxidative stress and preventing lipid peroxidation, protein oxidation, and DNA strand breaks. | [14,23,32] | ||
Chelation of transition metal ions (iron, copper), preventing hydroxyl radical formation via Fenton reactions, thereby protecting cellular structures and maintaining redox balance. | [22,41] | ||
Activation of Nrf2 leading to enhanced expression of antioxidant genes, including SOD, CAT, GPx, and HO-1, reducing oxidative stress and inflammation. | [43,45] | ||
AMPK activation reduces NADPH oxidase activity and mitochondrial ROS production and upregulates antioxidant enzymes, protecting cells from oxidative damage and improving energy homeostasis. | [51,52,59] | ||
Sylimarine | Direct scavenging of free radicals (HOCl, hydroxyl radicals), reducing oxidative damage and inflammation. Inhibition of ROS-producing enzymes like NADPH oxidase and xanthine oxidase. | [61,62,63,64,65,66] | |
Stabilization of mitochondrial membranes, optimizing electron transport chain efficiency, reducing electron leakage, and maintaining ATP production, thus lowering oxidative stress. | [62,67,68] | ||
Activation of Nrf2 and NF-κB pathways, upregulating antioxidant enzymes (SOD, CAT, GPx, HO-1) and reducing inflammation through modulation of pro-inflammatory cytokines. | [62,72] | ||
Activation of vitagenes (HSPs, Trx, sirtuins), ensuring cellular defense against oxidative stress, improving protein folding, DNA repair, and energy metabolism, contributing to cellular longevity. | [76] |
Extract | Function | Mechanism | References |
---|---|---|---|
Berberine | Anti-inflammatory | Inhibition of NF-κB and AP-1 pathways, reducing the production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1, COX-2, iNOS). | [78,79] |
Activation of AMPK, which downregulates pro-inflammatory genes and inhibits the mTOR pathway, further reducing cytokine expression. | [51,52,79,80] | ||
Modulation of gut microbiota, promoting Treg differentiation and inhibiting Th17 cell differentiation, reducing inflammation. | [83,85,86] | ||
Inhibition of MAPK pathways (ERK, JNK, p38 MAPK), decreasing the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and ROS. | [79,82] | ||
Shift from pro-inflammatory M1 macrophages to anti-inflammatory M2 phenotype, reducing cytokine production and promoting tissue repair. | [24,81,83] | ||
Sylimarine | Modulation of cytokine signaling pathways, inhibiting NF-κB and MAPK pathways, reducing pro-inflammatory mediators (TNF-α, IL-1β, IL-6) and nitric oxide production. | [90,91] | |
Inhibition of TLR4/NF-κB-mediated signaling, decreasing expression of inflammatory cytokines and chemokines (IL-12, IL-23, CCL4, CXCL10). | [90] | ||
Shift from pro-inflammatory M1 to anti-inflammatory M2 macrophages, promoting IL-4, IL-10, and TGF-β production and reducing inflammation. | [90,92] | ||
Inhibition of NLRP3 inflammasome activation, reducing production of IL-1β and IL-18, key mediators in inflammation and autoimmunity. | [90,93] | ||
Impacts on immune cells, inhibiting T-cell proliferation, dendritic cell maturation, and cytokine production, thus suppressing immune responses. | [90,92] |
Health Aspect | Mechanism | References |
---|---|---|
Cardiovascular disease risk factors | Reduction in triglycerides, total cholesterol, and LDL; increase in HDL; regulation of blood glucose and insulin; anti-inflammatory and antioxidant properties. | [94] |
Lipid profile | Decrease in hepatic lipid production and circulating lipid levels; enhancement of LDL receptor expression; inhibition of PCSK9, improving lipid clearance. | [95,96,97,98,99,100,101,102] |
Blood pressure | Activation of AMPK pathway, improving endothelial function and vasodilation; inhibition of sympathetic nervous system; stimulation of nitric oxide production. | [107] |
Endothelial function | Activation of AMPK and increased nitric oxide production (via eNOS); reduction of oxidative stress and inflammation, improving vascular health. | [110,111] |
Antiplatelet agent | Inhibition of platelet aggregation via PI3K/Akt pathway; suppression of integrin αIIbβ3 activation, reducing the risk of thrombosis without increasing bleeding risk. | [112,113] |
Type 1 and type 2 diabetes mellitus | Activation of AMPK pathway, improving glucose uptake and insulin sensitivity; reduction in blood glucose levels; improvement in insulin resistance. | [114,115,116,117] |
Obesity | Regulation of glucose metabolism; improvement in insulin sensitivity; inhibition of adipocyte differentiation and modulation of gut microbiota composition, leading to reduced fat accumulation and weight loss. | [118,119] |
Apoptosis | Induction of apoptosis via mitochondrial (intrinsic) and death receptor (extrinsic) pathways; modulation of Bcl-2 family proteins; potential protective effects in neurodegenerative conditions through anti-apoptotic actions. | [120,121,122,123,124,125,126,130] |
Health Aspect | Mechanism | References |
---|---|---|
Hepatic diseases | Antioxidant action (neutralizes free radicals via Nrf2 activation); anti-inflammatory (inhibition of leukotrienes and prostaglandins); antifibrotic (reduces collagen production); promotes hepatocyte regeneration. | [61,127,131,132,133,134,135,136,137,138,139] |
Diabetes | Improves glycemic control (reduces fasting blood glucose, HbA1c, insulin levels); modulates lipid profile (decreases LDL, triglycerides, increases HDL); antioxidant effects (increased SOD, GPx, TAC, reduced MDA and hs-CRP). | [138,140,141,142,143,144,145] |
Cardiovascular diseases | Improves lipid profile (reduces total cholesterol, triglycerides, LDL; increases HDL); antioxidant properties (reduces oxidative stress markers); anti-inflammatory effects (reduces TNF-α, IL-6, CRP); protects against endothelial dysfunction. | [142,146,147,148,149] |
Condition/Study Group | Main Findings | References |
---|---|---|
Type 2 diabetes mellitus and obesity | Combination of berberine and silymarin in 136 obese subjects with type 2 diabetes significantly improved fasting blood glucose, insulin, HOMA-IR, lipid profile, BMI, waist circumference, and % of abdominal fat compared with the placebo. | [152] |
Dyslipidemia and statin intolerance | Combination of berberine/silymarin with low-dose statins for six months significantly reduced LDL-C levels in patients with previous adverse reactions to high-dose statins, showing effectiveness and safety. | [153,154] |
Polygenic hypercholesterolemia | Combination of berberine and silymarin reduced LDL-C levels with effects comparable to 10 mg of atorvastatin, and improved lipoprotein function with antiatherogenic action in 53 patients. | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Muñoz, A.M.; Victoria-Montesinos, D.; Ballester, P.; Cerdá, B.; Zafrilla, P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024, 29, 4576. https://doi.org/10.3390/molecules29194576
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules. 2024; 29(19):4576. https://doi.org/10.3390/molecules29194576
Chicago/Turabian StyleGarcía-Muñoz, Ana María, Desirée Victoria-Montesinos, Pura Ballester, Begoña Cerdá, and Pilar Zafrilla. 2024. "A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin" Molecules 29, no. 19: 4576. https://doi.org/10.3390/molecules29194576
APA StyleGarcía-Muñoz, A. M., Victoria-Montesinos, D., Ballester, P., Cerdá, B., & Zafrilla, P. (2024). A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules, 29(19), 4576. https://doi.org/10.3390/molecules29194576