Pushing at the Boundaries of Pterin Chemistry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cross-Coupling Reactions of 6-Pseudohalopterin Derivatives with Different Substrates
2.1.1. Synthesis of 6-Tosyl Pterin
2.1.2. Sonogashira Cross-Coupling Reactions Employing Compound 2
2.1.3. Suzuki Cross-Coupling Reactions of Compound 2
2.2. Accessing Tetrahydropyranopterin through Condensation Reactions
2.3. Reduction of the Pyrazine Ring of Pterins
3. Materials and Methods
3.1. Materials, Methods and Instrumentation
3.1.1. General Experimental Procedures
3.1.2. Single-Crystal X-ray Diffraction
3.2. Syntheses
- Synthesis of 2-amino-4-(pentyloxy)pteridin-6(5H)-one, compound 1: 6-(Pentyloxy)pyrimidine-2,4,5-triamine (2.41 g, 11.4 mmol) was dissolved in 2% H2SO4 and the solution stirred at 100 °C for 15 min. A solution of chloral hydrate (3.77 g, 22.8 mmol, 2 equiv.) in 10 mL water was added to the pyrimidine solution and the reaction mixture stirred at 100 °C for an additional 15 min. The reaction mixture was allowed to cool to room temperature. The precipitate which had formed was filtered under vacuum, washed with water and dried under air to give compound 2 as an orange solid (yield: 2.346 g, 82.5%). 1H NMR (DMSO-d6, 300 MHz): δ = 8.50 (s, 1H, 7-CH), 4.54 (t, J = 6.6 Hz, 2H, 11-CH2), 1.79 (q, J = 1.0 Hz, 2H, 12-CH2), 1.25–1.45 (m, 4H, 13,14-CH2), 0.90 ppm (br t, J = 7.0 Hz, 3H, 15-CH3). 13C NMR (DMSO-d6, 75 MHz): δ = 158.5, 157.1, 155.4, 143.6, 117.7, 95.0, 69.2, 27.6, 27.4, 21.8, 13.9 ppm. (+ve) APCI-MS m/z = 250.3 m/z calcd. for C11H15N5O2 [M + H+]; found: 250.4 [M + H+]. CHNS calcd for C11H15N5O2: C, 53.00; H, 6.07; N, 28.10; found: C, 52.60; H, 6.47; N, 27.70; Melting point: 225.7 °C.
- Synthesis of 2-amino-4-(pentyloxy)pteridin-6-yl 4-methylbenzenesulfonate, compound 2: 2-Amino-4-pentyloxypteridine-6-one, 1 (997 mg, 4 mmol), DMAP (48.95 mg, 0.4 mmol, 0.1 equiv.) and p-toluene sulfonyl chloride (762.6 mg, 29 mmol, 2 equiv.) were dissolved in DCM (15 mL) and cooled to 0 °C. Et3N (1.1 mL, 8 mmol, 2 equiv.) was added drop-wise to the mixture, and the resulting solution was allowed to warm to room temperature and stirred overnight. The reaction was quenched with sat. NaHCO3 (15 mL), the organic layer separated, and the aqueous layer washed with DCM (2 × 20 mL). The combined organic layers were dried over Na2SO4, and the solvent evaporated to dryness to give a reddish orange solid, which was recrystallized from DCM to give compound 2 as an orange powder (yield: 1.081 g, 67%). 1H NMR (CDCl3, 400 MHz): δ = 8.64 (s, 1H, 7-CH), 8.03 (d, J = 1.0 Hz, 2H, 2′,6′-ArCH), 7.36 (d, J = 8.0 Hz, 2H, 3′,5′-ArCH), 5.69 (br s, 2H, NH2), 4.50 (t, J = 6.9 Hz, 2H, 11-CH2), 2.47 (s, 3H, 4′-CH3), 1.91 (quin, J = 7.1 Hz, 2H, 12-CH2), 1.40–1.53 (m, 4H, 13,14-CH2), 0.97 ppm (t, J = 1.0 Hz, 3H, 15-CH3). 13C NMR (CHLOROFORM-d, 101 MHz): δ = 167.5, 161.7, 156.1, 148.5, 146.0, 145.4, 133.4, 129.9, 129.6, 119.8, 68.7, 28.5, 28.2, 22.6, 22.0, 14.2 ppm. (+ve) APCI-MS m/z = 404.46 m/z calcd. for C18H21N5O4S [M + H+]; found: 404.5 [M + H+]. CHNS calcd for C18H21N5O4S: C, 53.59; H, 5.25; N, 17.36; S, 7.95; found: C, 53.79; H, 5.45; N, 17.56; S, 8.15. Melting point: 167.1 °C.
- Synthesis of 3-(2-Amino-4-(pentyloxy)pteridin-6-yl)prop-2-yn-1-ol, compound 3: Compound 2 (807 mg, 2 mmol), Pd(OAc)2 (22.45 mg, 0.1 mmol, 5 mol%), X-Phos (95.34 mg, 0.2 mmol, 10 mol%) and CuI (19.1 mg, 0.1 mmol, 5 mol%) were added to an oven-dried Schlenk tube, and the solids were evacuated. Dry DMF (3 mL) was added to the reaction flask and the contents stirred for 10 min. Triethylamine (0.54 mL, 4 mmol, 2 equiv.) was added to the reaction mixture followed by drop-wise addition of propargyl alcohol (0.14 mL, 2.4 mmol, 1.2 equiv.). The reaction mixture was allowed to stir overnight at 80 °C. The reaction mass was filtered through celite, the DMF evaporated under vacuum, and the product was purified by column chromatography on aluminum oxide (neutral) using 2% CH3OH/CHCl3 (brown crystalline solid; yield: 367.56 mg, 64%). 1H NMR (DMSO-d6, 400 MHz): δ = 8.79 (s, 1H, 7-CH), 7.32–7.63 (m, 2H, NH2), 5.51 (t, J = 6.0 Hz, 1H, 10-OH), 4.46 (t, J = 1.0 Hz, 2H, 11-CH2), 4.37 (d, J = 1.0 Hz, 2H, 10-CH2), 1.75–1.88 (m, 2H, 12-CH2), 1.29–1.46 (m, 4H, 13,14-CH2), 0.90 ppm (t, J = 1.0 Hz, 3H, 15-CH3); 13C NMR (DMSO-d6, 75 MHz): δ = 166.4, 161.9, 155.6, 152.8, 132.2, 122.8, 92.2, 81.3, 67.4, 49.4, 27.8, 27.6, 21.8, 13.9 ppm 13C-dept 135NMR (DMSO-d6, 75 MHz): δ = 152.8, 67.4, 49.4, 27.8, 27.6, 21.8, 13.9 ppm. (+ve) APCI-MS m/z = 288.33 m/z calcd. for C14H17N5O2 [M + H+]; found: 288.2 [M + H+]. CHNS calcd for C14H17N5O2: C, 58.52; H, 5.96; N, 24.38; found: C, 58.32; H, 5.76; N, 24.28.
- Synthesis of 6-(4-methoxyphenyl)-4-(pentyloxy)pteridin-2-amine, compound 4: To a metal jar, 6-tosyl pterin 1 (200 mg, 0.5 mmol), 4-methoxyphenylboronic acid (152 mg, 1 mmol), 10 mol% Pd(COD)₂Cl₂ (14.3 mg, 0.05 mmol), 15 mol% SPhos (31 mg, 0.075 mmol), Cs₂CO₃ (977 mg, 3 mmol), 72 µL of H₂O and 40 µL of 1,5-cyclooctadiene were added, along with two 9 mm stainless steel balls. The mixture was sealed in ambient air and ball-milled at 50 Hz for 90 min at 100 °C using a heat gun. The heat gun, producing a substantially hot stream of air, was fixed at a distance which allowed the temperature of the metal vessel to be maintained stable throughout the milling process. After the reaction was complete, the crude product was purified by preparative thin layer chromatography (TLC) on silica using a 2% MeOH/CHCl₃ mobile phase. N.B.: Likely, the employment of alumina column chromatography will result in more efficient purification and better yield. For a lack of resources, it was not possible to test this in the course of this study, while various attempts using silica columns returned unsatisfactory results. The desired product was eventually isolated as a pale-yellow solid in a 90 mg, 53% yield. 1H NMR (300 MHz, CD2Cl2): δ = 9.22 (s, 1 H, 7-CH), 8.04 (m, J = 8.71 Hz, 2 H, 2′,6′—ArCH), 7.05 (m, J = 8.71 Hz, 2 H, 3′,5′—ArCH), 5.52 (br. s., 2 H, NH2), 4.57 (t, J = 6.92 Hz, 2 H, 11-CH2), 3.88 (s, 3 H, OCH3), 1.89–2.01 (m, 2 H, 12-CH2), 1.41–1.54 (m, 4 H, 13-CH2, 14-CH2), 0.96 ppm (t, J = 6.92 Hz, 3 H, 15-CH3); 13C NMR (75 MHz, CD2Cl2) δ = 168.5 (s, 1 C, C2), 161.7 (s, 1 C, C4), 161.6 (s, 1 C, C4′), 156.3 (s, 1 C, C6), 148.8 (s, 1 C, C9, C10), 128.7 (s, 1 C, C2′, C6′), 123.8 (s, 1 C, C1′), 115.0 (s, 1 C, C3′, C5′), 68.9 (s, 1 C, C11), 56.0 (s, 1 C, OCH3), 28.8 (s, 1 C), 28.6 (s, 1 C, C12, C13), 23.0 (s, 1 C, C14), 14.3 (s, 1 C, C15) ppm. APCI-MS (+ve) calculated—[M + H+] 340.4 m/z, experimental—[M + H+] 340.4 m/z. CHNS calcd for C18H21N5O2: C, 63.70; H, 6.24; N, 20.64; found: C, 63.95; H, 6.49; N, 20.89. Melting point: 189.6 °C (decomposed).
- Synthesis of 4-(Pentyloxy)-5a,6,7,8,9a,10-hexahydro-5H-pyrano [3,2-g]pteridin-2-amine, compound 5: A round-bottom flask equipped with a reflux condenser was charged with 2,5,6-triamino-4-pentyloxy pyrimidine and 3-bromotetrahydro-2H-pyran-2-ol. Methanol was added, and the reaction mixture was refluxed for 2 h. The progress of the reaction was monitored by TLC. Methanol was evaporated under vacuum and the yellow-colored solid residue used in the next reactions without further purification. (+ve) APCI-MS m/z = 294.38 m/z calcd. for C14H23N5O2 [M + H+]; found: 294.2 [M + H+].
- Synthesis of 3-(2-Amino-4-(pentyloxy)pteridin-6-yl)propan-1-ol, 5′: A residue of the preparation of compound 5 (1 mmol) was suspended in 1,4-dioxane (4 mL), and selenium dioxide (133.15 mg, 1.2 mmol, 1.2 equiv.) was added. The temperature was raised to 80 °C and the reaction mixture stirred overnight. The progress of the reaction was monitored by TLC and APCI mass spectrometry. 1,4-Dioxane was evaporated under vacuum and the product purified by silica gel column chromatography using 3% MeOH/CH2Cl2 as eluent (bright-yellow-colored solid; yield: 130 mg, 44.6%). 1H NMR (CDCl3, 300 MHz): δ = 8.68 (s, 1H, 7-CH), 5.57 (br s, 2H, NH2), 4.48 (t, J = 7.1 Hz, 2H, 11-CH2), 3.70 (t, J = 5.8 Hz, 2H, 10-CH2), 3.04 (t, J = 7.1 Hz, 2H, 8-CH2), 1.95–2.05 (m, 2H, 9-CH2), 1.85 (quin, J = 7.2 Hz, 2H, 12-CH2), 1.29–1.42 (m, 4H, 13,14-CH2), 1.16–1.22 (m, 1H, 10-OH), 0.87 ppm (t, J = 1.0 Hz, 3H, 15-CH3); 13C NMR (DMSO-d6, 75 MHz): δ = 166.6, 161.0, 155.6, 151.8, 151.2, 121.8, 67.1, 60.1, 32.2, 31.2, 27.8, 27.6, 21.8, 13.9 ppm. (+ve) APCI-MS m/z = 292.36 m/z calcd. for C14H21N5O2 [M + H+]; found: 292.6 [M + H+]. CHNS calcd for C14H21N5O2: C, 57.71; H, 7.27; N, 24.04; found: C, 58.11; H, 7.67; N, 24.44.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hopkins, F.G. XV. The pigments of the Pieridæ: A contribution to the study of excretory substances which function in ornament. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1895, 186, 661–682. [Google Scholar]
- Hopkins, F.G. A Contribution to the Chemistry of Pterins. Proc. R. Soc. Lond. B 1942, 130, 359–379. [Google Scholar] [CrossRef]
- Wieland, H.; Purrmann, R. Über die Flügelpigmente der Schmetterlinge. VI. Über Leukopterin und Xanthopterin. Justus Liebigs Ann. Chem. 1940, 544, 163–182. [Google Scholar] [CrossRef]
- Wieland, H.; Metzger, H.; Schöpf, C.; Bülow, M. Über Leukopterin, das Flügelpigment der Kohlweißlinge (Pieriden). II. Justus Liebigs Ann. Chem. 1933, 507, 226–265. [Google Scholar] [CrossRef]
- Pfleiderer, W. Pteridine, XXIV1) Über die Isolierung und Struktur des orangeroten Schmetterlingspigmentes “Erythropterin”2). Chem. Ber. 1962, 95, 2195–2204. [Google Scholar] [CrossRef]
- Purrmann, R. Über die Flügelpigmente der Schmetterlinge. VII. Synthese des Leukopterins und Natur des Guanopterins. Justus Liebigs Ann. Chem. 1940, 544, 182–190. [Google Scholar] [CrossRef]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef]
- Forrest, H.S.; Van Baalen, C.; Myers, J. Isolation and identification of a new pteridine from a blue-green alga. Arch. Biochem. Biophys. 1958, 78, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Burgess, J.G.; Yamada, N.; Komatsu, K.; Yoshida, S.; Wachi, Y. An ultraviolet (UV-A) absorbing biopterin glucoside from the marine planktonic cyanobacterium Oscillatoria sp. Appl. Microbiol. Biotechnol. 1993, 39, 250–253. [Google Scholar] [CrossRef]
- Noguchi, Y.; Ishii, A.; Matsushima, A.; Haishi, D.; Yasumuro, K.; Moriguchi, T.; Wada, T.; Kodera, Y.; Hiroto, M.; Nishimura, H.; et al. Isolation of Biopterin-alpha-glucoside from Spirulina (Arthrospira) platensis and Its Physiologic Function. Mar. Biotechnol. 1999, 1, 207–210. [Google Scholar] [CrossRef]
- Choi, Y.K.; Hwang, Y.K.; Kang, Y.H.; Park, Y.S. Chemical structure of 1-O-(L-erythro-biopterin-2′-yl)-a-glucose isolated from a cyanobacterium Synechococcus sp. PCC 7942. Pteridines 2001, 12, 121–125. [Google Scholar] [CrossRef]
- Suzuki, A.; Goto, M. Neopterin-3′-β-D-glucuronide: Isolation from Azotobacter agilis. J. Biol. Chem. 1968, 63, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Kosuge, T.; Zenda, H.; Ochiai, A.; Masaki, N.; Noguchi, M.; Kimura, S.; Narita, H. Isolation and structure determination of a new marine toxin, surugatoxin from the Japanese ivory shell, babylonia japonica. Tetrahedron Lett. 1972, 13, 2545–2548. [Google Scholar] [CrossRef]
- Hirayama, H.; Gohgi, K.; Urakawa, N.; Ikeda, M. A Ganglion-Blocking Action of The Toxin Isolated From Japanese Ivory Shell (Babylonia Japonica). Jpn. J. Pharmacol. 1970, 20, 311–312. [Google Scholar] [CrossRef]
- Bertino, J.R. Methotrexate: Historical aspects. In Methotrexate; Cronstein, B.N., Bertino, J.R., Eds.; Birkhäuser Basel: Basel, Switzerland, 2000; pp. 1–7. [Google Scholar]
- Hegde, V.S.; Nagalli, S. Leucovorin. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553114/ (accessed on 24 July 2024).
- Berdowska, A.; Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 2001, 26, 319–329. [Google Scholar] [CrossRef]
- Hoffmann, G.; Wirleitner, B.; Fuchs, D. Potential role of immune system activation-associated production of neopterin derivatives in humans. Inflamm. Res. 2003, 52, 313–321. [Google Scholar] [CrossRef]
- Thomas, A.H.; Lorente, C.; Capparelli, A.L.; Pokhrel, M.R.; Braun, A.M.; Oliveros, E. Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. Photochem. Photobiol. Sci. 2002, 1, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Lorente, C.; Thomas, A.H. Photophysics and Photochemistry of Pterins in Aqueous Solution. Acc. Chem. Res. 2006, 39, 395–402. [Google Scholar] [CrossRef]
- Lederer, P.E. Les pigments des invertébrés: (À l’exception des pigments respiratoires). Biol. Rev. 1940, 15, 273–306. [Google Scholar] [CrossRef]
- Viscontini, M.; Hadorn, E.; Karrer, P. Fluoreszierende Stoffe aus Drosophila melanogaster: Die roten Augenfarbstoffe. 5. Mitteilung. Helv. Chim. Acta. 1957, 40, 579–585. [Google Scholar] [CrossRef]
- Baglioni, C. Two new pteridinic pigments in Drosophila melanogaster. Experientia 1959, 15, 465–467. [Google Scholar] [CrossRef]
- Basu, P.; Burgmayer, S.J.N. Pterin chemistry and its relationship to the molybdenum cofactor. Coord. Chem. Rev. 2011, 255, 1016–1038. [Google Scholar] [CrossRef] [PubMed]
- Johannes, L.; Fu, C.-Y.; Schwarz, G. Molybdenum Cofactor Deficiency in Humans. Molecules 2022, 27, 6896. [Google Scholar] [CrossRef] [PubMed]
- Pruet, J.M.; Robertus, J.D.; Anslyn, E.V. Acyl radical insertion for the direct formation of new seven-substituted pterin analogs. Tetrahedron Lett. 2010, 51, 2539–2540. [Google Scholar] [CrossRef] [PubMed]
- Timmis, G. A new synthesis of pteridines. Nature 1949, 164, 139. [Google Scholar] [CrossRef]
- Polonovski, M.; Jerome, H. Sur Une Nouvelle Methode De Synthese Des Pteridines. C. R. Hebd. Seances Acad. Sci. Ser. D 1950, 230, 392–394. [Google Scholar]
- Boon, W.; Jones, W.; Ramage, G. 21. Pteridines. Part I. An unambiguous synthesis of 7: 8-dihydro-6-hydroxypteridines. J. Chem. Soc. 1951, 96–102. [Google Scholar] [CrossRef]
- Taylor, E.C.; Jacobi, P.A. Pteridines. XXXVII. A total synthesis of L-erythro-biopterin and some related 6-(polyhydroxyalkyl) pterins. J. Am. Chem. Soc. 1976, 98, 2301–2307. [Google Scholar] [CrossRef]
- Taylor, E.C.; LaMattina, J.L. Pteridines. 40. Some reactions of 2-amino-3-cyano-5-bromomethylpyrazine and 2-amino-3-cyano-5-methylpyrazine. J. Org. Chem. 1977, 42, 1523–1527. [Google Scholar] [CrossRef]
- Mohr, D.; Kazimierczuk, Z.; Pfleiderer, W. Pteridines. Part XCVII. Synthesis and properties of 6-thioxanthopterin and 7-thioisoxanthopterin. Helv. Chim. Acta 1992, 75, 2317–2326. [Google Scholar] [CrossRef]
- Nxumalo, W.; Dinsmore, A. Synthesis of Sepiapterin-C via Hydrolysis of 6-Ethynylpteridine. Nat. Prod. Commun. 2014, 9, 1934578X1400900112. [Google Scholar] [CrossRef]
- Kujime, M.; Kudoh, K.; Murata, S. Regioselective preparation of pterin 6-triflate and its application to 6-substituted pterin synthesis. Heterocycles 2002, 57, 1841–1850. [Google Scholar] [CrossRef]
- Bergmann, F.; Tamari, M.; Ungar-Waron, H. 114. Formation of 6-hydroxypteridines by condensation of 4,5-diaminopyrimidines with chloral. J. Chem. Soc. 1964, 565–572. [Google Scholar] [CrossRef]
- Nxumalo, W.; Dinsmore, A. Negishi coupling of pteridine-O-sulfonates. S. Afr. J. Chem. 2013, 66, 42–46. [Google Scholar]
- Maity, A.C.; Das, M.K.; Maity, S.; Goswami, S. Synthetic studies on the molybdenum cofactor: Total synthesis of pterindithiolenes by direct dithiolene formation from suitable pterin alkynes. Synth. Commun. 2018, 48, 1629–1639. [Google Scholar] [CrossRef]
- Burgmayer, S.J.N.; Kim, M.; Petit, R.; Rothkopf, A.; Kim, A.; BelHamdounia, S.; Hou, Y.; Somogyi, A.; Habel-Rodriguez, D.; Williams, A.; et al. Synthesis, characterization, and spectroscopy of model molybdopterin complexes. J. Inorg. Biochem. 2007, 101, 1601–1616. [Google Scholar] [CrossRef]
- Waer, M.J.A.; Herdewijn, P.A.M.M.; Pfleiderer, W.; Marchand, E.; Arnaud, M.D.; De Jonghe, S.C.A. Preparation and Immunosuppressive Effects of Pteridine Derivatives. WO2005021003, 10 March 2005. [Google Scholar]
- De Jonghe, S.; Marchand, A.; Gao, L.-J.; Calleja, A.; Cuveliers, E.; Sienaert, I.; Herman, J.; Clydesdale, G.; Sefrioui, H.; Lin, Y.; et al. Synthesis and in vitro evaluation of 2-amino-4-N-piperazinyl-6-(3,4-dimethoxyphenyl)-pteridines as dual immunosuppressive and anti-inflammatory agents. Bioorg. Med. Chem. Lett. 2011, 21, 145–149. [Google Scholar] [CrossRef]
- Herdewijn, P.A.M.M.; De Jonghe, S.C.A.; Lee, W.A.; Watkins, W.J.; Bondy, S.S.; Chong, L.S. Substituted Pteridines for the Treatment and Prevention of Viral Infections. WO2008009079, 24 January 2008. [Google Scholar]
- Seo, T.; Toyoshima, N.; Kubota, K.; Ito, H. Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides. J. Am. Chem. Soc. 2021, 143, 6165–6175. [Google Scholar] [CrossRef]
- Enemark, J.H. Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors. J. Inorg. Biochem. 2023, 247, 112312. [Google Scholar] [CrossRef]
- Clayden, J.; Greeves, N.; Warren, S. Organic Chemistry; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Eichwald, T.; da Silva, L.d.B.; Staats Pires, A.C.; Niero, L.; Schnorrenberger, E.; Filho, C.C.; Espíndola, G.; Huang, W.-L.; Guillemin, G.J.; Abdenur, J.E.; et al. Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Antioxidants 2023, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, S. The participation of tetrahydrofolic acid in the enzymic conversion of phenylalanine to tyrosine. Biochim. Biophys. Acta 1958, 27, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Kishnani, P.S.; Koeberl, D. Glycogen storage diseases. In The Online Metabolic and Molecular Bases of Inherited Disease; Valle, D.L., Antonarakis, S., Ballabio, A., Beaudet, A.L., Mitchell, G.A., Eds.; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Dox, A. The Excretion of Phenylpyruvic Acid in the Urine as a Metabolic Anomaly in Connection with Imbecility. (Zeitschr. Physiol. Chem., vol. ccxxvii, pp. 169–76, 1934.) Fölling, A.J. Mental Sci. 1935, 81, 236. [Google Scholar] [CrossRef]
- Lloyd, K.; Davidson, L.; Hornykiewicz, O. The neurochemistry of Parkinson’s disease: Effect of L-dopa therapy. J. Pharmacol. Exp. Ther. 1975, 195, 453–464. [Google Scholar] [PubMed]
- Testani, J.M.; Dabelic, R.; Rasche, M.E. Chemical reduction of pterins to dihydropterins as substrates for enzymatic reactions. Anal. Biochem. 2006, 358, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Hiroshi, Y.; Taichi, K.; Yuichi, S.; Shunichi, M.; Shizuaki, M.; Yasuhiro, K. Method for producing sepiapterin and tetrahydrolactoylpterin. WO2013168693, 14 November 2013. [Google Scholar]
- Kondo, K.; Kubota, K.; Ito, H. Mechanochemistry enabling highly efficient Birch reduction using sodium lumps and d-(+)-glucose. Chem. Sci. 2024, 15, 4452–4457. [Google Scholar] [CrossRef]
- Murthy Bandaru, S.S.; Bhilare, S.; Chrysochos, N.; Gayakhe, V.; Trentin, I.; Schulzke, C.; Kapdi, A.R. Pd/PTABS: Catalyst for Room Temperature Amination of Heteroarenes. Org. Lett. 2018, 20, 473–476. [Google Scholar] [CrossRef]
- Chen, N.; Zinchenko, A.A.; Murata, S.; Yoshikawa, K. Specific Formation of Beads-on-a-Chain Structures on Giant DNA Using a Designed Polyamine Derivative. J. Am. Chem. Soc. 2005, 127, 10910–10916. [Google Scholar] [CrossRef]
- Farrugia, L. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, J.V.; Bandaru, S.S.M.; Schulzke, C. Pushing at the Boundaries of Pterin Chemistry. Molecules 2024, 29, 4587. https://doi.org/10.3390/molecules29194587
Correia JV, Bandaru SSM, Schulzke C. Pushing at the Boundaries of Pterin Chemistry. Molecules. 2024; 29(19):4587. https://doi.org/10.3390/molecules29194587
Chicago/Turabian StyleCorreia, Jevy V., Siva S. M. Bandaru, and Carola Schulzke. 2024. "Pushing at the Boundaries of Pterin Chemistry" Molecules 29, no. 19: 4587. https://doi.org/10.3390/molecules29194587
APA StyleCorreia, J. V., Bandaru, S. S. M., & Schulzke, C. (2024). Pushing at the Boundaries of Pterin Chemistry. Molecules, 29(19), 4587. https://doi.org/10.3390/molecules29194587