Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis
Abstract
:1. Introduction
2. Sensitivity Mechanism for Chemiresistive Gas Sensors
2.1. Adsorbed Oxygen Theory
2.2. Charge Transfer Mechanism
3. Novel Contributions
3.1. H2 Gas Sensors
3.2. CH4 Gas Sensors
3.3. C2H2 Gas Sensors
3.4. C2H4 Gas Sensors
3.5. C2H6 Gas Sensors
3.6. CO Gas Sensors
3.7. CO2 Gas Sensors
4. Sensitization Methods
4.1. Nanostructure Design
4.2. Metal Cation Doping
4.3. Noble Metal Doping
4.4. Heterogeneous Structural Construction
5. Cross-Sensitivity and Response Strategies
6. Summary and Outlook
- Low limit of detection: The concentration of dissolved gases in transformer oil typically requires sensors with a low LOD. Sensitivity can be enhanced by selecting suitable sensitive materials, optimizing their morphology and structure, incorporating appropriate dopants, and constructing heterojunctions. Currently, gas sensor technology is mature for detecting dissolved H2 and CO, with considerable research available for C2H2 and C2H4 detection. The detection of CH4 and C2H6 is still being explored. Due to the inert nature of CO2, achieving high sensitivity for its detection remains challenging with chemiresistive gas sensors.
- Low power consumption: Reducing power consumption is a crucial development direction for chemiresistive gas sensors. MOS gas sensors typically require high temperatures to achieve good sensitivity, leading to high power consumption. Given the need to detect seven characteristic gases for transformer fault diagnostics, the number of required sensors increases, compounding the power consumption issue. Future advancements must focus on applying MEMS structures to reduce power consumption or on developing high-performance materials that operate effectively at low or ambient temperatures.
- Miniaturization and integration: The miniaturization and integration of sensors or probes are essential for the detection of dissolved gases in transformer oil. The limited amount of dissolved gases collected by the oil/gas separator and the constraints of actual operating conditions limit the size and application of sensor probes. Therefore, a compact and integrated sensor design is essential for practical applications.
- Unclear sensitization mechanisms: Although different gas-sensing mechanisms and models have been proposed and developed, it is still difficult to determine certain reactions between different gas–solid interfaces, including active sites, intermediates, chemical reaction pathways, etc. More quantitative analyses at the physical and chemical levels, combining computer simulations with experimental validation, are needed to explore the factors that play a dominant role in gas sensors, among the many influencing factors.
- Humidity and temperature interferences: In general, high humidity reduces the sensitivity of most gas sensors, resulting in invalid detection information. Changes in the ambient temperature can also introduce errors in the sensor.
- Sensor drift problem: resistance drift and response degradation are common over long periods of operation, and this instability limits the long-term operation of gas sensors, making subsequent circuit integration difficult.
- Cross-sensitivity: Cross-sensitivity poses a significant challenge, requiring highly selective sensors, integrated sensor arrays, and advanced AI algorithms to enhance system recognition capabilities. The future trend in transformer fault diagnosis involves the fusion of multiple sensors for online monitoring. These advancements will be crucial in improving the accuracy and reliability of transformer fault diagnostics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Vandermaar, A.J.; Srivastava, K.D. Review of condition assessment of power transformers in service. IEEE Electr. Insul. Mag. 2002, 18, 12–25. [Google Scholar] [CrossRef]
- Sun, C.; Ohodnicki, P.R.; Stewart, E.M. Chemical sensing strategies for Real-Time monitoring of transformer oil: A review. IEEE Sens. J. 2017, 17, 5786–5806. [Google Scholar] [CrossRef]
- Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef]
- DL/T 722-2014; Guide to the Ananlysis and the Diagnosis of Gases Dissolved in Transformer Oil. National Energy Administration: Beijing, China, 2014. Available online: https://hbba.sacinfo.org.cn/stdList (accessed on 15 October 2014).
- DL/T 1498.2-2016; Technical Specification for Online Monitoring Device of Transformation Equipment. National Energy Administration: Beijing, China, 2016. Available online: https://hbba.sacinfo.org.cn/stdList (accessed on 7 January 2016).
- Jiang, J.; Wang, Z.; Ma, G.; Song, H.; Zhang, C. Direct detection of acetylene dissolved in transformer oil using spectral absorption. Optik 2019, 176, 214–220. [Google Scholar] [CrossRef]
- Wang, P.Y.; Chen, W.G.; Wang, J.X.; Tang, J.; Shi, Y.L.; Wan, F. Multigas analysis by Cavity-Enhanced raman spectroscopy for power transformer diagnosis. Anal. Chem. 2020, 92, 5969–5977. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; An, R.; Li, C.X.; Kang, Y.; Ma, F.X.; Zhao, X.Y.; Guo, M.; Qi, H.C.; Zhao, J.K. Detection of ultra-low concentration acetylene gas dissolved in oil based on fiber-optic photoacoustic sensing. Opt. Laser. Technol. 2022, 154, 108299. [Google Scholar] [CrossRef]
- Nagapriya, K.S.; Sinha, S.; Prashanth, R.; Poonacha, S.; Chaudhry, G.; Bhattacharya, A.; Choudhury, N.; Mahalik, S.; Maity, S. Laser calorimetry spectroscopy for ppm-level dissolved gas detection and analysis. Sci. Rep. 2017, 7, 42917. [Google Scholar] [CrossRef]
- Li, J.S.; Yang, R.H.; Long, S.; Zhou, T.; Xiong, J.F.; Cao, Z. Detection of carbon dioxide in transformer oil with coated piezoelectric quartz crystal sensor. Adv. Mater. Res. 2011, 239–242, 3028. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Z.W.; Han, X.; Zhang, C.H.; Ma, G.M.; Li, C.R.; Luo, Y.T. Multi-gas detection in power transformer oil based on tunable diode laser absorption spectrum. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 153–161. [Google Scholar] [CrossRef]
- Nagai, D.; Nishibori, M.; Itoh, T.; Kawabe, T.; Sato, K.; Shin, W. Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films. Sens. Actuators B Chem. 2015, 206, 488–494. [Google Scholar] [CrossRef]
- Tyagi, D.; Wang, H.D.; Huang, W.C.; Hu, L.P.; Tang, Y.F.; Guo, Z.N.; Ouyang, Z.B.; Zhang, H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020, 12, 3535–3559. [Google Scholar] [CrossRef] [PubMed]
- Andre, R.S.; Mercante, L.A.; Facure, M.H.M.; Sanfelice, R.C.; Fugikawa-Santos, L.; Swager, T.M.; Correa, D.S. Recent progress in amine gas sensors for food quality monitoring: Novel architectures for sensing materials and systems. ACS Sens. 2022, 7, 2104–2131. [Google Scholar] [CrossRef]
- Zhou, T.T.; Zhang, P.; Yu, Z.Z.; Tao, M.; Zhou, D.L.; Yang, B.; Zhang, T. Light-driven, ultra-sensitive and multifunctional ammonia wireless sensing system by plasmonic-functionalized Nb2CTx MXenes towards smart agriculture. Nano Energy 2023, 108, 108216. [Google Scholar] [CrossRef]
- Güntner, A.T.; Abegg, S.; Königstein, K.; Gerber, P.A.; Schmidt-Trucksäss, A.; Pratsinis, S.E. Breath sensors for health monitoring. ACS Sens. 2019, 4, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Izawa, K.; Ulmer, H.; Staerz, A.; Weimar, U.; Barsan, N. Gas Sensors Based on Conducting Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2019; pp. 217–257. [Google Scholar]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, Z.; Zhang, Y.; Han, D.; Ma, J.; Chai, X.; Sang, S. Highly sensitive and low detection limit NO2 gas sensor based on In2O3 nanoparticles modified peach kernel-like GaN composites. Sens. Actuators B Chem. 2023, 382, 133452. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Q.; Zheng, P.; Li, G.; Liu, J.; Zhang, J.; Gao, J.; Lu, H. Cu3N-derived hydrophobic porous CuO hollow nanospheres for NO2 detection at room temperature. Sens. Actuators B Chem. 2023, 392, 134058. [Google Scholar] [CrossRef]
- Zhao, K.; Tang, J.; Tian, S.; Li, X.; Yang, H.; Wang, X.; Zeng, D. Enhanced room-temperature NH3 sensing properties of Cu2O concave octahedron/CNTs heterostructured hybrid via efficient charge transfer. Sens. Actuators B Chem. 2023, 385, 133724. [Google Scholar] [CrossRef]
- Cavicchi, R.E.; Suehle, J.S.; Kreider, K.G.; Shomaker, B.L.; Small, J.A.; Gaitan, M.; Chaparala, P. Growth of SnO2 films on micromachined hotplates. Appl. Phys. Lett. 1995, 66, 812–814. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, M.S.; Choi, K.W.; Yoo, J.Y.; Kim, B.J.; Yang, J.S.; Chung, M.K.; Kim, T.S.; Yoon, J.B. Ultrathin serpentine insulation layer architecture for ultralow power gas sensor. Small 2023, 20, e2304555. [Google Scholar] [CrossRef]
- Bing, Y.; Zhang, F.Y.; Han, J.T.; Zhou, T.T.; Mei, H.X.; Zhang, T. A Method of Ultra-Low Power Consumption Implementation for MEMS Gas Sensors. Chemosensors 2023, 11, 236. [Google Scholar] [CrossRef]
- Han, S.; Qiao, X.; Zhao, Q.; Guo, J.; Yu, D.; Xu, J.; Zhuang, S.; Wang, D.; Fang, X.; Zhang, D. Ultrafast and Parts-per-Billion-Level MEMS Gas Sensors by Hetero-Interface Engineering of 2D/2D Cu-TCPP@ZnIn2S4 with Enriched Surface Sulfur Vacancies. Nano Lett. 2024, 24, 7389–7396. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.W.; Chapline, M.G.; Peng, S.; Cho, K.J.; Dai, H.J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef]
- Lu, G.H.; Ocola, L.E.; Chen, J.H. Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 2009, 94, 083111. [Google Scholar] [CrossRef]
- Xu, B.Z.; Zhu, M.S.; Zhang, W.C.; Zhen, X.; Pei, Z.X.; Xue, Q.; Zhi, C.Y.; Shi, P. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 2016, 28, 3333–3339. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.T.; Liu, Y.; Su, C.; Wang, S.T.; Li, H.; Zeng, M.; Hu, N.T.; Su, Y.J.; Zhou, Z.H.; Wei, H.; et al. Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B Chem. 2019, 296, 126666. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, J.S.; Lee, J.H. Rational design of semiconductor-Based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 2020, 32, e2002075. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Kim, I.D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 2018, 14, 221–260. [Google Scholar] [CrossRef]
- Yang, D.J.; Kamienchick, I.; Youn, D.Y.; Rothschild, A.; Kim, I.D. Ultrasensitive and highly selective gas sensors based on electrospun SnO nanofibers modified by Pd loading. Adv. Funct. Mater. 2010, 20, 4258–4264. [Google Scholar] [CrossRef]
- Lu, C.; Chen, Z. High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO film on anodic aluminum oxide. Sens. Actuators B Chem. 2009, 140, 109–115. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wang, C.N.; Gong, F.L.; Wang, P.Y.; Guharoy, U.; Yang, C.; Zhang, H.L.; Fang, S.M.; Liu, J. Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation. J. Hazard. Mater. 2020, 388, 122069. [Google Scholar] [CrossRef] [PubMed]
- Dao, D.V.; Nguyen, T.T.D.; Kim, D.S.; Yoon, J.W.; Yu, Y.T.; Lee, I.H. Core and dopant effects toward hydrogen gas sensing activity using Pd@N-CeO core-shell nanoflatforms. J. Ind. Eng. Chem. 2021, 95, 325–332. [Google Scholar] [CrossRef]
- Wang, D.; Yang, J.L.; Bao, L.P.; Cheng, Y.; Tian, L.; Ma, Q.X.; Xu, J.C.; Li, H.J.; Wang, X.Y. Pd nanocrystal sensitization two-dimension porous TiO for instantaneous and high efficient H detection. J. Colloid. Interf. Sci. 2021, 597, 29–38. [Google Scholar] [CrossRef]
- Duan, P.Y.; Xiao, H.H.; Wang, Z.Y.; Peng, Q.K.; Jin, K.Q.; Sun, J.H. Hydrogen sensing properties of Pd/SnO nano-spherical composites under UV enhancement. Sens. Actuators B Chem. 2021, 346, 130557. [Google Scholar] [CrossRef]
- Cai, Z.; Park, S. Synthesis of Pd nanoparticle-decorated SnO nanowires and determination of the optimum quantity of Pd nanoparticles for highly sensitive and selective hydrogen gas sensor. Sens. Actuators B Chem. 2020, 322, 128651. [Google Scholar] [CrossRef]
- Rashid, T.R.; Phan, D.T.; Chung, G.S. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sens. Actuators B Chem. 2013, 185, 777–784. [Google Scholar] [CrossRef]
- Xiao, S.H.; Liu, B.; Zhou, R.; Liu, Z.W.; Li, Q.H.; Wang, T.H. Room-temperature H sensing interfered by CO based on interfacial effects in palladium-tungsten oxide nanoparticles. Sens. Actuators B Chem. 2018, 254, 966–972. [Google Scholar] [CrossRef]
- Inyawilert, K.; Wisitsoraat, A.; Liewhiran, C.; Tuantranont, A.; Phanichphant, S. H2 gas sensor based on PdO-doped InO nanoparticles synthesized by flame spray pyrolysis. Appl. Surf. Sci. 2019, 475, 191–203. [Google Scholar] [CrossRef]
- Duan, P.Y.; Wang, H.W.; Peng, Q.K.; Chen, S.Y.; Zhou, H.M.; Duan, Q.L.; Jin, K.Q.; Sun, J.H. Ultra-effective room temperature gas discrimination based on monolithic Pd@MOF-derived porous nanocomposites: An exclusive scheme with photoexcitation. J. Mater. Chem. A 2024, 12, 3896–3909. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.C.; Li, X.X.; Ren, Y.; Deng, Y.H. High-performance H2 sensors with selectively hydrophobic micro-plate for self-aligned upload of Pd nanodots modified mesoporous In2O3 sensing-material. Sens. Actuators B Chem. 2018, 267, 83–92. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, L.Y.; Zhang, Y.L.; Lv, G.L.; Luo, Y.Y.; Duan, G.T. Wafer-level manufacturing of MEMS H2 sensing chips based on Pd nanoparticles modified SnO2 Film Patterns. Adv. Sci. 2023, 10, e2302614. [Google Scholar] [CrossRef]
- Luo, S.R.; Chen, R.S.; Wang, J.; Xie, D.; Xiang, L. Designed synthesis of ZnO/Pd@ZIF-8 hybrid structure for highly sensitive and selective detection of methane in the presence of NO2. Sens. Actuators B Chem. 2021, 344, 130220. [Google Scholar] [CrossRef]
- Chen, R.S.; Wang, J.; Luo, S.R.; Xiang, L.; Li, W.W.; Xie, D. Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Appl. Catal. B Environ. 2020, 264, 118554. [Google Scholar] [CrossRef]
- Roshan, H.; Mosahebfard, A.; Sheikhi, M.H. Effect of gold nanoparticles incorporation on electrical conductivity and methane gas sensing characteristics of lead sulfide colloidal nanocrystals. IEEE Sens. J. 2018, 18, 1940–1945. [Google Scholar] [CrossRef]
- Liang, J.R.; Li, W.J.; Liu, J.F.; Hu, M. Room temperature CH4 sensing properties of Au decorated VO2 nanosheets. Mater. Lett. 2016, 184, 92–95. [Google Scholar] [CrossRef]
- Liu, H.Y.; Yang, W.; Wang, M.X.; Xiao, L.; Liu, S.T. Fabrication of lotus-like Au@TiO2 nanocomposites with enhanced gas-sensing properties. Sens. Actuators B Chem. 2016, 236, 490–498. [Google Scholar] [CrossRef]
- Xue, D.; Zhang, Z.; Wang, Y. Enhanced methane sensing performance of SnO2 nanoflowers based sensors decorated with Au nanoparticles. Mater. Chem. Phys. 2019, 237, 121864. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Tan, T.; Sun, M.; Bao, Y.; Huang, Z.; Muhammad, S.; Xia, X.; Gao, Y. Enhancing methane gas sensing through defect engineering in Ag-Ru Co-doped ZnO nanorods. Acs Appl. Mater. Interfaces 2024, 16, 26395–26405. [Google Scholar] [CrossRef]
- Xu, C.C.; Yang, J.J.; Wang, Y.; Zheng, X.; Long, Y.; Du, H.F.; Li, X.; Bai, C.J.; Du, X.S. 3D mosaic carbon nanofiber sensors for room-temperature detection of methane and other dissolved gases in transformer oil. Adv. Mater. Interfaces 2023, 1, 2202216. [Google Scholar] [CrossRef]
- Khamfoo, K.; Wisitsoraat, A.; Punginsang, M.; Tuantranont, A.; Liewhiran, C. Selectivity towards acetylene gas of flame-spray-made Nb-substituted SnO2 particulate thick films. Sens. Actuators B Chem. 2021, 349, 130808. [Google Scholar] [CrossRef]
- Jiang, C.X.; Zhang, D.Z.; Yin, N.L.; Yao, Y.; Shaymurat, T.; Zhou, X.Y. Acetylene gas-sensing properties of layer-by-layer self-assembled Ag-decorated Tin dioxide/graphene nanocomposite film. Nanomaterials 2017, 7, 278. [Google Scholar] [CrossRef]
- Lee, K.W.; Uddin, A.; Phan, D.T.; Chung, G.S. Fabrication of low-temperature acetylene gas sensor based on Ag nanoparticles-loaded hierarchical ZnO nanostructures. Electron. Lett. 2015, 51, 572–573. [Google Scholar] [CrossRef]
- Li, Z.; Jin, L.; Liu, B.; Shen, Z.; Peng, S.; Zhou, Q. Experiment and simulation study of nano-SnO2 for dissolved fault gases analysis of power transformer. Sci. Adv. Mater. 2017, 9, 1888–1894. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, W.; Peng, S.; Zeng, W. Hydrothermal synthesis and acetylene sensing properties of variety low dimensional zinc oxide nanostructures. Sci. World J. 2014, 2014, 489170. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, Q.; Lu, Z.; Xu, L.; Gui, Y.; Tang, C. Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties. Phys. E 2019, 109, 253–260. [Google Scholar] [CrossRef]
- Kondalkar, V.V.; Duy, L.T.; Seo, H.; Lee, K. Nanohybrids of Pt-functionalized AlO/ZnO core shell nanorods for high -performance MEMS-based acetylene gas sensor. Acs Appl. Mater. Interfaces 2019, 11, 25891–25900. [Google Scholar] [CrossRef]
- Dev, S.; Kumar, P.; Rani, A.; Agarwal, A.; Dhar, R. Development of indium doped ZnO thin films for highly sensitive acetylene (C2H2) gas sensing. Superlattice Microst. 2020, 145, 106638. [Google Scholar] [CrossRef]
- Wang, B.; Jin, H.T.; Zheng, Z.Q.; Zhou, Y.H.; Gao, C. Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens. Actuators B Chem. 2017, 244, 344–356. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Yaqoob, U.; Phan, D.T.; Chung, G.S. A novel flexible acetylene gas sensor based on PI/PTFE-supported Ag-loaded vertical ZnO nanorods array. Sensor Actuat B Chem. 2016, 222, 536–543. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Phan, D.T.; Chung, G.S. Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B Chem. 2015, 207, 362–369. [Google Scholar] [CrossRef]
- Zhu, H.S.; Chen, X.R.; Hong, Z.L.; Huang, X.F.; Meng, F.B.; Awais, M.; Paramane, A. Ni-doped boron nitride nanotubes as promising gas sensing material for dissolved gases in transformer oil. Mater. Today Commun. 2022, 33, 104845. [Google Scholar] [CrossRef]
- Jung, M.H.; Kwak, M.; Ahn, J.; Song, J.Y.; Kang, H.; Jung, H.T. Highly sensitive and selective acetylene CuO/ZnO heterostructure sensors through electrospinning at lean O2 concentration for transformer diagnosis. ACS Sens. 2024, 9, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Qiao, H.; Yao, T.; Gao, S.G.; Dai, L.J.; Zhao, J.; Chen, Y.; Xu, P.C. Highly sensitive MEMS sensor using bimetallic Pd-Ag nanoparticles as catalyst for acetylene detection. Sensors 2022, 22, 7485. [Google Scholar] [CrossRef] [PubMed]
- Shaban, M.; Ali, S.; Rabia, M. Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. J. Mater. Res. Technol. 2019, 8, 4510–4520. [Google Scholar] [CrossRef]
- Gui, Y.G.; Zhang, W.H.; Liu, S.Y.; Li, Y.K.; Yang, J.R.; Jin, G.Y.; Huang, H.; Yang, P.A.; Gao, M.Y. Self-driven sensing of acetylene powered by a triboelectric-electromagnetic hybrid generator. Nano Energy 2024, 124, 109498. [Google Scholar] [CrossRef]
- Kathirvelan, J.; Vijayaraghavan, R. An infrared based sensor system for the detection of ethylene for the discrimination of fruit ripening. Infrared Phys. Technol. 2017, 85, 403–409. [Google Scholar] [CrossRef]
- Zhao, Q.N.; Duan, Z.H.; Yuan, Z.; Li, X.; Wang, S.; Liu, B.H.; Zhang, Y.J.; Jiang, Y.D.; Tai, H.L. High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chin. Chem. Lett. 2020, 31, 2045–2049. [Google Scholar] [CrossRef]
- Pattananuwat, P.; Aht-Ong, D. In-situ electrochemical synthesis of novel sensitive layer of polyaniline/multiwall carbon nanotube/Tin oxide hybrid materials for ethylene gas detection. Polym. Plast. Technol. Mat. 2013, 52, 189–194. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Moon, Y.K.; Kim, T.H.; Park, S.W.; Kim, K.B.; Kang, Y.C.; Lee, J.H. A new strategy for detecting plant hormone ethylene using oxide semiconductor chemiresistors: Exceptional gas selectivity and response tailored by nanoscale Cr2O3 catalytic overlayer. Adv. Sci. 2020, 7, 1903093. [Google Scholar] [CrossRef]
- Barreca, D.; Gasparotto, A.; Gri, F.; Comini, E.; Maccato, C. Plasma-assisted growth of β-MnO2 nanosystems as gas sensors for safety and food industry applications. Adv. Mater. Interfaces 2018, 5, 1800792. [Google Scholar] [CrossRef]
- Sholehah, A.; Karmala, K.; Huda, N.; Utari, L.; Septiani, N.L.W.; Yuliarto, B. Structural effect of ZnO-Ag chemoresistive sensor on flexible substrate for ethylene gas detection. Sens. Actuators A Phys. 2021, 331, 112934. [Google Scholar] [CrossRef]
- Li, B.; Li, M.; Meng, F.; Liu, J. Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sens. Actuators B Chem. 2019, 290, 396–405. [Google Scholar] [CrossRef]
- Gui, Y.; Shi, J.; Xu, L.; Ran, L.; Chen, X. Aun (n = 1–4) cluster doped MoSe2 nanosheet as a promising gas-sensing material for C2H4 gas in oil-immersed transformer. Appl. Surf. Sci. 2021, 541, 148356. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Q.; Gao, T.; Su, X.; Wan, F. Pd-Doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil. J. Nanomater. 2013, 2013, 127345. [Google Scholar] [CrossRef]
- Choi, P.G.; Izu, N.; Shirahata, N.; Masuda, Y. SnO2 nanosheets for selective alkene gas sensing. ACS Appl. Nano Mater. 2019, 2, 1820–1827. [Google Scholar] [CrossRef]
- Adib, M.R.; Kondalkar, V.V.; Lee, K. Development of highly sensitive ethane gas sensor based on 3D WO3 nanocone structure integrated with low-powered in-plane microheater and temperature sensor. Adv. Mater. Technol. 2020, 5, 2000009. [Google Scholar] [CrossRef]
- Qian, G.C.; Peng, Q.J.; Zou, D.X.; Wang, S.; Yan, B.; Zhou, Q. First-principles insight into Au-doped MoS2 for sensing C2H6 and C2H4. Front. Mater. 2020, 7, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X.N.; Cao, J.L. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard. Mater. 2020, 381, 120944. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, X.; Yan, L.; Wang, Y.; Zhang, Z.; Xu, J. PdPt bimetal-functionalized SnO2 nanosheets: Controllable synthesis and its dual selectivity for detection of carbon monoxide and methane. Acs Appl. Mater. Interfaces 2019, 11, 26116–26126. [Google Scholar] [CrossRef]
- Wang, W.Q.; Cao, J.M.; Wang, S.M.; Zhang, R.J.; Zhang, Y.F. CuO-SnO2 sensor for room-temperature CO detection: Experiments and DFT calculations. Sensor Actuat B Chem. 2024, 420, 136427. [Google Scholar] [CrossRef]
- Marikutsa, A.; Yang, L.; Rumyantseva, M.; Batuk, M.; Hadermann, J.; Gaskov, A. Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts. Sens. Actuators B Chem. 2018, 277, 336–346. [Google Scholar] [CrossRef]
- Miao, J.; Lin, J.Y.S. Nanometer-thick films of aligned ZnO nanowires sensitized with Au nanoparticles for few-ppb-level acetylene detection. Acs Appl. Nano Mater. 2020, 3, 9174–9184. [Google Scholar] [CrossRef]
- Lee, J.S.; Katoch, A.; Kim, J.H.; Kim, S.S. Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sens. Actuators B Chem. 2016, 222, 307–314. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, L.; Qin, C.; Wang, Y.; Cao, J. Bimetal PtPd functionalized Bi2MoO6 microspheres for conductometric detection of CO: A combined experimental and theoretical study. Sens. Actuators B Chem. 2023, 381, 133461. [Google Scholar] [CrossRef]
- Qin, C.; Wang, B.; Li, P.P.; Sun, L.; Han, C.; Wu, N.; Wang, Y.D. Metal-organic framework-derived highly dispersed Pt nanoparticles-functionalized ZnO polyhedrons for ppb-level CO detection. Sens. Actuators B Chem. 2021, 331, 129433. [Google Scholar] [CrossRef]
- Xia, Y.; Guo, S.H.; Yang, L.; He, S.F.; Zhou, L.X.; Wang, M.J.; Gao, J.Y.; Hou, M.; Wang, J.; Komarneni, S. Enhanced free-radical generation on MoS2/Pt by light and water vapor Co-activation for selective CO detection with high sensitivity. Adv. Mater. 2023, 35, 23. [Google Scholar] [CrossRef] [PubMed]
- Naganaboina, V.R.; Anandkumar, M.; Deshpande, A.S.; Singh, S.G. Single-phase high-entropy oxide nanoparticles for wide dynamic range detection of CO2. ACS Appl. Nano Mater. 2022, 5, 4524–4536. [Google Scholar] [CrossRef]
- Xia, Y.; Pan, A.F.; Su, Y.Q.; Zhao, S.K.; Li, Z.; Davey, A.K.; Zhao, L.B.; Maboudian, R.; Carraro, C. In-situ synthesized N-doped ZnO for enhanced CO2 sensing: Experiments and DFT calculations. Sens. Actuators B Chem. 2022, 357, 131359. [Google Scholar] [CrossRef]
- Kanaparthi, S.; Singh, S.G. Chemiresistive sensor based on zinc oxide nanoflakes for CO2 detection. ACS Appl. Nano Mater. 2019, 2, 700–706. [Google Scholar] [CrossRef]
- Rzaij, J.M.; Habubi, N.F. Enhancing the CO sensor response of nickel oxide-doped tin dioxide thin films synthesized by SILAR method. J. Mater. Sci. Mater. Electron. 2022, 33, 11851–11863. [Google Scholar] [CrossRef]
- Saad, R.; Gamal, A.; Zayed, M.; Ahmed, A.M.; Shaban, M.; BinSabt, M.; Rabia, M.; Hamdy, H. Fabrication of ZnO/CNTs for application in CO2 sensor at room temperature. Nanomaterials 2021, 11, 3087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, K.W.; Zheng, Z.C.; Debliquy, M. Defect engineering of nanostructured ZnSnO3 for conductometric room temperature CO2 sensors. Sens. Actuators B Chem. 2023, 384, 133628. [Google Scholar] [CrossRef]
- Shinde, P.V.; Shinde, N.M.; Shaikh, S.F.; Lee, D.; Yun, J.M.; Woo, L.J.; Al-Enizi, A.M.; Mane, R.S.; Kim, K.H. Room-temperature synthesis and CO2-gas sensitivity of bismuth oxide nanosensors. RSC Adv. 2020, 10, 17217–17227. [Google Scholar] [CrossRef] [PubMed]
- Soltabayev, B.; Raiymbekov, Y.; Nuftolla, A.; Turlybekuly, A.; Yergaliuly, G.; Mentbayeva, A. Sensitivity enhancement of CO2 sensors at room temperature based on the CZO nanorod architecture. ACS Sens. 2024, 9, 1227–1238. [Google Scholar] [CrossRef]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Rathi, K.; Pal, K. Ruthenium-decorated tungsten disulfide quantum dots for a CO2 gas sensor. Nanotechnology 2020, 31, 135502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shen, Y.; Zhang, J.; Bi, H.; Zhao, S.; Zhou, P.; Han, C.; Wei, D.; Cheng, N. Low-temperature H2S sensing performance of Cu-doped ZnFe2O4 nanoparticles with spinel structure. Appl. Surf. Sci. 2019, 470, 581–590. [Google Scholar] [CrossRef]
- Wu, C.H.; Zhu, Z.; Chang, H.M.; Jiang, Z.X.; Hsieh, C.Y.; Wu, R.J. Pt@NiO core-shell nanostructure for a hydrogen gas sensor. J. Alloys Compd. 2020, 814, 151815. [Google Scholar] [CrossRef]
- Chen, Z.H.; Hu, K.Y.; Yang, P.Y.; Fu, X.X.; Wang, Z.; Yang, S.L.; Xiong, J.; Zhang, X.H.; Hu, Y.M.; Gu, H.S. Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance. J. Alloys Compd. 2019, 811, 152086. [Google Scholar] [CrossRef]
- Wu, C.M.; Motora, K.G.; Chen, G.Y.; Chu, J.P.; Cheng, Y.; Hsu, H.H. Development of p-type zinc oxide nanorods on zirconium-based metallic glass nanotube arrays by facile hydrothermal method for gas sensing applications. Chem. Eng. J. 2023, 463, 142381. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, W.; Tao, T.; Li, X.; Xia, X.; Bao, Y.; Lourenco, M.; Homewood, K.; Huang, Z.; Gao, Y. Hierarchical NiO/TiO2 heterojuntion-based conductometric hydrogen sensor with anti-CO-interference. Sens. Actuators B Chem. 2023, 380, 133321. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Shao, H.; Li, F.; Li, D.; Yang, Y.; Yu, H.; Dong, X. First one-dimensional Cu2ZnSnS4-based gas sensor and enhanced performance at room temperature by polyoxometalate electron acceptor. Sens. Actuators B Chem. 2023, 380, 133405. [Google Scholar] [CrossRef]
- Luo, J.J.; Gao, W.C.; Wang, Z.L. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 2021, 33, e2004178. [Google Scholar] [CrossRef]
- Uddin, A.; Yaqoob, U.; Chung, G.S. Dissolved hydrogen gas analysis in transformer oil using Pd catalyst decorated on ZnO nanorod array. Sens. Actuators B Chem. 2016, 226, 90–95. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Labat, F.; Ciofini, I.; Pauporte, T.; Adelung, R. Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuators B Chem. 2018, 254, 1259–1270. [Google Scholar] [CrossRef]
- Kwon, S.H.; Kim, T.H.; Kim, S.M.; Oh, S.; Kim, K.K. Ultraviolet light-emitting diode-assisted highly sensitive room temperature NO2 gas sensors based on low-temperature solution-processed ZnO/TiO2 nanorods decorated with plasmonic Au nanoparticles. Nanoscale 2021, 13, 12177–12184. [Google Scholar] [CrossRef]
- Girma, H.G.; Park, K.H.; Ji, D.; Kim, Y.; Lee, H.M.; Jeon, S.; Jung, S.H.; Kim, J.Y.; Noh, Y.Y.; Lim, B. Room-temperature hydrogen sensor with high sensitivity and selectivity using chemically immobilized monolayer single-walled carbon nanotubes. Adv. Funct. Mater. 2023, 33, 2213381. [Google Scholar] [CrossRef]
- Esfandiar, A.; Irajizad, A.; Akhavan, O.; Ghasemi, S.; Gholami, M.R. Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. Int. J. Hydrogen Energy 2014, 39, 8169–8179. [Google Scholar] [CrossRef]
- Dilova, T.; Atanasova, G.; Dikovska, A.O.; Nedyalkov, N.N. The effect of light irradiation on the gas-sensing properties of nanocomposites based on ZnO and Ag nanoparticles. Appl. Surf. Sci. 2020, 505, 144625. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, P.; Sui, N.; Cao, S.; Zhou, T.; Zhang, T. Sb/Pd co-doped SnO2 nanoparticles for methane detection: Resistance reduction and sensing performance studies. Nanotechnology 2021, 32, 475506. [Google Scholar] [CrossRef] [PubMed]
- Almaev, A.V.; Nikolaev, V.I.; Yakovlev, N.N.; Butenko, P.N.; Stepanov, S.I.; Pechnikov, A.I.; Scheglov, M.P.; Chernikov, E.V. Hydrogen sensors based on Pt/α-Ga2O3: Sn/Pt structures. Sens. Actuators B Chem. 2022, 364, 131904. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Xiao, B.; Yang, L.; Jiao, A.; Li, K.; Chen, T.; Zhan, R.; Huang, Z.; Lin, H. Chemo-resistive NO2 sensor using La-doped WO3 nanoparticles synthesized by flame spray pyrolysis. Sens. Actuators B Chem. 2022, 369, 132247. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhang, B.; Wang, G.; Shi, F.; Wang, Y.; Zhang, Z. Conductometric sensor of hierarchical Bi2MoXW1−XO6 microcages in sensing three gases NH3, isopropanol and ethanol. Sens. Actuators B Chem. 2023, 392, 134084. [Google Scholar] [CrossRef]
- Sukunta, J.; Wisitsoraat, A.; Tuantranont, A.; Jaruwongrungsee, K.; Phanichphant, S.; Liewhiran, C. Mechanistic roles of substitutional Fe dopants on catalytic acetylene-sensing process of flame-made SnO2 nanoparticles. Arab. J. Chem. 2020, 13, 3043–3059. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Ou, L.X.; Mao, L.W.; Wu, X.Y.; Liu, Y.P.; Lu, H.L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: Overview. Nano-Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Zhou, T.; Zhang, L.; Han, W.; Yang, J.; Wang, C.; Sun, Y.; Liu, F.; Sun, P.; Lu, G. Construction of mesoporous In2O3-ZnO hierarchical structure gas sensor for ethanol detection. Sens. Actuators B Chem. 2023, 393, 134203. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, T.; Li, F.; Li, D.; Yang, Y.; Yu, H.; Dong, X. Polyoxometalate as pivotal interface in SnO2@PW12@TiO2 coaxial nanofibers: From heterojunction design to photocatalytic and gas sensing applications. Sens. Actuators B Chem. 2023, 390, 133928. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, Y.; Bai, M.; Chen, F.; Liu, B.; Zhao, Y. Hydrogel-compartmentalized heterogeneous amplification for viral digital genotyping. Sens. Actuators B Chem. 2022, 356, 131339. [Google Scholar] [CrossRef]
- Paul, R.; Das, B.; Ghosh, R. Novel approaches towards design of metal oxide based heterostructures for room temperature gas sensor and its sensing mechanism: A recent progress. J. Alloys Compd. 2023, 941, 168943. [Google Scholar] [CrossRef]
- Morrison, S.R. Selectivity in semiconductor gas sensors. Sens. Actuat. 1987, 12, 425–440. [Google Scholar] [CrossRef]
- Li, T.; Zeng, W.; Wang, Z. Quasi-One-Dimensional Metal-Oxide-Based Heterostructural Gas-Sensing Materials: A Review. Sens. Actuators B Chem. 2015, 221, 1570–1585. [Google Scholar] [CrossRef]
- Xu, Y.F.; Mei, H.X.; Bing, Y.; Zhang, F.Y.; Ning, S.; Zhou, T.T.; Fan, X.P.; Wang, L.J.; Zhang, T. High selectivity MEMS C2H2 sensor for transformer fault characteristic gas detection. Anal. Sens. 2024, e202400032. [Google Scholar] [CrossRef]
- Zhou, L.; Bai, J.; Liu, Y.; Liu, F.; Wang, H.; Zhang, Y.; Lu, G. Highly sensitive C2H2 gas sensor based on Ag modified ZnO nanorods. Ceram. Int. 2020, 46, 15764–15771. [Google Scholar] [CrossRef]
- Jiang, T.; He, Q.; Bi, M.; Chen, X.; Sun, H.; Tao, L. First-principles calculations of adsorption sensitivity of Au-doped MoS2 gas sensor to main characteristic gases in oil. J. Mater. Sci. 2021, 56, 13673–13683. [Google Scholar] [CrossRef]
- Wilson, A.D. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technol. 2012, 1, 453–463. [Google Scholar] [CrossRef]
- Peters, Y.; Schrauwen, R.W.M.; Tan, A.C.; Bogers, S.K.; de Jong, B.; Siersema, P.D. Detection of Barrett’s oesophagus through exhaled breath using an electronic nose device. Gut 2020, 69, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Wang, T.; Wu, Y.; Liu, X.; Li, Z.; Yang, R.; Zhang, K.; Yang, J.; Zeng, M.; Hu, N.; et al. Multi-task deep learning model for quantitative volatile organic compounds analysis by feature fusion of electronic nose sensing. Sens. Actuators B Chem. 2024, 417, 136206. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Ni, W.; Zhang, Y.; Lv, W.; Zeng, M.; Yang, J.; Hu, N.; Zhan, R.; Li, G.; et al. Sensor array optimization for the electronic nose via different deep learning methods. Sens. Actuators B Chem. 2024, 410, 135579. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Y.; Zhang, Y.; Lv, W.; Chen, X.; Zeng, M.; Yang, J.; Su, Y.; Hu, N.; Yang, Z. Portable electronic nose system with elastic architecture and fault tolerance based on edge computing, ensemble learning, and sensor swarm. Sens. Actuators B Chem. 2023, 375, 132925. [Google Scholar] [CrossRef]
- Shlomi, D.; Abud, M.; Liran, O.; Bar, J.; Gai-Mor, N.; Ilouze, M.; Onn, A.; Ben-Nun, A.; Haick, H.; Peled, N. Detection of lung cancer and EGFR mutation by electronic nose system. J. Thorac. Oncol. 2017, 12, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Peng, J.; Wang, T.; Zhou, T.; Zhao, H.; Zhang, T.; Yang, Z. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array. Nano-Micro Lett. 2024, 16, 269. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Mei, H.; Yang, R.; Meng, K.; Shi, L.; Zhao, J.; Zhang, B.; Xuan, F.; Wang, T.; Zhang, T. Olfactory Diagnosis Model for Lung Health Evaluation Based on Pyramid Pooling and SHAP-Based Dual Encoders. ACS Sens. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Tang, S.R.; Chen, W.G.; Jin, L.F.; Zhang, H.; Li, Y.Q.; Zhou, Q.; Zen, W. SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers. Sens. Actuators B Chem. 2020, 312, 127998. [Google Scholar] [CrossRef]
Fault Types | Main Gas | Secondary Gas |
---|---|---|
Oil thermal | CH4, C2H4 | H2, C2H6 |
Oil and paper thermal | CH4, C2H4, CO, CO2 | H2, C2H6 |
Partial discharge in oil paper insulation | H2, CH4, CO | C2H2, C2H6, CO2 |
Spark discharge in oil | H2, C2H2 | |
Arc in oil | H2, C2H2 | CH4, C2H4, C2H6 |
Arc in oil and paper | H2, C2H2, CO, CO2 | CH4, C2H4, C2H6 |
Characteristic Gas | Concentration (ppm) |
---|---|
H2 | 2–2000 |
C2H2 | 0.5–1000 |
CH4, C2H4, C2H6 | 0.5–1000 |
CO | 25–5000 |
CO2 | 25–15,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, H.; Peng, J.; Xu, D.; Wang, T. Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis. Molecules 2024, 29, 4625. https://doi.org/10.3390/molecules29194625
Mei H, Peng J, Xu D, Wang T. Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis. Molecules. 2024; 29(19):4625. https://doi.org/10.3390/molecules29194625
Chicago/Turabian StyleMei, Haixia, Jingyi Peng, Dongdong Xu, and Tao Wang. 2024. "Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis" Molecules 29, no. 19: 4625. https://doi.org/10.3390/molecules29194625
APA StyleMei, H., Peng, J., Xu, D., & Wang, T. (2024). Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis. Molecules, 29(19), 4625. https://doi.org/10.3390/molecules29194625