Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Arthrospira platensis Polysaccharides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of UAE Parameters on APP Yield
2.2. Response Surface Optimization on UAE Conditions of APP
+ 0.25BC + 1.07BD + 1.35CD + 0.52A2 − 3.18B2 − 2.63C2 − 1.53D2
2.3. Confirmation and Verification of the Predictive Model
2.4. Isolation and Purification of APP
2.5. Antioxidant Activity Analysis
2.6. Immunomodulatory Activity Analysis
2.6.1. Effects of APP-1 and APP-2 on the Cell Viability of RAW 264.7 Cells
2.6.2. Effects of APP-1 and APP-2 on the Phagocytosis Ability of RAW 264.7 Cells
2.6.3. Effects of APP-1 and APP-2 on the Secretions of NO and Cytokines
2.7. Characterization of APP-2
3. Materials and Methods
3.1. Materials and Reagents
3.2. UAE of APP
3.3. Response Surface Optimization
3.4. Separation and Purification of APP
3.5. Characterization of APP-2
3.5.1. Chemical Composition Analysis
3.5.2. Distribution of Average Molecular Weight
3.5.3. Monosaccharide Composition Analysis
3.5.4. Spectroscopic Methods and FT-IR Assay
3.5.5. XRD
3.5.6. SEM
3.5.7. AFM
3.6. Antioxidant Activity Assessment
3.7. Immunomodulatory Activity Assay
3.7.1. RAW 264.7 Cultivation
3.7.2. Evaluation of Cell Viability
3.7.3. Analysis of Cell Phagocytosis
3.7.4. Determination of NO and Cytokines (TNF-α, IL-6 and IL-1β)
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Zhu, X.-C.; Yang, G.-Y.; Zhang, J.-J.; Wang, R.; Shen, Y.-B.; Li, H.-M.; Gatasheh, M.-K.; Abbasi, A.-M.; Yang, X.-Q. Ultrasonic extraction of Moringa oleifera seeds polysaccharides: Optimization, purification, and anti-inflammatory activities. Int. J. Biol. Macromol. 2024, 258, 128833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.-H.; Cai, Y.-Y.; Tian, Y.-P.; Xu, L.-F.; Zhang, A.-B.; Zhang, C.; Zhang, S.-S. Ultrasonic-assisted extraction brings high-yield polysaccharides from Kangxian flowers with cosmetic potential. Ultrason. Sonochem. 2023, 100, 106626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Z.; Liu, L.; Ren, Y.-Y.; Chen, F. Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int. J. Biol. Macromol. 2019, 128, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhu, Y.-Y.; Ren, G.-X. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean. Int. J. Biol. Macromol. 2016, 84, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.-Y.; Dai, K.-Y.; Liu, C.; Yu, J.; Jia, X.-Y.; Liu, A.-J. Preparation, antioxidant and immunoregulatory activities of a macromolecular glycoprotein from Salvia miltiorrhiza. Foods 2022, 11, 705. [Google Scholar] [CrossRef]
- Ai, X.-P.; Yu, P.-L.; Li, X.-Y.; Lai, X.-R.; Yang, M.; Liu, F.; Luan, F.; Meng, X.-L. Polysaccharides from Spirulina platensis: Extraction methods, structural features and bioactivities diversity. Int. J. Biol. Macromol. 2023, 231, 123211. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.-B.; Zheng, J.-M.; Xia, C.-L.; Chen, X.-B.; Xu, Q.-S.; Duan, B.-Z. The potential, challenges, and prospects of the genus Spirulina polysaccharides as future multipurpose biomacromolecules. Int. J. Biol. Macromol. 2023, 253, 127482. [Google Scholar] [CrossRef]
- Wu, H.-L.; Li, T.; Lv, J.-T.; Chen, Z.-S.; Wu, J.-Y.; Wang, N.; Wu, H.-B.; Xiang, W.-Z. Growth and biochemical composition characteristics of Arthrospira platensis induced by simultaneous nitrogen deficiency and seawater-supplemented medium in an outdoor raceway pond in winter. Foods 2021, 10, 2974. [Google Scholar] [CrossRef]
- Sami, N.; Ahmad, R.; Fatma, T. Exploring algae and cyanobacteria as a promising natural source of antiviral drug against SARS-CoV-2. Biomed. J. 2020, 44, 54–62. [Google Scholar] [CrossRef]
- Chen, Z.-S.; Tan, L.; Yang, B.-J.; Wu, J.-Y.; Li, T.; Wu, H.-B.; Wu, H.-L.; Xiang, W.-Z. A mutant of seawater Arthrospira platensis with high polysaccharides production induced by space environment and its application potential. Algal Res. 2022, 61, 102562. [Google Scholar] [CrossRef]
- Rajasekar, P.; Palanisamy, S.; Anjali, R.; Vinosha, M.; Elakkiya, M.; Marudhupandi, T.; Tabarsa, M.; You, S.-G.; Prabhu, N.-M. Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance. Int. J. Biol. Macromol. 2019, 141, 809–821. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, X.; Wu, D.; Ouyang, Y.; Gao, L.; Chen, Z.; El-Seedi, H.-R.; Chen, X.; Zhao, C. Characterization of the structure and analysis of the anti-oxidant effect of microalga Spirulina platensis polysaccharide on Caenorhabditis elegans mediated by modulating microRNAs and gut microbiota. Int. J. Biol. Macromol. 2020, 163, 2295–2305. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Zhao, X.; Luo, L.; Wan, P.; Chen, H.; Pan, J. Structural characterization, and in vitro immunostimulatory and antitumor activity of an acid polysaccharide from Spirulina platensis. Int. J. Biol. Macromol. 2022, 196, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, Z.; Liu, Y.; Yang, Y.; Shi, F.; Cheong, K.-L.; Teng, B. Immunostimulatory effects of polysaccharides from Spirulina platensis in vivo and vitro and their activation mechanism on RAW246. 7 macrophages. Mar. Drugs 2020, 18, 538. [Google Scholar] [CrossRef] [PubMed]
- Villaró, S.; García-Vaquero, M.; Morán, L.; Álvarez, C.; Cabral, E.-M.; Lafarga, T. Effect of seawater on the biomass composition of Spirulina produced at a pilot-scale. Nat. Biotechnol. 2023, 78, 173–179. [Google Scholar] [CrossRef]
- Bezerra, P.-Q.-M.; Moraes, L.; Cardoso, L.-G.; Druzian, J.-I.; Morais, M.-G.; Nunes, I.-L.; Costa, J.-A.-V. Spirulina sp. LEB 18 cultivation in seawater and reduced nutrients: Bioprocess strategy for increasing carbohydrates in biomass. Bioresour. Technol. 2020, 316, 123883. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-T.; Xu, F.-R.; Li, J.-L.; Li, J.; Mo, C.; Zhao, M.; Wang, L.-F. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility. Food Chem. 2022, 374, 131636. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.-Q.; Zhao, X.-T.; Fang, L.-L.; Yang, T.; Xie, J.-B. Optimization of ultrasonic-assisted extraction of Platycodon grandiflorum polysaccharides and evaluation of its structural, antioxidant and hypoglycemic activity. Ultrason. Sonochem. 2023, 100, 106635. [Google Scholar] [CrossRef]
- Zhang, W.-T.; Duan, W.; Huang, G.-L.; Huang, H.-L. Ultrasonic-assisted extraction, analysis and properties of mung bean peel polysaccharide. Ultrason. Sonochem. 2023, 98, 106487. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.-K.; Yang, F.-C.; Chang, J.-S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Wu, J.; Chen, R.-Z.; Tan, L.; Bai, H.-L.; Tian, L.; Lu, J.; Gao, M.; Bai, C.-L.; Sun, H.; Chi, Y. Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower. Carbohydr. Polym. 2022, 291, 119535. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, C.-J.; Jiang, S.; Guan, L.-L.; Liu, X.-Y.; Wen, L.-K. Ultrasonic-assisted extraction of a low molecular weight polysaccharide from Nostoc commune Vaucher and its structural characterization and immunomodulatory activity. Ultrason. Sonochem. 2024, 108, 106961. [Google Scholar] [CrossRef] [PubMed]
- Golbargi, F.; Gharibzahedi, S.-M.-T.; Zoghi, A.; Mohammadi, M.; Hashemifesharaki, R. Microwave-assisted extraction of arabinan-rich pectic polysaccharides from melon peels: Optimization, purification, bioactivity, and techno-functionality. Carbohydr. Polym. 2021, 256, 117522. [Google Scholar] [CrossRef] [PubMed]
- Nuerxiati, R.; Abuduwaili, A.; Mutailifu, P.; Wubulikasimu, A.; Rustamova, N.; Cui, J.; Asia, H.-A.; Yili, A. Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep). Int. J. Biol. Macromol. 2019, 141, 431–443. [Google Scholar] [CrossRef]
- Li, M.-L.; Liu, X.-Y.; Chen, A.-J.; Ye, M.; Zhang, Z.-Q. Extraction optimization and evaluation of the antioxidant and α-glucosidase inhibitory activity of polysaccharides from Chrysanthemum morifolium cv. Hangju. Antioxidants 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.-B.; Wang, S.-S.; Zhou, A.-Q.; Hu, Q.-R.; Huang, G.-L. Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide. Ultrason. Sonochem. 2023, 98, 106507. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Z.; Huang, S.; Li, G.; Li, J. Extraction technology and bioactivity of polysaccharide from Spirulina platensis. J. Jimei Univ. Nat. Sci. 2020, 25, 420–429. [Google Scholar]
- Wu, X.-Y.; Li, R.-C.; Zhao, Y.-J.; Liu, Y. Separation of polysaccharides from Spirulina platensis by HSCCC with ethanol-ammonium sulfate ATPS and their antioxidant activities. Carbohydr. Polym. 2017, 173, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.-C.; Chu, D.-P.; Zhang, J.-X.; Zheng, Y.-F.; Li, Y.-Q. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep. Purifcation Technol. 2021, 259, 118169. [Google Scholar] [CrossRef]
- Imjongjairak, S.; Ratanakhanokchai, K.; Laohakunjit, N.; Tachaapaikoon, C.; Pason, P.; Waeonukul, R. Biochemical characteristics and antioxidant activity of crude and purified sulfated polysaccharides from Gracilaria fisheri. Biosci. Biotechnol. Biochem. 2016, 80, 524–532. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, P.; Zhao, H.-T.; Qiu, J.-Q.; Regenstein, J.-M.; Yang, X. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydr. Polym. 2021, 251, 117078. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.-M. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int. J. Biol. Macromol. 2017, 102, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Dai, L.-M.; Chen, Z.-S.; Li, T.; Wu, J.-Y.; Wu, H.-B.; Wu, H.-L.; Xiang, W.-Z. Extraction optimization, physicochemical characterization, and antioxidant activity of polysaccharides from Rhodosorus sp. SCSIO-45730. J. Appl. Phycol. 2022, 34, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.-M.; Qiu, H.-M.; Wang, X.-F.; Liu, Z.-Y.; Zhang, J.-Y.; Guo, Y.-J.; Chen, W.-Z.; Liu, Y.; Cheong, K.-L. Physicochemical characterization of Gracilaria chouae sulfated polysaccharides and their antioxidant potential. Int. J. Biol. Macromol. 2019, 134, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-N.; Li, T.; Li, Y.; Zhang, Y.; Wu, H.-L.; Xiang, W.-Z.; Li, A.-F. Exopolysaccharides from the energy microalga strain Botryococcus braunii: Purification, characterization, and antioxidant activity. Foods 2022, 11, 110. [Google Scholar] [CrossRef]
- Li, G.-Y.; Luo, Z.-C.; Yuan, F.; Yu, X.-B. Combined process of high-pressure homogenization and hydrothermal extraction for the extraction of fucoidan with good antioxidant properties from Nemacystus decipients. Food Bioprod. Process. 2017, 106, 35–42. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.-J.; Yan, M.-X.; Liu, X.; Wang, S.-Y.; Xia, Z.; Xiao, B.; Cao, S.-J.; Yang, B.-Q.; Li, J. Purification, chemical characterization, and bioactivity of an extracellular polysaccharide produced by the marine sponge endogenous fungus Alternaria sp. SP-32. Mar. Biotechnol. 2016, 18, 301–313. [Google Scholar] [CrossRef]
- Li, R.; Yu, H.; Yue, Y.; Liu, S.; Xing, R.-E.; Chen, X.; Li, P. Sulfated polysaccharides with antioxidant and anticoagulant activity from the sea cucumber Holothuria fuscogliva. Chin. J. Oceanol. Limnol. 2017, 35, 763–769. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, T.; Xu, J.; Xi, W.; Shang, E.; Xiao, P.; Duan, J.-A. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int. J. Biol. Macromol. 2024, 270, 132391. [Google Scholar] [CrossRef]
- Yuan, Q.-X.; Zhang, X.-D.; Ma, M.-Y.; Long, T.; Xiao, C.-L.; Zhang, J.; Liu, J.-K.; Zhao, L.-Y. Immunoenhancing glucuronoxylomannan from Tremella aurantialba Bandoni et Zang and its low-molecular-weight fractions by radical depolymerization: Properties, structures and effects on macrophages. Carbohydr. Polym. 2020, 238, 116184. [Google Scholar] [CrossRef]
- Huang, Z.; Zeng, Y.-J.; Chen, X.; Luo, S.-Y.; Pu, L.; Li, F.-Z.; Zong, M.-H.; Lou, W.-Y. Preparation, structural elucidation and immunomodulatory activity of a polysaccharide from Millettia Speciosa Champ. Int. J. Biol. Macromol. 2022, 145, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.-T.; Gu, D.-H.; Wang, X.-F.; Shen, X.-J.; Yan, L.; Zhang, W.-J.; Pu, Y.-H.; Ge, C.-R.; Fan, J.-P. Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier.) Watliag. Int. J. Biol. Macromol. 2020, 148, 647–656. [Google Scholar] [CrossRef]
- Hu, T.-G.; Zhu, W.-L.; Yu, Y.-S.; Zou, B.; Xu, Y.-J.; Xiao, G.-S.; Wu, J.-J. The variation on structure and immunomodulatory activity of polysaccharide during the longan pulp fermentation. Int. J. Biol. Macromol. 2022, 222, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-Y.; Zhang, Y.-J.; Hu, C.-B.; Zou, X.-Y.; Lin, Y.; Xia, Y.-Y.; You, L.-J. Chemistry and immunostimulatory activity of a polysaccharide from Undaria pinnatifida. Food Chem. Toxicol. 2019, 128, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xie, W.; Sun, H.; Cao, K.; Yang, X. Effect of the structural characterization of the fungal polysaccharides on their immunomodulatory activity. Int. J. Biol. Macromol. 2020, 164, 3603–3610. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.-S.; Passos, C.-P.; Madureira, P.; Vilanova, M.; Coimbra, M.-A. Structure function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Wassie, T.; Gan, R.-Y.; Wu, X. Structural characteristics and immunomodulatory effects of sulfated polysaccharides derived from marine algae. Crit. Rev. Food Sci. Nutr. 2023, 63, 7180–7196. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, Z.-S.; Lv, J.-T.; Li, T.; Wu, H.-L.; Wu, J.-Y.; Wu, H.-B.; Xiang, W.-Z. Characterization, hypoglycemia and antioxidant activities of polysaccharides from Rhodosorus sp. SCSIO-45730. Ind. Crops Prod. 2023, 191, 115936. [Google Scholar] [CrossRef]
- Pan, Q.-T.; Sun, Y.-L.; Li, X.-Y.; Zeng, B.-Y.; Chen, D.-H. Extraction, structural characterization, and antioxidant and immunomodulatory activities of a polysaccharide from Notarchus leachii freeri eggs. Bioorg. Chem. 2021, 116, 105275. [Google Scholar] [CrossRef]
- Feng, X.-J.; Du, C.; Wang, C.-L. Structural characterization of polysaccharide from yellow sweet potato and ameliorates DSS-induced mice colitis by active GPR41/MEK/ERK 1/2 signaling pathway. Int. J. Biol. Macromol. 2021, 192, 278–288. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Huo, Y.-F.; Xu, L.; Xu, Y.-Y.; Wang, X.-L.; Zhou, T. Purification, characterization and antioxidant activity of polysaccharides from Porphyra haitanensis. Int. J. Biol. Macromol. 2020, 165, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Kan, Y.-J.; Huang, Y.-T.; Jiang, C.; Zhao, L.; Hu, J.; Pang, W.-S. Physicochemical characteristics and antidiabetic properties of the polysaccharides from Pseudostellaria heterophylla. Molecules 2022, 27, 3719. [Google Scholar] [CrossRef]
- Mo, M.-M.; Chen, W.-M.; Jiang, F.-Y.; Ding, Z.-D.; Bi, Y.-G.; Kong, F.-S. Effect of ultrasonic treatment on structure, antibacterial activity of Sugarcane Leaf polysaccharides. Chem. Biodivers. 2023, 20, e202300006. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.-Y.; Yang, G.; He, L.; Yang, B.; Li, Q.; Yi, S. Purification, characterization, antioxidant, and antitumor activity of polysaccharides isolated from silkworm cordyceps. J. Food Biochem. 2020, 44, e13482. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.-H.; Zhao, Q.-S.; Zhao, B. Physicochemical properties, structural characterization and biological activities of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Int. J. Biol. Macromol. 2021, 193, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.-T.; Yang, C.-M.; Zhang, Y.-Z.; Liu, Y.-M.; Yang, D.-S. The chemical profiling and anticancer potential of functional polysaccharides from flos sophorae immaturus. Molecules 2022, 27, 5978. [Google Scholar] [CrossRef] [PubMed]
- Zamboi, A.; Garofalo, S.-F.; Tommasi, T.; Fino, D. Optimization of ultrasounds assisted extraction of polysaccharides from cladodes of Opuntia ficus-indica using response surface methodology. Sustain. Chem. Pharm. 2024, 37, 101348. [Google Scholar] [CrossRef]
- Yu, W.-C.; Li, J.-F.; Xiong, Y.; Wang, J.-W.; Liu, J.-R.; Baranenko, D.; Zhang, Y.-C.; Lu, W.-L. Optimization of ultrasound-assisted extraction of Imperata cylindrica polysaccharides and evaluation of its anti-oxidant and amelioration of uric acid stimulated cell apoptosis. Ultrason. Sonochem. 2024, 104, 106844. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, X.; Huang, G. Ultrasound-assisted extraction and analysis of maidenhairtree polysaccharides. Ultrason. Sonochem. 2023, 95, 106395. [Google Scholar] [CrossRef]
- Mehta, D.; Kuksal, K.; Yadav, K.; Yadav, S.-K.; Zhang, Y.; Nile, S.-H. Ultrasound-assisted extraction and encapsulation of betalain from prickly pear: Process optimization, in-vitro digestive stability, and development of functional gummies. Ultrason. Sonochem. 2024, 108, 106975. [Google Scholar] [CrossRef]
- Mousavi, S.-E.; Hatamipour, M.-S.; Yegdaneh, A. Ultrasound-assisted extraction of alginic acid from Sargassum angustifolium harvested from Persian Gulf shores using response surface methodology. Int. J. Biol. Macromol. 2023, 226, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luan, F.; Shi, Y.-J.; Yan, S.-G.; Xin, B.; Zhang, X.-F.; Guo, D.-Y.; Sun, J.; Zou, J.-B. Extraction, structural features, and pharmacological effects of the polysaccharides from Porphyra yezoensis: A review. Int. J. Biol. Macromol. 2024, 279, 134745. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-J.; Huang, L.-X.; Zhang, C.-H.; Xie, P.-J.; Cheng, J.; Wang, X.; Liu, L.-J. Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. Int. J. Biol. Macromol. 2020, 153, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Gao, M.; Zhao, X.-R.; Qi, Y.; Xu, L.-N.; Yin, L.-H.; Peng, J.-Y. Purification and structural characterization of two polysaccharides with anti-inflammatory activities from Plumbago zeylanica L. Int. J. Biol. Macromol. 2024, 260, 129455. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Wang, S.-F.; Zhao, J.; Li, S.-P. Effects of extraction methods on immunology activity and chemical profiles of Lycium barbarum polysaccharides. J. Pharm. Biomed. Anal. 2020, 185, 113219. [Google Scholar] [CrossRef] [PubMed]
- Almendinger, M.; Saalfrank, F.; Rohn, S.; Kurth, E.; Springer, M.; Pleissner, D. Characterization of selected microalgae and cyanobacteria as sources of compounds with antioxidant capacity. Algal Res. 2021, 53, 102168. [Google Scholar] [CrossRef]
- Shang, H.-M.; Zhao, J.-C.; Guo, Y.; Zhang, H.-X.; Duan, M.-Y.; Wu, H.-X. Extraction, purification, emulsifying property, hypoglycemic activity, and antioxidant activity of polysaccharides from comfrey. Ind. Crops Prod. 2020, 146, 112183. [Google Scholar] [CrossRef]
- Hans, N.; Malik, A.; Naik, S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep. 2020, 13, 100623. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Liu, X.-Y.; Xiao, Z.; Huang, Y.-F.; Liu, B. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int. J. Biol. Macromol. 2016, 91, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.-M.; Guo, H.-X.; Shang, J.-C.; Meng, X.-C. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from bifidobacterium breve H4–2. J. Agric. Food Chem. 2023, 71, 19791–19803. [Google Scholar] [CrossRef]
- Song, H.; He, M.; Gu, C.; Wei, D.; Liang, Y.; Yan, J.; Wang, C. Extraction Optimization, Purification, Antioxidant Activity, and Preliminary Structural Characterization of Crude Polysaccharide from an Arctic Chlorella sp. Polymers 2018, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, G.; Zhang, X.; Wang, Y.; Qiang, Y.; Wang, B.; Zou, J.; Niu, J.; Wang, Z. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohydr. Polym. 2022, 291, 119524. [Google Scholar] [CrossRef] [PubMed]
- Alencar, P.-O.-C.; Lima, G.-C.; Barro, F.-C.-N.; Costa, L.-E.-C.; Ribeiro, C.-V.-P.-E.; Sousa, W.-M.; Sombra, V.-G.; Abreu, C.-M.-W.-S.; Abreu, E.-S.; Pontes, E.-O.-B.; et al. A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: In vitro and in vivo activities. Food Hydrocoll. 2019, 90, 28–34. [Google Scholar] [CrossRef]
Run | Liquid–Solid Ratio (mL/g) | Extraction Temperature (°C) | Ultrasonic Power (W) | Extraction Time (min) | Polysaccharide Yield (%) | Predicted Value (%) |
---|---|---|---|---|---|---|
1 | 0 (20) | 0 (80) | 0 (90) | 0 (30) | 14.3 ± 0.11 | 14.1 |
2 | −1 (10) | 1 (90) | 0 (90) | 0 (30) | 11.7 ± 0.24 | 12.1 |
3 | 0 (20) | 1 (90) | 0 (90) | −1 (20) | 9.0 ± 0.12 | 9.3 |
4 | 0 (20) | −1 (70) | −1 (60) | 0 (30) | 6.8 ± 0.04 | 7.3 |
5 | −1 (10) | 0 (80) | 0 (90) | −1 (20) | 12.8 ± 0.02 | 13.3 |
6 | 1 (30) | 0 (80) | 1 (120) | 0 (30) | 12.0 ± 0.11 | 12.4 |
7 | 0 (20) | −1 (70) | 0 (90) | 1 (40) | 7.4 ± 0.25 | 7.4 |
8 | 1 (30) | 0 (80) | −1 (60) | 0 (30) | 11.3 ± 0.22 | 11.9 |
9 | 0 (20) | −1 (70) | 1 (120) | 0 (30) | 7.0 ± 0.20 | 7.9 |
10 | −1 (10) | 0 (80) | 1 (120) | 0 (30) | 13.1 ± 0.03 | 12.7 |
11 | 0 (20) | 1 (90) | −1 (60) | 0 (30) | 8.8 ± 0.25 | 8.2 |
12 | 1 (30) | 1 (90) | 0 (90) | 0 (30) | 12.7 ± 0.03 | 12.1 |
13 | 0 (20) | 0 (80) | 0 (90) | 0 (30) | 14.1 ± 0.06 | 14.1 |
14 | −1 (10) | −1 (70) | 0 (90) | 0 (30) | 10.4 ± 0.13 | 10.4 |
15 | 1 (30) | 0 (80) | 0 (90) | 1 (40) | 13.3 ± 0.16 | 13.1 |
16 | 0 (20) | 0 (80) | 1 (120) | 1 (40) | 11.8 ± 0.13 | 11.6 |
17 | 1 (30) | 0 (80) | 0 (90) | −1 (20) | 12.7 ± 0.20 | 13.4 |
18 | 0 (20) | 0 (80) | 0 (90) | 0 (30) | 13.9 ± 0.03 | 14.1 |
19 | 0 (20) | 0 (80) | 1 (120) | −1 (20) | 10.0 ± 0.12 | 9.4 |
20 | 0 (20) | 1 (90) | 0 (90) | 1 (40) | 10.2 ± 0.02 | 10.9 |
21 | 0 (20) | 0 (80) | −1 (60) | −1 (20) | 11.3 ± 0.21 | 11.0 |
22 | 0 (20) | 1 (90) | 1 (120) | 0 (30) | 10.0 ± 0.12 | 9.8 |
23 | −1 (10) | 0 (80) | 0 (90) | 1 (40) | 13.0 ± 0.04 | 12.6 |
24 | −1 (10) | 0 (80) | −1 (60) | 0 (30) | 11.1 ± 0.19 | 10.9 |
25 | 0 (20) | 0 (80) | −1 (60) | 1 (40) | 7.7 ± 0.02 | 7.8 |
26 | 0 (20) | −1 (70) | 0 (90) | −1 (20) | 10.5 ± 0.19 | 10.0 |
27 | 1 (30) | −1 (70) | 0 (90) | 0 (30) | 12.0 ± 0.03 | 11.1 |
Source | Coefficient | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | 14.10 | 118.50 | 14 | 8.46 | 17.24 | <0.0001 |
A | 0.16 | 0.30 | 1 | 0.30 | 0.61 | 0.4490 |
B | 0.69 | 5.74 | 1 | 5.74 | 11.69 | 0.0051 |
C | 0.57 | 3.97 | 1 | 3.97 | 8.08 | 0.0148 |
D | −0.24 | 0.70 | 1 | 0.70 | 1.43 | 0.2553 |
AB | −0.15 | 0.090 | 1 | 0.090 | 0.18 | 0.6762 |
AC | −0.33 | 0.42 | 1 | 0.42 | 0.86 | 0.3719 |
AD | 0.10 | 0.040 | 1 | 0.040 | 0.081 | 0.7802 |
BC | 0.25 | 0.25 | 1 | 0.25 | 0.51 | 0.4892 |
BD | 1.07 | 4.62 | 1 | 4.62 | 9.41 | 0.0098 |
CD | 1.35 | 7.29 | 1 | 7.29 | 14.84 | 0.0023 |
A2 | 0.52 | 1.18 | 1 | 1.45 | 2.95 | 0.1118 |
B2 | −3.18 | 55.61 | 1 | 53.90 | 109.76 | <0.0001 |
C2 | −2.63 | 38.28 | 1 | 36.87 | 75.07 | <0.0001 |
D2 | −1.53 | 13.30 | 1 | 12.47 | 25.39 | 0.0003 |
Residual | 5.89 | 12 | 0.49 | |||
Lack of Fit | 5.81 | 10 | 0.48 | 14.53 | 0.0661 | |
Pure Error | 0.080 | 2 | 0.040 | |||
Cor Total | 124.40 | 26 | ||||
C.V.% Adeq precision | 6.33 13.066 | |||||
R2 Adj- R2 | 0.9526 0.9002 |
Index | Values |
---|---|
Total sugar (%) | 90.28 ± 0.32 |
Protein (%) | 1.21 ± 0.03 |
Sulfate (%) | 10.07 ± 0.14 |
Uronic acid (%) | 4.42 ± 0.67 |
Total phenolic (%) | 4.16 ± 0.03 |
Mw (kDa) | 72.48 |
Monosaccharide composition (%) | |
Rhamnose | 1.00 |
Glucose | 24.21 |
Mannose | 7.63 |
Glucuronic Acid | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Qin, J.; Chen, Z.; Wu, J.; Xiang, W. Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Arthrospira platensis Polysaccharides. Molecules 2024, 29, 4645. https://doi.org/10.3390/molecules29194645
Wang N, Qin J, Chen Z, Wu J, Xiang W. Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Arthrospira platensis Polysaccharides. Molecules. 2024; 29(19):4645. https://doi.org/10.3390/molecules29194645
Chicago/Turabian StyleWang, Na, Jingyi Qin, Zishuo Chen, Jiayi Wu, and Wenzhou Xiang. 2024. "Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Arthrospira platensis Polysaccharides" Molecules 29, no. 19: 4645. https://doi.org/10.3390/molecules29194645
APA StyleWang, N., Qin, J., Chen, Z., Wu, J., & Xiang, W. (2024). Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Arthrospira platensis Polysaccharides. Molecules, 29(19), 4645. https://doi.org/10.3390/molecules29194645