Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anaerobic Mono-Digestion
2.1.1. Changes in Pollutant Concentrations
2.1.2. Changes in VFA Concentrations
2.1.3. Methane Production
2.2. Anaerobic Co-Digestion
2.2.1. Changes in Pollutant Concentrations
2.2.2. Changes in VFA Concentrations
2.2.3. Methane Production
2.3. Environmental Impact of the Two Digestion Systems
3. Materials and Methods
3.1. Sludge and PET Microplastics
3.2. Anaerobic Digestion
3.3. Analytical Methods
3.4. Quilty Control
4. Conclusions
- (1)
- Look into how PET influences the anaerobic fermentation of fecal sludge through deeper processes (microbial populations, important enzyme activity, reactive oxygen species, additive leaching, etc.).
- (2)
- To examine the impacts of several types and particle sizes of MPs on anaerobic digestion of FS in septic tank sludge, which includes a large number and variety of microplastics, and to see if they have synergistic effects.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, H.; Wang, J. Characterization and environmental impacts of microplastics. Gondwana Res. 2021, 98, 63–75. [Google Scholar] [CrossRef]
- Alimi, O.S.; Budarz, J.F.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Covello, C.; Di Vincenzo, F.; Cammarota, G.; Pizzoferrato, M. Micro(nano)plastics and Their Potential Impact on Human Gut Health: A Narrative Review. Curr. Issues Mol. Biol. 2024, 46, 2658–2677. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.K.; Fileman, E.; Clark, J.; Lewis, C.; Halsband, C.; Galloway, T.S. Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets. Environ. Sci. Technol. 2016, 50, 3239–3246. [Google Scholar] [CrossRef] [PubMed]
- Gardon, T.; Reisser, C.; Soyez, C.; Quillien, V.; Le Moullac, G. Microplastics Affect Energy Balance and Gametogenesis in the Pearl Oyster Pinctada margaritifera. Environ. Sci. Technol. 2018, 52, 5277–5286. [Google Scholar] [CrossRef]
- Mahon, A.M.; O’Connell, B.; Healy, M.G.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Q.G.; Li, X.W.; Guo, L.; Ma, D.C.; Cheng, X.D.; Qi, Y. Microplastics in household fecal sewage treatment facilities of rural China. J. Hazard. Mater. 2023, 448, 130925. [Google Scholar] [CrossRef]
- Liu, N.N.; Cheng, S.K.; Wang, X.M.; Li, Z.F.; Zheng, L.; Lyu, Y.; Ao, X.W.; Wu, H.W. Characterization of microplastics in the septic tank via laser direct infrared spectroscopy. Water Res. 2022, 226, 119293. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, Z.X.; Dong, J.; Zhao, S.Y.; Zhu, J.Y.; Wang, W.P.; Ma, F.J.; An, L.H. Unveiling Small-Sized Plastic Particles Hidden behind Large-Sized Ones in Human Excretion and Their Potential Sources. Environ. Sci. Technol. 2024, 58, 11901–11911. [Google Scholar] [CrossRef]
- Cheng, S.K.; Li, Z.F.; Uddin, S.M.N.; Mang, H.P.; Zhou, X.Q.; Zhang, J.; Zheng, L.; Zhang, L.L. Toilet revolution in China. J. Environ. Manag. 2018, 216, 347–356. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, C.X.; Liu, F.; Chen, P.Z.; Wei, X.C.; Li, H.Y.; Yi, G.; Xu, Y.; Zheng, X.Q. Three-compartment septic tanks as sustainable on-site treatment facilities? Watch out for the potential dissemination of human-associated pathogens and antibiotic resistance. J. Environ. Manag. 2021, 300, 113709. [Google Scholar] [CrossRef] [PubMed]
- Nancy, S.; Elayaperumal, S.; Dongre, A.R. Promotion of Toilet Construction and Usage in Rural Tamil Nadu: A Mixed-Methods Evaluation Study. Indian J. Public Health 2022, 66, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Pussayanavin, T.; Koottatep, T.; Eamrat, R.; Polprasert, C. Enhanced sludge reduction in septic tanks by increasing temperature. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2015, 50, 81–89. [Google Scholar] [CrossRef]
- World Health Organization. Burden of Disease Attributable to Unsafe Drinking-Water, Sanitation and Hygiene, 2019 Update; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- World Health Organization. Progress on Wastewater Treatment—Global Status and Acceleration Needs for SDG Indicator 6.3.1; United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO): Geneva, Switzerland, 2021. [Google Scholar]
- Sekgobela, J.M.; Khabo-Mmekoa, C.M.; Momba, M.N.B. Tracking enteric pathogen contamination from on-site sanitation facilities to groundwater in selected rural areas of Vhembe District Municipality, Limpopo Province, South Africa. Heliyon 2024, 10, e27271. [Google Scholar] [CrossRef]
- Chatterjee, P.; Ghangrekar, M.M.; Rao, S. Biogas Production from Partially Digested Septic Tank Sludge and its Kinetics. Waste Biomass Valorization 2019, 10, 387–398. [Google Scholar] [CrossRef]
- Chen, H.R.; Xu, Q.; Cheng, S.K.; Wu, T.; Boitin, T.; Lohani, S.P.; Mang, H.P.; Li, Z.F.; Wang, X.M. Comprehensive Analysis and Greenhouse Gas Reduction Assessment of the First Large-Scale Biogas Generation Plant in West Africa. Atmosphere 2023, 14, 876. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Liu, K.; Tan, L.; Tang, Y.Q.; Kida, K. Development of an efficient anaerobic co-digestion process for garbage, excreta, and septic tank sludge to create a resource recycling-oriented society. Waste Manag. 2017, 61, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.C.; Ge, X.M.; Wan, C.X.; Yu, F.; Li, Y.B. Progress and perspectives in converting biogas to transportation fuels. Renew. Sustain. Energy Rev. 2014, 40, 1133–1152. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Chen, D.Y.; Wang, L.; Song, Z.X.; Huang, C.; Gu, W.; Zhu, Z. Effect of MCMP on Anaerobic Digestion Reduction of Septic Tank Nightsoil Sludge under Different Initial pH. Res. J. Chem. Environ. 2011, 15, 730–733. [Google Scholar]
- Diak, J.; Örmeci, B.; Kennedy, K.J. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance. Bioprocess Biosyst. Eng. 2012, 35, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, D.M.; Feng, K.; Lou, Y.; Zhou, H.H.; Liu, B.F.; Xie, G.J.; Ren, N.Q.; Xing, D.F. Polystyrene nanoplastics shape microbiome and functional metabolism in anaerobic digestion. Water Res. 2022, 219, 118606. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G. Microplastics as vectors of contaminants. Mar. Pollut. Bull. 2019, 146, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.L.; Wu, J.; Chen, J.J.; Kang, K. Overview of microplastic pollution and its influence on the health of organisms. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2023, 58, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Wei, W.; Wang, C.; Ni, B.J. Microbial and physicochemical responses of anaerobic hydrogen-producing granular sludge to polyethylene micro(nano)plastics. Water Res. 2022, 221, 118745. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Yang, S.S.; Yang, M.M.; Zhao, Z.L.; Zhang, H.J.; Han, Z.S.; Zhou, C. Interaction between anaerobic fermentation of waste activated sludge and microplastics. Environ. Eng. 2023, 41, 92–100. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.W.; Yu, M.; Riya, S.; Zheng, Y.; Ren, L.H. The effect and mechanism of polyethylene terephthalate microplastics on anaerobic co-digestion of sewage sludge and food waste. Biochem. Eng. J. 2023, 198, 109012. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Q.S.; Sun, J.; Wang, J.Y.; Wu, S.L.; Ni, B.J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019, 53, 2509–2517. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhao, M.X.; Li, C.; Miao, H.F.; Huang, Z.X.; Dai, X.H.; Ruan, W.Q. Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion. Ecotoxicol. Environ. Saf. 2020, 205, 111095. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.T.; Huang, Q.S.; Ni, B.J. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms. Water Res. 2019, 163, 114881. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wei, W.; Huang, Q.S.; Wang, C.; Wang, Y.; Ni, B.J. Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. Water Res. 2020, 179, 115898. [Google Scholar] [CrossRef] [PubMed]
- Grubel, K.; Machnicka, A.; Nowicka, E.; Waclawek, S. Mesophilic-thermophilic fermentation process of waste activated sludge after hybrid disintegration. Ecol. Chem. Eng. S Chem. Inz. Ekol. S 2014, 21, 125–136. [Google Scholar] [CrossRef]
- Udert, K.M.; Larsen, T.A.; Gujer, W. Fate of major compounds in source-separated urine. Water Sci. Technol. 2006, 54, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Pronk, W.; Larsen, T.A. Treatment processes for source-separated urine. Water Res. 2006, 40, 3151–3166. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.A.; Udert., K.M.; Lienert, J. Wastewater composition. In Source Separation and Decentralization for Wastewater Management; Friedler, E., Butler, D., Alfiya, Y., Eds.; IWA Publishing: London, UK, 2013; pp. 241–257. [Google Scholar]
- Penn, R.; Ward, B.J.; Strande, L.; Maurer, M. Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Res. 2018, 132, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.W.; Liu, Y.W.; Wang, Y.L.; Lian, Y.; Wang, Q.L.; Yang, Q.; Wang, D.B.; Xie, G.J.; Zeng, G.M.; Sun, Y.J.; et al. Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. ACS Sustain. Chem. Eng. 2018, 6, 14104–14113. [Google Scholar] [CrossRef]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Mihelcic, J.R.; Fry, L.M.; Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 2011, 84, 832–839. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Ren, Q.Q.; Na, Y.J. Phosphorus Transformation from Municipal Sewage Sludge Incineration with Biomass: Formation of Apatite Phosphorus with High Bioavailability. Energy Fuels 2018, 32, 10951–10955. [Google Scholar] [CrossRef]
- Tampio, E.A.; Blasco, L.; Vainio, M.M.; Kahala, M.M.; Rasi, S.E. Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes. Glob. Change Biol. Bioenergy 2019, 11, 72–84. [Google Scholar] [CrossRef]
- Lu, D.N.; Liu, X.; Apul, O.G.; Zhang, L.; Ryan, D.K.; Zhang, X.Q. Optimization of biomethane production from anaerobic Co-digestion of microalgae and septic tank sludge. Biomass Bioenergy 2019, 127, 105266. [Google Scholar] [CrossRef]
- Ryue, J.; Lin, L.; Kakar, F.L.; Elbeshbishy, E.; Al-Mamun, A.; Dhar, B.R. A critical review of conventional and emerging methods for improving process stability in thermophilic anaerobic digestion. Energy Sustain. Dev. 2020, 54, 72–84. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.Q.; Ge, X.M.; Li, Y.B. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X.; Ding, W.Q.; Zhang, Z.H.; Nghiem, L.D.; Sun, J.; Wang, Q.L. Do Microplastics Affect Biological Wastewater Treatment Performance? Implications from Bacterial Activity Experiments. ACS Sustain. Chem. Eng. 2019, 7, 20097–20101. [Google Scholar] [CrossRef]
- He, Y.J.; Li, L.; Song, K.; Liu, Q.; Li, Z.Y.; Xie, F.Z.; Zhao, X.L. Effect of microplastic particle size to the nutrients removal in activated sludge system. Mar. Pollut. Bull. 2021, 163, 111972. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Zhu, L.H.; Xu, Z.; Yang, M.M.; Shao, X.Y.; Yang, S.S.; Zhang, H.J.; Wu, F.; Han, Z.S. Effect of polystyrene microplastics on the volatile fatty acids production from waste activated sludge fermentation. Sci. Total Environ. 2021, 799, 149394. [Google Scholar] [CrossRef]
- Azizi, S.M.M.; Hai, F.I.; Lu, W.J.; Al-Mamun, A.; Dhar, B.R. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Bioresour. Technol. 2021, 329, 124894. [Google Scholar] [CrossRef]
- Chen, H.B.; Tang, M.G.; Yang, X.; Tsang, Y.F.; Wu, Y.X.; Wang, D.B.; Zhou, Y.Y. Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge. Chem. Eng. J. 2021, 408, 127251. [Google Scholar] [CrossRef]
- Ruan, D.N.; Zhou, Z.; Pang, H.J.; Yao, J.; Chen, G.; Qiu, Z. Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. Bioresour. Technol. 2019, 289, 121643. [Google Scholar] [CrossRef]
- Tang, Y.F.; Dai, X.H.; Dong, B.; Guo, Y.Q.; Dai, L.L. Humification in extracellular polymeric substances (EPS) dominates methane release and EPS reconstruction during the sludge stabilization of high-solid anaerobic digestion. Water Res. 2020, 175, 115686. [Google Scholar] [CrossRef]
- Suhrhoff, T.J.; Scholz-Böttcher, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics—A lab experiment. Mar. Pollut. Bull. 2016, 102, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Stone, V.; Borm, P.J.A.; Jimenez, L.A.; Gilmour, P.S.; Schins, R.P.F.; Knaapen, A.M.; Rahman, I.; Faux, S.P.; Brown, D.M.; et al. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic. Biol. Med. 2003, 34, 1369–1382. [Google Scholar] [CrossRef]
- Esposti, M.D.; McLennan, H. Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: Relevance to ceramide-induced apoptosis. FEBS Lett. 1998, 430, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Y.; Quan, X.C.; Si, X.R.; Wu, Y.C. Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms. Bioresour. Technol. 2013, 149, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Na, L.; Jingyi, W. Ecological risk evaluation of ammonia nitrogen pollution in China based on the ecological grey water footprint model. J. Environ. Manag. 2023, 347, 119087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, E.G.; Li, Y.B.; Liu, H.L.; Vidal-Dorsch, D.E.; Giesy, J.P. Ecological risks posed by ammonia nitrogen (AN) and un-ionized ammonia (NH3) in seven major river systems of China. Chemosphere 2018, 202, 136–144. [Google Scholar] [CrossRef]
- Luo, J.Y.; Huang, W.X.; Zhu, Y.; Guo, W.; Li, Y.B.; Wu, L.J.; Zhang, Q.; Wu, Y.; Fang, F.; Cao, J.S. Influences of different iron forms activated peroxydisulfate on volatile fatty acids production during waste activated sludge anaerobic fermentation. Sci. Total Environ. 2020, 705, 135878. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.J.; Zhang, Z.F.; Qaisar, M.; Zheng, P. Production and application of anaerobic granular sludge produced by landfill. J. Environ. Sci. 2007, 19, 1454–1460. [Google Scholar] [CrossRef]
- Xing, W.; Zuo, J.E.; Sun, Y.J.; Li, J.P. Study on Microbial Community in Methanogenic Granular Sludge by FISH and DGGE. Environ. Sci. 2006, 27, 2268–2272. [Google Scholar]
- Yuan, Y.Y.; Hu, X.Y.; Chen, H.B.; Zhou, Y.Y.; Zhou, Y.F.; Wang, D.B. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Sci. Total Environ. 2019, 694, 133741. [Google Scholar] [CrossRef]
VS/(%) | TS/(%) | SCOD/(mg·L−1) | NH3-N/(mg·L−1) | TP/(mg·L−1) | |
---|---|---|---|---|---|
FS | 31.96 | 6.07 | 1251.00 | 386.00 | 77.20 |
AGS | 27.55 | 6.80 | 225.00 | 171.00 | 6.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Liu, N.; Li, Y.; Ye, Z.; Chen, Z.; Cheng, S.; Campos, L.C.; Li, Z. Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank. Molecules 2024, 29, 4692. https://doi.org/10.3390/molecules29194692
Ma T, Liu N, Li Y, Ye Z, Chen Z, Cheng S, Campos LC, Li Z. Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank. Molecules. 2024; 29(19):4692. https://doi.org/10.3390/molecules29194692
Chicago/Turabian StyleMa, Tingting, Nana Liu, Yuxuan Li, Ziwang Ye, Zhengxian Chen, Shikun Cheng, Luiza C. Campos, and Zifu Li. 2024. "Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank" Molecules 29, no. 19: 4692. https://doi.org/10.3390/molecules29194692
APA StyleMa, T., Liu, N., Li, Y., Ye, Z., Chen, Z., Cheng, S., Campos, L. C., & Li, Z. (2024). Effects of Polyethylene Terephthalate Microplastics on Anaerobic Mono-Digestion and Co-Digestion of Fecal Sludge from Septic Tank. Molecules, 29(19), 4692. https://doi.org/10.3390/molecules29194692