Unraveling TRPV1’s Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin
Abstract
:1. Introduction
2. TRPV1: Role in Cancer
3. TRPV1 Dynamics in Cancer: Expression and Modulation Insights
4. The Role of TRPV1 in Cancer: Pain Management, Immune Modulation and Its Therapeutic Targets
5. TRPV1’s Impact on the Tumor Microenvironment
6. Exploiting TRPV1 in Cancer Therapy: Overcoming Chemoresistance and Targeting Heat Shock Proteins to Enhance Treatment Strategies
7. TRPV1’s Pathways for Proliferation and Inhibition
8. Capsaicin’s Role in Tumor Suppression and Pain Management via TRPV1 Activation
9. Capsaicin’s Role in Cell Viability and Apoptosis via TRPV1
10. Limitations and Future Directions in TRPV1 Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Cortiana, V.; Abbas, R.H.; Chorya, H.; Gambill, J.; Mahendru, D.; Park, C.H.; Leyfman, Y. Personalized Medicine in Pancreatic Cancer: The Promise of Biomarkers and Molecular Targeting with Dr. Michael J. Pishvaian. Cancers 2024, 16, 2329. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Bahot, A.; Sekar, G.; Bansode, M.; Khunteta, K.; Sonar, P.V.; Hebale, A.; Salokhe, V.; Sinha, B.K. Understanding cancer’s defense against topoisomerase-active drugs: A comprehensive review. Cancers 2024, 16, 680. [Google Scholar] [CrossRef]
- Gao, N.; Yang, F.; Chen, S.; Wan, H.; Zhao, X.; Dong, H. The implications of TRPV1′s influence TRPV1 ion channels in the suppression of gastric cancer development. J. Exp. Clin. Cancer Res. 2020, 39, 1–17. [Google Scholar] [CrossRef]
- Johariya, V.; Joshi, A.; Malviya, N.; Malviya, S. Introduction to Cancer. In Medicinal Plants and Cancer Chemoprevention; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–28. [Google Scholar]
- Lee, J.Y.; Bhandare, R.R.; Boddu, S.H.; Shaik, A.B.; Saktivel, L.P.; Gupta, G.; Negi, P.; Barakat, M.; Singh, S.K.; Dua, K. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed. Pharmacother. 2024, 173, 116275. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal. 2024, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Szilveszter, R.-M.; Muntean, M.; Florea, A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments—An Overview. Biomolecules 2024, 14, 656. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Li, S.; Ma, J.; Dai, X.; Lu, J. Deciphering JAK/STAT signaling pathway: A multifaceted approach to tumorigenesis, progression and therapeutic interventions. Int. Immunopharmacol. 2024, 131, 111846. [Google Scholar] [CrossRef] [PubMed]
- Amaya-Rodriguez, C.A.; Carvajal-Zamorano, K.; Bustos, D.; Alegría-Arcos, M.; Castillo, K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front. Pharmacol. 2024, 14, 1251061. [Google Scholar] [CrossRef]
- Pan, T.; Gao, Y.; Xu, G.; Yu, L.; Xu, Q.; Yu, J.; Liu, M.; Zhang, C.; Ma, Y.; Li, Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief. Funct. Genom. 2024, 23, 214–227. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, H.; Wang, R.; Yao, L.; Chen, S.; Wang, Y.; Lv, C. Capsaicin Attenuates LPS-Induced Acute Lung Injury by Inhibiting Inflammation and Autophagy Through Regulation of the TRPV1/AKT Pathway. J. Inflamm. Res. 2024, 17, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Trang, N.M.; Kim, E.-N.; Jeong, H.G.; Jeong, G.-S. Citropten Inhibits Vascular Smooth Muscle Cell Proliferation and Migration via the TRPV1 Receptor. ACS Omega 2024, 9, 29829–29839. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishna, G.K.; Ammunje, D.N.; Kunjiappan, S.; Ravi, K.; Vellingiri, S.; Ramesh, S.H.; Almeida, S.D.; Sireesha, G.; Ramesh, S.; Saud, A.-Q. A Comprehensive Review of Capsaicin and Its Role in Cancer Prevention and Treatment. Drug Res. 2024, 74, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Mardelle, U.; Bretaud, N.; Daher, C.; Feuillet, V. From pain to tumor immunity: Influence of peripheral sensory neurons in cancer. Front. Immunol. 2024, 15, 1335387. [Google Scholar] [CrossRef]
- Brito, R.; Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. TRPV1: A potential drug target for treating various diseases. Cells 2014, 3, 517–545. [Google Scholar] [CrossRef]
- Chen, J.; Sun, W.; Zhu, Y.; Zhao, F.; Deng, S.; Tian, M.; Wang, Y.; Gong, Y. TRPV1: The key bridge in neuroimmune interactions. J. Intensive Med. 2024, 4, 442–452. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.; Chiang, C.; Xiao, T.; Chen, Y.; Zhao, Y.; Zheng, D. The impact of TRPV1 on cancer pathogenesis and therapy: A systematic review. Int. J. Biol. Sci. 2021, 17, 2034. [Google Scholar] [CrossRef]
- Malagarie-Cazenave, S.; Olea-Herrero, N.; Vara, D.; Díaz-Laviada, I. Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett. 2009, 583, 141–147. [Google Scholar] [CrossRef]
- Şanlıer, N.; Irmak, E.; Ejder, Z.B. The Relationship Between Capsaicin in Chili Pepper and Cancer: A Comprehensive Insight. Clin. Exp. Health Sci. 2024, 14, 273–282. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, J. Understand spiciness: Mechanism of TRPV1 channel activation by capsaicin. Protein Cell 2017, 8, 169–177. [Google Scholar] [CrossRef]
- Han, G.H.; Chay, D.B.; Nam, S.; Cho, H.; Chung, J.-Y.; Kim, J.-H. Prognostic significance of transient receptor potential vanilloid type 1 (TRPV1) and phosphatase and tension homolog (PTEN) in epithelial ovarian cancer. Cancer Genom. Proteom. 2020, 17, 309–319. [Google Scholar] [CrossRef]
- Yoshida, A.; Nishibata, M.; Maruyama, T.; Sunami, S.; Isono, K.; Kawamata, T. Activation of transient receptor potential vanilloid 1 is involved in both pain and tumor growth in a mouse model of cancer pain. Neuroscience 2024, 538, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Cadoná, F. Capsaicin Ameliorates Chemotherapy Response via Cancer Hallmarks Modulation: An Overview of its Synergic Potential. J. Herb. Med. 2024, 45, 100882. [Google Scholar] [CrossRef]
- Friedman, J.R.; Richbart, S.D.; Merritt, J.C.; Perry, H.E.; Brown, K.C.; Akers, A.T.; Nolan, N.A.; Stevenson, C.D.; Hurley, J.D.; Miles, S.L. Capsaicinoids enhance chemosensitivity to chemotherapeutic drugs. Adv. Cancer Res. 2019, 144, 263–298. [Google Scholar] [PubMed]
- Mori, A.; Lehmann, S.R.; O’Kelly, J.; Kumagai, T.; Desmond, J.C.; Pervan, M.; McBride, W.H.; Kizaki, M.; Koeffler, H.P. Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells. Cancer Res. 2006, 66, 3222–3229. [Google Scholar] [CrossRef]
- Li, T.; Jiang, S.; Zhang, Y.; Luo, J.; Li, M.; Ke, H.; Deng, Y.; Yang, T.; Sun, X.; Chen, H. Nanoparticle-mediated TRPV1 channel blockade amplifies cancer thermo-immunotherapy via heat shock factor 1 modulation. Nat. Commun. 2023, 14, 2498. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, C.A.; Kommalapati, V.K.; Llbiyi, T.; Singh, D.; Alfa, E.; Horuzsko, A.; Korkaya, H.; Panda, S.; Reilly, C.A.; Popik, V. Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin). Sci. Rep. 2023, 13, 13790. [Google Scholar] [CrossRef]
- Solinas, G.; Marchesi, F.; Garlanda, C.; Mantovani, A.; Allavena, P. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev. 2010, 29, 243–248. [Google Scholar] [CrossRef]
- Jacobson, A.; Yang, D.; Vella, M.; Chiu, I.M. The intestinal neuro-immune axis: Crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 2021, 14, 555–565. [Google Scholar] [CrossRef]
- Zhu, Y.; Meerschaert, K.A.; Galvan-Pena, S.; Bin, N.-R.; Yang, D.; Basu, H.; Kawamoto, R.; Shalaby, A.; Liberles, S.D.; Mathis, D. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 2024, 385, eadk1679. [Google Scholar] [CrossRef]
- Gao, R.; Meng, M.; Zhou, X.; Yu, M.; Li, Z.; Li, J.; Wang, X.; Song, Y.; Wang, H.; He, J. TRPV1, a novel biomarker associated with lung cancer via excluding immune infiltration. MedComm 2022, 3, e139. [Google Scholar] [CrossRef] [PubMed]
- Bertin, S.; Aoki-Nonaka, Y.; De Jong, P.R.; Nohara, L.L.; Xu, H.; Stanwood, S.R.; Srikanth, S.; Lee, J.; To, K.; Abramson, L. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat. Immunol. 2014, 15, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Santoni, G.; Morelli, M.B.; Amantini, C.; Santoni, M.; Nabissi, M.; Marinelli, O.; Santoni, A. “Immuno-transient receptor potential ion channels”: The role in monocyte-and macrophage-mediated inflammatory responses. Front. Immunol. 2018, 9, 1273. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Menoret, A.; Srivastava, P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr. Opin. Immunol. 2002, 14, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Lozano, C.; Córdova, C.; Marchant, I.; Zúñiga, R.; Ochova, P.; Ramírez-Barrantes, R.; González-Arriagada, W.A.; Rodriguez, B.; Olivero, P. Intracellular aggregated TRPV1 is associated with lower survival in breast cancer patients. Breast Cancer Targets Ther. 2018, 10, 161–168. [Google Scholar] [CrossRef]
- Weber, L.V.; Al-Refae, K.; Wölk, G.; Bonatz, G.; Altmüller, J.; Becker, C.; Gisselmann, G.; Hatt, H. Expression and functionality of TRPV1 in breast cancer cells. Breast Cancer Targets Ther. 2016, 8, 243–252. [Google Scholar] [CrossRef]
- Nie, R.; Liu, Q.; Wang, X. TRPV1 Is a Potential Tumor Suppressor for Its Negative Association with Tumor Proliferation and Positive Association with Antitumor Immune Responses in Pan-Cancer. J. Oncol. 2022, 2022, 6964550. [Google Scholar] [CrossRef]
- Hou, N.; He, X.; Yang, Y.; Fu, J.; Zhang, W.; Guo, Z.; Hu, Y.; Liang, L.; Xie, W.; Xiong, H. TRPV1 induced apoptosis of colorectal cancer cells by activating calcineurin-NFAT2-p53 signaling pathway. BioMed Res. Int. 2019, 2019, 6712536. [Google Scholar] [CrossRef]
- Scheff, N.N.; Wall, I.M.; Nicholson, S.; Williams, H.; Chen, E.; Tu, N.H.; Dolan, J.C.; Liu, C.Z.; Janal, M.N.; Bunnett, N.W. Oral cancer induced TRPV1 sensitization is mediated by PAR2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci. Rep. 2022, 12, 4121. [Google Scholar] [CrossRef]
- Luo, X.; Chen, O.; Wang, Z.; Bang, S.; Ji, J.; Lee, S.H.; Huh, Y.; Furutani, K.; He, Q.; Tao, X. IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron 2021, 109, 2691–2706.e5. [Google Scholar] [CrossRef]
- Malty, R.R.H. Mechanisms of the Downregulation of Prostaglandin E2-Activated Protein Kinase A after Chronic Exposure to Nerve Growth Factor or Prostaglandin E2; Indiana University: Bloomington, IN, USA, 2012. [Google Scholar]
- Deng, R.; Yu, S.; Ruan, X.; Liu, H.; Zong, G.; Cheng, P.; Tao, R.; Chen, W.; Wang, A.; Zhao, Y. Capsaicin orchestrates metastasis in gastric cancer via modulating expression of TRPV1 channels and driving gut microbiota disorder. Cell Commun. Signal. 2023, 21, 364. [Google Scholar] [CrossRef] [PubMed]
- Kijima, T.; Prince, T.; Neckers, L.; Koga, F.; Fujii, Y. Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: Overview of current preclinical progress. Expert Opin. Ther. Targets 2019, 23, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Yiangou, Y.; Facer, P.; Walters, J.R.; Anand, P.; Ghosh, S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 2008, 57, 923–929. [Google Scholar] [CrossRef]
- Anand, P.; Bley, K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011, 107, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, cancer and immunity—Implication of TRPV1 channel. Front. Oncol. 2019, 9, 1087. [Google Scholar] [CrossRef]
- Kumar, P.S.; Mukherjee, T.; Khamaru, S.; Radhakrishnan, A.; Kishore, D.J.N.; Chawla, S.; Sahoo, S.S.; Chattopadhyay, S. Elevation of TRPV1 expression on T-cells during experimental immunosuppression. J. Biosci. 2022, 47, 42. [Google Scholar] [CrossRef]
- Vašek, D.; Fikarová, N.; Marková, V.N.; Honc, O.; Pacáková, L.; Porubská, B.; Somova, V.; Novotný, J.; Melkes, B.; Krulová, M. Lipopolysaccharide pretreatment increases the sensitivity of the TRPV1 channel and promotes an anti-inflammatory phenotype of capsaicin-activated macrophages. J. Inflamm. 2024, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Deveci, H.A.; Nazıroğlu, M.; Nur, G. 5-Fluorouracil-induced mitochondrial oxidative cytotoxicity and apoptosis are increased in MCF-7 human breast cancer cells by TRPV1 channel activation but not Hypericum perforatum treatment. Mol. Cell. Biochem. 2018, 439, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, C.B.; Kirma, N.B.; Jorge, J.; Chen, R.; Henry, M.A.; Luo, S.; Hargreaves, K.M. Vanilloids induce oral cancer apoptosis independent of TRPV1. Oral Oncol. 2014, 50, 437–447. [Google Scholar] [CrossRef]
- Kameda, K.; Kondo, T.; Tanabe, K.; Zhao, Q.-L.; Seto, H. The role of intracellular Ca2+ in apoptosis induced by hyperthermia and its enhancement by verapamil in U937 cells. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 1369–1379. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Basu, S. Tumor macrophages as a target for Capsaicin mediated immunotherapy. Cancer Lett. 2012, 324, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-Y.; Zhao, Q.-W.; Li, Z.; Liu, X.-Y.; Wang, Y.; Wu, F.-H.; Zhao, M.; Zhang, Y.-M.; Zhao, G.; Yang, G.-H. Capsaicin exerts synergistic pro-apoptotic effects with cisplatin in TSCC through the calpain pathway via TRPV1. J. Cancer 2024, 15, 4801. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Oh, E.Y.; Lee, J.H.; Nam, D.; Lee, S.G.; Lee, J.; Kim, S.H.; Shim, B.S.; Ahn, K.S. Brassinin combined with capsaicin enhances apoptotic and anti-metastatic effects in PC-3 human prostate cancer cells. Phytother. Res. 2015, 29, 1828–1836. [Google Scholar] [CrossRef]
- Lan, Y.; Sun, Y.; Yang, T.; Ma, X.; Cao, M.; Liu, L.; Yu, S.; Cao, A.; Liu, Y. Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer. Mol. Pharm. 2019, 16, 3430–3440. [Google Scholar] [CrossRef]
- Parashar, P.; Tripathi, C.B.; Arya, M.; Kanoujia, J.; Singh, M.; Yadav, A.; Kaithwas, G.; Saraf, S.A. A synergistic approach for management of lung carcinoma through folic acid functionalized co-therapy of capsaicin and gefitinib nanoparticles: Enhanced apoptosis and metalloproteinase-9 down-regulation. Phytomedicine 2019, 53, 107–123. [Google Scholar] [CrossRef]
- Qi, C.; Wang, D.; Gong, X.; Zhou, Q.; Yue, X.; Li, C.; Li, Z.; Tian, G.; Zhang, B.; Wang, Q. Co-delivery of curcumin and capsaicin by dual-targeting liposomes for inhibition of aHSC-induced drug resistance and metastasis. ACS Appl. Mater. Interfaces 2021, 13, 16019–16035. [Google Scholar] [CrossRef]
- Sánchez, B.G.; Bort, A.; Mateos-Gómez, P.A.; Rodríguez-Henche, N.; Díaz-Laviada, I. Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell Int. 2019, 19, 54. [Google Scholar] [CrossRef]
- Vendrely, V.; Amintas, S.; Noel, C.; Moranvillier, I.; Lamrissi, I.; Rousseau, B.; Coulibaly, S.; Bedel, A.; Moreau-Gaudry, F.; Buscail, E. Combination treatment of resveratrol and capsaicin radiosensitizes pancreatic tumor cells by unbalancing DNA repair response to radiotherapy towards cell death. Cancer Lett. 2019, 451, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, X.; Yu, C.; Zhao, G.; Zhou, J.; Zhang, G.; Li, M.; Jiang, D.; Quan, Z.; Zhang, Y. Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma in culture and in xenografts. J. Exp. Clin. Cancer Research 2018, 37, 251. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Ni, Y.-H.; Zhao, C.-R.; Qiao, Z.; Yu, H.-X.; Wang, L.-Y.; Sun, J.-Y.; Du, C.; Zhang, J.-H.; Dong, L.-Y. Capsaicin enhances the antitumor activity of sorafenib in hepatocellular carcinoma cells and mouse xenograft tumors through increased ERK signaling. Acta Pharmacol. Sin. 2018, 39, 438–448. [Google Scholar] [CrossRef]
- Chittepu, V.C.S.R.; Kalhotra, P.; Revilla, G.I.O.; Velázquez, T.G. Emerging technologies to improve capsaicin delivery and its therapeutic efficacy. In Capsaicin and Its Human Therapeutic Development; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Chatterjee, S.; Burns, T.F. Targeting heat shock proteins in cancer: A promising therapeutic approach. Int. J. Mol. Sci. 2017, 18, 1978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Liu, Y.; Zhao, K.; Wei, S.; Sugarman, E.T.; Liu, L.; Zhang, G. Targeting HSP90 as a novel therapy for cancer: Mechanistic insights and translational relevance. Cells 2022, 11, 2778. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat shock proteins and cancer. Trends Pharmacol. Sci. 2017, 38, 226–256. [Google Scholar] [CrossRef]
- Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat shock proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells 2019, 9, 60. [Google Scholar] [CrossRef]
- Anderson, K.J.; Cormier, R.T.; Scott, P.M. Role of ion channels in gastrointestinal cancer. World J. Gastroenterol. 2019, 25, 5732. [Google Scholar] [CrossRef]
- Kark, T.; Bagi, Z.; Lizanecz, E.; Pásztor, E.T.; Erdei, N.; Czikora, Á.; Papp, Z.; Édes, I.; Pórszász, R.; Tóth, A. Tissue-specific regulation of microvascular diameter: Opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol. Pharmacol. 2008, 73, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S.; Park, W.-H.; Park, J.-Y.; Kang, J.-H.; Kim, M.-O.; Kawada, T.; Yoo, H.; Han, I.-S.; Yu, R. Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor γ in HT-29 human colon cancer cells. J. Med. Food 2004, 7, 267–273. [Google Scholar] [CrossRef]
- Xiao, T.; Sun, M.; Kang, J.; Zhao, C. Transient receptor potential Vanilloid1 (TRPV1) Channel opens Sesame of T cell responses and T cell-mediated inflammatory diseases. Front. Immunol. 2022, 13, 870952. [Google Scholar] [CrossRef]
- Sanchez, A.; Sanchez, M.; Malagarie-Cazenave, S.; Olea, N.; Diaz-Laviada, I. Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin. Apoptosis 2006, 11, 89–99. [Google Scholar] [CrossRef]
- Mistretta, F.; Buffi, N.M.; Lughezzani, G.; Lista, G.; Larcher, A.; Fossati, N.; Abrate, A.; Dell’Oglio, P.; Montorsi, F.; Guazzoni, G. Bladder cancer and urothelial impairment: The role of TRPV1 as potential drug target. BioMed Res. Int. 2014, 2014, 987149. [Google Scholar] [CrossRef]
- Huang, T. TRPV1 is a potential biomarker for the prediction and treatment of multiple cancers based on a pan-cancer analysis. Math. Biosci. Eng. 2022, 19, 8361–8379. [Google Scholar] [CrossRef] [PubMed]
- Ip, S.; Lan, S.; Lu, H.; Huang, A.; Yang, J.; Lin, J.; Huang, H.; Lien, J.; Ho, C.; Chiu, C. Capsaicin mediates apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells through mitochondrial depolarization and endoplasmic reticulum stress. Hum. Exp. Toxicol. 2012, 31, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Amantini, C.; Mosca, M.; Nabissi, M.; Lucciarini, R.; Caprodossi, S.; Arcella, A.; Giangaspero, F.; Santoni, G. Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J. Neurochem. 2007, 102, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Cheng, X.; Wu, L.; Zheng, J.; Wang, X.; Wu, J.; Yu, H.; Bao, J.; Zhang, L. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell. Signal. 2020, 75, 109733. [Google Scholar] [CrossRef] [PubMed]
- Amantini, C.; Ballarini, P.; Caprodossi, S.; Nabissi, M.; Morelli, M.B.; Lucciarini, R.; Cardarelli, M.A.; Mammana, G.; Santoni, G. Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis 2009, 30, 1320–1329. [Google Scholar] [CrossRef]
- Lau, J.K.; Brown, K.C.; Dom, A.M.; Witte, T.R.; Thornhill, B.A.; Crabtree, C.M.; Perry, H.E.; Brown, J.M.; Ball, J.G.; Creel, R.G. Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis 2014, 19, 1190–1201. [Google Scholar] [CrossRef]
- Chow, J.; Norng, M.; Zhang, J.; Chai, J. TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells—Mechanisms behind a possible new “hot” cancer treatment. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2007, 1773, 565–576. [Google Scholar] [CrossRef]
- Bucak, M.; Nazıroğlu, M. Cisplatin Kills Ovarium Cancer Cells through the TRPV1-Mediated Mitochondrial Oxidative Stress and Apoptosis: TRPV1 Inhibitor Role of Eicopentotaneoic Acid. 2024. Available online: https://www.researchsquare.com/article/rs-4850309/v1 (accessed on 14 September 2024).
- Gao, Y.; Wang, J.; Zhang, W.; Ge, F.; Li, W.; Xu, F.; Cui, T.; Li, X.; Yang, K.; Tao, Y. Application of capsaicin and calcium phosphate-loaded MOF system for tumor therapy involving calcium overload. Nanomed. Nanotechnol. Biol. Med. 2024, 60, 102759. [Google Scholar] [CrossRef]
- Kaya, M.M. Silver nanoparticles stimulate 5-Fluorouracil-induced colorectal cancer cells to kill through the upregulation TRPV1-mediated calcium signaling pathways. Cell Biol. Int. 2024, 48, 712–725. [Google Scholar] [CrossRef]
- Szallasi, A. Targeting TRPV1 for Cancer Pain Relief: Can It Work? Cancers 2024, 16, 648. [Google Scholar] [CrossRef]
- Adetunji, T.L.; Olawale, F.; Olisah, C.; Adetunji, A.E.; Aremu, A.O. Capsaicin: A two-decade systematic review of global research output and recent advances against human cancer. Front. Oncol. 2022, 12, 908487. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, R.K. Apoptosis—A distinctive form of cell death as biochemical, molecular and morphological changes. Int. J. Sci. Res. 2016, 5, 131–137. [Google Scholar]
- Mondal, A.; Banerjee, S.; Terang, W.; Bishayee, A.; Zhang, J.; Ren, L.; da Silva, M.N.; Bishayee, A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother. Res. 2024, 38, 1191–1223. [Google Scholar] [CrossRef] [PubMed]
S.NO | Condition | TRPV1: Activity, Expression, Effect | Major Findings | Reference |
---|---|---|---|---|
1 | Irritable bowel syndrome (IBS) | Increased TRPV1 expression in sensory fibers. Correlated with abdominal pain in IBS patients. | Increased TRPV1 expression in sensory fibers is correlated with abdominal pain in IBS patients, suggesting its role in pain modulation. | [45] |
2 | Gastrointestinal cancer | Various expression patterns in different GI cancers. It affected cell proliferation, migration, and invasion. | TRPV1’s role in GI cancer includes modulation of cell behavior through calcium signaling, suggesting its therapeutic potential. | [68] |
3 | Pan-cancer | Differential expression across cancer types. Implicated in immune cell modulation and inflammation. Modulates immune cell infiltration and inflammatory responses. | TRPV1 affects cancer cell behavior and immune responses, making it a potential target for immunotherapy across various cancers. | [33] |
4 | Microvascular study | Tissue-specific expression. Opposite roles in neuronal vs. smooth muscle cells. Regulates microvascular diameter. | TRPV1’s role in vascular regulation highlights its potential as a therapeutic target for vasculature-related diseases. | [69] |
5 | Colon cancer | TRPV1 activation by capsaicin. Induces apoptosis via PPARγ activation. | Capsaicin-induced apoptosis in colon cancer cells via TRPV1 and PPARγ activation suggests therapeutic potential. | [70] |
6 | Inflammatory diseases and cancer | Expressed in T cells and other immune cells. Modulates T cell responses. Influences T cell-mediated inflammation and cancer progression. | TRPV1’s role in T cell responses and inflammation highlights its therapeutic potential in cancer and inflammatory diseases. | [71] |
7 | Prostate cancer | Not directly addressed. TRPV1 activation by capsaicin induces apoptosis and inhibits tumor growth in prostate cancer. | Capsaicin induces apoptosis and inhibits tumor growth in prostate cancer via TRPV1, suggesting its therapeutic potential. | [72] |
8 | Pan-cancer | Elevated expression correlates with better clinical outcomes. Not directly measured. Negative correlation with tumor proliferation markers. | TRPV1’s upregulation is associated with decreased tumor proliferation and enhanced antitumor immune responses. | [38] |
9 | Bladder cancer | TRPV1 expression in urothelial cells modulates urothelial cell behavior. Influences bladder cancer progression. | TRPV1’s role in bladder cancer suggests its potential as a therapeutic target for modulating urothelial cell behavior. | [73] |
10 | Breast cancer | Classical and non-classical expression patterns. Estrogen-induced TRPV1 expression. Higher survival rate associated with classical TRPV1 pattern. | Classical TRPV1 expression pattern is associated with higher survival rates, suggesting its prognostic and therapeutic potential. | [36] |
11 | Various aggressive tumors | Overexpressed in breast, lung, hepatocellular, colorectal, and pancreatic tumors. TRPV1 blockade inhibits calcium influx and HSF1 translocation. Enhances thermotherapeutic efficacy and suppresses tumor growth. | Nanoparticle-mediated TRPV1 blockade enhances cancer therapy by modulating HSF1 pathways and improving immune infiltration. | [27] |
12 | Prostate cancer | Focus on androgen-independent, p53-mutant prostate cancer cells. TRPV1 activation by capsaicin inhibits growth and induces apoptosis in prostate cancer cells. | Capsaicin inhibits growth and induces apoptosis in prostate cancer cells via TRPV1 activation. | [26] |
13 | Different cancers | Differential TRPV1 expression levels in 12 cancers. Not directly addressed. Associated with DNA methyltransferases and mismatch repair genes. | TRPV1’s prognostic significance and association with immune microenvironment highlight its potential as a cancer biomarker. | [74] |
14 | Gastric cancer | High-capsaicin diet led to elevated expression of TRPV1 in gastric cancer cells. Indirectly implicated through capsaicin’s effects. Capsaicin promoted gastric cancer metastasis, partially mediated through TRPV1. | High-capsaicin diet promotes gastric cancer metastasis through TRPV1 expression modulation and gut microbiota composition changes. | [43] |
15 | Lung cancer (LUAD and LUSC) | Significantly higher mRNA expression in tumor tissues. Not directly addressed; focuses on mRNA expression levels. Higher TRPV1 mRNA expression is an independent risk factor for poor prognosis. | TRPV1 expression is upregulated in LUAD and LUSC and significantly negatively correlated with overall survival in LUAD patients. | [32] |
16 | Epithelial ovarian cancer (EOC) | Overexpressed and associated with poor prognosis. Inhibition suppressed development of EOC cells. Knockdown decreased cell viability and colony formation. | High TRPV1 expression and the combination of high TRPV1 and low PTEN expression are independent prognostic factors for EOC. | [22] |
17 | Colorectal cancer (CRC) | Decreased in CRC tissues compared with adjacent and normal tissues. Activation led to increased cytosolic Ca2+ influx and NFAT protein expression levels. Inhibited CRC growth and induced apoptosis by activating p53. | TRPV1 activation inhibits CRC cell proliferation and induces apoptosis through the calcineurin–NFAT2–p53 pathway. | [39] |
18 | Nasopharyngeal carcinoma (NPC) | Not explicitly detailed; study focuses on capsaicin’s effect through TRPV1. Capsaicin increased levels of IRE1, GADD153, and GRP78. Induced G0/G1-phase arrest and apoptosis in NPC-TW 039 cells. | Capsaicin induces apoptosis in NPC cells through endoplasmic reticulum stress and mitochondrial depolarization pathways via TRPV1. | [75] |
19 | General cancer | Not directly addressed. TRPV1 modulation through HSF1 pathways influences cancer cell survival and stress responses. | HSF1-targeted therapies involving TRPV1 modulation show potential for cancer treatment by affecting cancer cell stress responses. | [44] |
20 | Various cancers | IL-23/IL-17A/TRPV1 axis in immune cells modulates immune cell crosstalk and pain. Affects mechanical pain via macrophage–sensory-neuron crosstalk. | TRPV1 modulation in the IL-23/IL-17A axis influences pain and immune responses, suggesting therapeutic potential. | [41] |
21 | Prostate cancer | Not explicitly addressed. Capsaicin-induced effects reversed by TRPV1 antagonists. Induces androgen receptor expression and cell viability via TRPV1 activation. | Capsaicin induces androgen receptor expression and activates PI3K/Akt and ERK pathways via TRPV1, increasing cell viability in LNCaP cells. | [19] |
22 | Glioma cells | Capsaicin induced apoptosis via TRPV1 activation. | Apoptosis mediated through P38 MAPK activation. | [76] |
23 | Anaplastic thyroid cancer cells | Capsaicin-induced TRPV1 caused excess of calcium influx into mitochondria that led to mitochondrial dysfunction. | Apoptosis induced via intrinsic pathway. | [77] |
24 | Urothelial cancer cells | Capsaicin-activated TRPV1 induced proapoptotic ATM protein, which is vital to the DNA damage and FAS/CD95. | Both extrinsic and intrinsic pathways were induced. | [78] |
25 | Small-cell lung cancer | Capsaicin-induced TRPV6 activation increases intracellular calcium levels in the cytosol, leading to apoptosis. | Apoptosis induced via calpain pathway. | [79] |
26 | Gastric cancer | Capsaicin-activated TRPV6 increased Ca levels and affected mitochondrial permeability. | Apoptotic proteins activated through p53 via JNK pathway. | [80] |
27 | Ovarian cancer cells | Cisplatin-mediated TRPV1 activation leads to mitochondrial dysfunction. | Apoptosis induced by caspase-3/-8/-9 and lysosomal injury. | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinreddy, S.R.; Mashozhera, N.T.; Rashrash, B.; Flores-Iga, G.; Nimmakayala, P.; Hankins, G.R.; Harris, R.T.; Reddy, U.K. Unraveling TRPV1’s Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin. Molecules 2024, 29, 4729. https://doi.org/10.3390/molecules29194729
Chinreddy SR, Mashozhera NT, Rashrash B, Flores-Iga G, Nimmakayala P, Hankins GR, Harris RT, Reddy UK. Unraveling TRPV1’s Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin. Molecules. 2024; 29(19):4729. https://doi.org/10.3390/molecules29194729
Chicago/Turabian StyleChinreddy, Subramanyam R., Nicole Tendayi Mashozhera, Badraldeen Rashrash, Gerardo Flores-Iga, Padma Nimmakayala, Gerald R. Hankins, Robert T. Harris, and Umesh K. Reddy. 2024. "Unraveling TRPV1’s Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin" Molecules 29, no. 19: 4729. https://doi.org/10.3390/molecules29194729
APA StyleChinreddy, S. R., Mashozhera, N. T., Rashrash, B., Flores-Iga, G., Nimmakayala, P., Hankins, G. R., Harris, R. T., & Reddy, U. K. (2024). Unraveling TRPV1’s Role in Cancer: Expression, Modulation, and Therapeutic Opportunities with Capsaicin. Molecules, 29(19), 4729. https://doi.org/10.3390/molecules29194729