Efficient Extraction and Separation of Scandium from Scandium-Bearing Solid Waste and Acid by Synergistically Leaching Followed by Solvent Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Leaching for Scandium Enrichment
2.2.1. Effect of Leaching Temperature
2.2.2. Effect of Liquid-Solid Ratio
2.2.3. Effect of Leaching Time
2.3. Pre-Iron Removal for Leached Solution
2.4. Solvent Extraction of Scandium
2.4.1. Effect of Iron Powder Reduction on Emulsification
2.4.2. Effect of A/O Ratio
2.4.3. Effect of P204 Concentration
2.4.4. Effect of Temperature
2.5. Conceptual Flowchart for the Recovery of Scandium from Scandium-Containing Waste Acid and Slag
3. Materials and Methods
3.1. Reagents
3.2. Experiments
3.3. Sample Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, Q.; Zhang, G.; Zeng, L.; Cao, Z.; Guan, W.; Wang, L. Separation and recovery of scandium and titanium from spent sulfuric acid solution from the titanium dioxide production process. Hydrometallurgy 2018, 178, 1–6. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, B.; Wang, C.; Chen, Y.; Wang, L. Separation and recovery of scandium from high pressure sulfuric acid leach liquor of limonitic laterite. Process Saf. Environ. Prot. 2022, 165, 161–172. [Google Scholar] [CrossRef]
- Souza, A.G.O.; Aliprandini, P.; Espinosa, D.C.R.; Tenório, J.A.S. Scandium Extraction from Nickel Processing Waste Using Cyanex 923 in Sulfuric Medium. JOM 2019, 71, 2003–2009. [Google Scholar] [CrossRef]
- Hu, J.; Zou, D.; Chen, J.; Li, D. A novel synergistic extraction system for the recovery of scandium (III) by Cyanex272 and Cyanex923 in sulfuric acid medium. Sep. Purif. Technol. 2020, 233, 115977. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, T.-A.; Zhang, W.; Lv, G. Solvent Extraction of Sc(III) by D2EHPA/TBP from the Leaching Solution of Vanadium Slag. Metals 2020, 10, 790. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, H.; Liu, S.-F.; Ning, S.-Y.; Wei, Y.-Z. Scandium recovery from ion-adsorption rare earth concentrate with HEHEHP as extractant. J. Cent. South Univ. 2021, 28, 679–689. [Google Scholar] [CrossRef]
- Batchu, N.K.; Vander Hoogerstraete, T.; Banerjee, D.; Binnemans, K. Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. RSC Adv. 2017, 7, 45351–45362. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy 2011, 108, 100–108. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, S.; Ning, S.; Zhong, Y.; Wang, X.; Fujita, T.; Wei, Y. Highly efficient recovery and purification of scandium from the waste sulfuric acid solution from titanium dioxide production by solvent extraction. J. Environ. Chem. Eng. 2021, 9, 106226. [Google Scholar] [CrossRef]
- Hedwig, S.; Yagmurlu, B.; Huang, D.; von Arx, O.; Dittrich, C.; Constable, E.C.; Friedrich, B.; Lenz, M. Nanofiltration-Enhanced Solvent Extraction of Scandium from TiO2 Acid Waste. ACS Sustain. Chem. Eng. 2022, 10, 6063–6071. [Google Scholar] [CrossRef]
- Agrawal, S.; Dhawan, N. Process flowsheet for extraction of Fe, Al, Ti, Sc, and Ga values from red mud. Miner. Eng. 2022, 184, 107601. [Google Scholar] [CrossRef]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef]
- Habibi, H.; Mokmeli, M.; Shakibania, S.; Pirouzan, D.; Pourkarimi, Z. Separation and recovery of titanium and scandium from the red mud. Sep. Purif. Technol. 2023, 317, 123882. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Nie, C.; Zhang, J.; Steenari, B.-M.; Ekberg, C. Comprehensive treatments of tungsten slags in China: A critical review. J. Environ. Manag. 2020, 270, 110927. [Google Scholar] [CrossRef]
- Anawati, J.; Azimi, G. Integrated carbothermic smelting—Acid baking—Water leaching process for extraction of scandium, aluminum, and iron from bauxite residue. J. Clean. Prod. 2022, 330, 129905. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue. JOM 2016, 68, 2958–2962. [Google Scholar] [CrossRef]
- Meng, F.; Li, X.; Shi, L.; Li, Y.; Gao, F.; Wei, Y. Selective extraction of scandium from bauxite residue using ammonium sulfate roasting and leaching process. Miner. Eng. 2020, 157, 106561. [Google Scholar] [CrossRef]
- Ray, A.R.; Mishra, S. Hydro metallurgical technique as better option for the recovery of rare earths from mine tailings and industrial wastes. Sustain. Chem. Pharm. 2023, 36, 101311. [Google Scholar] [CrossRef]
- Mostajeran, M.; Bondy, J.-M.; Reynier, N.; Cameron, R. Mining value from waste: Scandium and rare earth elements selective recovery from coal fly ash leach solutions. Miner. Eng. 2021, 173, 107091. [Google Scholar] [CrossRef]
- Zou, D.; Li, H.; Chen, J.; Li, D. Recovery of scandium from spent sulfuric acid solution in titanium dioxide production using synergistic solvent extraction with D2EHPA and primary amine N1923. Hydrometallurgy 2020, 197, 105463. [Google Scholar] [CrossRef]
- Peng, X.; Li, L.; Zhang, M.; Cui, Y.; Jiang, X.; Sun, G. Preparation of ultra-high pure scandium oxide with crude product from titanium white waste acid. J. Rare Earths 2023, 41, 764–770. [Google Scholar] [CrossRef]
- Zhu, X.; Li, W.; Tang, S.; Zeng, M.; Bai, P.; Chen, L. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud. Chemosphere 2017, 175, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Ning, S.; Zhang, W.; Wang, X.; Wei, Y. Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent. Hydrometallurgy 2018, 181, 74–81. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Li, F.; Dong, Y.; Sun, X. Process for the separation of thorium and rare earth elements from radioactive waste residues using Cyanex® 572 as a new extractant. Hydrometallurgy 2017, 169, 158–164. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Zou, D.; Yan, Y.; Li, D. A novel synergistic extraction system for the recovery of scandium (III) from sulfuric acid medium with mixed Cyanex923 and N1923. Sep. Purif. Technol. 2022, 283, 120223. [Google Scholar] [CrossRef]
- Smyshlyaev, D.; Kirillov, E.; Kirillov, S.; Bunkov, G.; Rychkov, V.; Botalov, M.; Taukin, A.; Yuldashbaeva, A.; Malyshev, A. Recovery and separation of Sc, Zr and Ti from acidic sulfate solutions for high purity scandium oxide production: Laboratory and pilot study. Hydrometallurgy 2022, 211, 105889. [Google Scholar] [CrossRef]
- Zou, D.; Deng, Y.; Chen, J.; Li, D. A review on solvent extraction of scandium. J. Rare Earths 2022, 40, 1499–1508. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep. Purif. Technol. 2013, 108, 96–102. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, T.-A.; Lv, G.; Zhang, W.; Li, T.; Cao, X. Separation and Extraction of Scandium from Titanium Dioxide Waste Acid. JOM 2021, 73, 1301–1309. [Google Scholar] [CrossRef]
- Zhou, J.; Ning, S.; Meng, J.; Zhang, S.; Zhang, W.; Wang, S.; Chen, Y.; Wang, X.; Wei, Y. Purification of scandium from concentrate generated from titanium pigments production waste. J. Rare Earths 2021, 39, 194–200. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, S.; Chen, Y.; Ning, S.; Wei, Y.; Fujita, T. Recovery of scandium from red mud by leaching with titanium white waste acid and solvent extraction with P204. Hydrometallurgy 2021, 204, 105724. [Google Scholar] [CrossRef]
Element | Fe | Mn | Ti | Al | Mg | Zr | Ca | Sc |
---|---|---|---|---|---|---|---|---|
Content (wt%) | 47.20 | 5.42 | 0.50 | 0.93 | 8.08 | 0.02 | 3.36 | n/a |
Element | Sc | Ti | Fe | Mn | Ca | Al | Mg |
---|---|---|---|---|---|---|---|
Waste slag (wt%) | 0.017 | 0.556 | 29.3 | 2.57 | 4.77 | 0.616 | 8.72 |
Titanium dioxide waste acid (g/L) | 0.0151 | 2.65 | 46.43 | 1.71 | 3.89 | 2.95 | 5.36 |
Element Concentration (mg/L) | Fe | Sc | Ca | Mn | Ti | Al | Mg |
---|---|---|---|---|---|---|---|
Titanium dioxide waste acid | 46,430 | 15.1 | 3890 | 1710 | 2650 | 2950 | 5359.6 |
Leachate | 80,393 | 38.1 | 277 | 6046.9 | 2536.8 | 4755.6 | 15,144.3 |
Leachate after iron removal | 64,716.1 | 40.3 | 283.0 | 6221.3 | 2562.2 | 4774.8 | 15,206.6 |
Solvent extraction raffinate | 61,752.7 | 0 | 270.1 | 6228.8 | 2563.7 | 4783.5 | 15,793.7 |
Extractant | Acid | Conditions | Rate (%) | Refs. |
---|---|---|---|---|
3%P204 | H2SO4 | A/O = 5, 40 °C | 99.5 | [28] |
10% P204-5% TBP | Titanium white waste acid | A/O = 30, 30 min, 25 °C | 99 | [9] |
8% P204-2% TBP | Titanium white waste acid | A/O = 10, 25 °C, 20 min | 99.98 | [29] |
10% P204-5% TBP | 7 mol/LH2SO4 | A/O = 10, 25 °C, 30 min | 99.90 | [30] |
10%P204-5%TBP | H2SO4 | A/O = 10, 30 min | >99 | [31] |
15%P204-5%TBP | Titanium dioxide waste acid | A/O = 8, 25 °C, 20 min | 100 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Hua, J.; Jin, X.; He, M.; Xin, Y.; Liu, W. Efficient Extraction and Separation of Scandium from Scandium-Bearing Solid Waste and Acid by Synergistically Leaching Followed by Solvent Extraction. Molecules 2024, 29, 4766. https://doi.org/10.3390/molecules29194766
Cao W, Hua J, Jin X, He M, Xin Y, Liu W. Efficient Extraction and Separation of Scandium from Scandium-Bearing Solid Waste and Acid by Synergistically Leaching Followed by Solvent Extraction. Molecules. 2024; 29(19):4766. https://doi.org/10.3390/molecules29194766
Chicago/Turabian StyleCao, Wen, Jinmao Hua, Xi Jin, Minyu He, Yuntao Xin, and Weizao Liu. 2024. "Efficient Extraction and Separation of Scandium from Scandium-Bearing Solid Waste and Acid by Synergistically Leaching Followed by Solvent Extraction" Molecules 29, no. 19: 4766. https://doi.org/10.3390/molecules29194766
APA StyleCao, W., Hua, J., Jin, X., He, M., Xin, Y., & Liu, W. (2024). Efficient Extraction and Separation of Scandium from Scandium-Bearing Solid Waste and Acid by Synergistically Leaching Followed by Solvent Extraction. Molecules, 29(19), 4766. https://doi.org/10.3390/molecules29194766