In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses
Abstract
:1. Introduction
2. Results
2.1. Griseofulvin
2.2. Indomethacin
3. Discussion
3.1. Advanced Crystallization Kinetics
3.1.1. Griseofulvin
3.1.2. Indomethacin
3.2. Theoretical Assessment of the In Situ Collection of Raman Spectra
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, P.S.; Lokhande, R.S.; Kochrekar, D.A. A green raman spectroscopic assay method for the quantification of tranexamic acid in pharmaceutical formulations. Int. J. Exp. Res. Rev. 2023, 36, 415–424. [Google Scholar] [CrossRef]
- Knebl, A.; Frosch, T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on raman spectroscopy. Nanophotonics 2019, 9, 19–37. [Google Scholar]
- Kumar, A.; Singh, P.; Nanda, A. Hot stage microscopy and its applications in pharmaceutical characterization. Appl. Microsc. 2020, 50, 12. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cai, Z.; Li, Z.; Guan, G.; Jiang, Y. Preferential orientation effect of polymers on paracetamol crystallization: Experiments and modeling. Cryst. Growth Des. 2018, 18, 4987–4997. [Google Scholar] [CrossRef]
- Usman, A.; Ghali, U.; Işık, S. Applications of miniaturized and portable near infrared (nir), fourier transform infrared (ft-ir) and raman spectrometers for the inspection and control of pharmaceutical products. Ank. Univ. Eczaci. Fak. Derg. 2020, 44, 188–203. [Google Scholar] [CrossRef]
- Dezena, R.; Júnior, J.; Godoy, F.; Smith, T. Confocal raman microscopy: Tablet mapping application for the pharmaceutical industry. Braz. J. Anal. Chem. 2020, 7, 11–19. [Google Scholar] [CrossRef]
- Sarri, B.; Simó, R.; Audier, X.; Lavastre, V.; Pénarier, G.; Alié, J.; Rigneault, H. Discriminating polymorph distributions in pharmaceutical tablets using stimulated raman scattering microscopy. J. Raman Spectrosc. 2019, 50, 1896–1904. [Google Scholar] [CrossRef]
- Sović, I.; Lukin, S.; Meštrović, E.; Halász, I.; Porcheddu, A.; Delogu, F.; Colacino, E. Mechanochemical preparation of active pharmaceutical ingredients monitored by in situ raman spectroscopy. ACS Omega 2020, 5, 28663–28672. [Google Scholar] [CrossRef]
- Zeng, J.; Zhao, W.; Yue, S. Coherent raman scattering microscopy in oncology pharmacokinetic research. Front. Pharmacol. 2021, 12, 630167. [Google Scholar] [CrossRef]
- Krombholz, R.; Lunter, D. A new method for in-situ skin penetration analysis by confocal raman microscopy. Molecules 2020, 25, 4222. [Google Scholar] [CrossRef]
- Zhu, Z. Artificial intelligence assisted pharmaceutical crystallization. Cryst. Growth Des. 2024, 24, 4245–4270. [Google Scholar] [CrossRef]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Sandhu, H.; Choi, D.S.; Chokshi, H.; Malick, A.W. Amorphous Solid Dispersions: Theory and Practice; Springer: New York, NY, USA, 2014. [Google Scholar]
- Murdande, S.B.; Pikal, M.J.; Shanker, R.M.; Bogner, R.H. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol. 2011, 16, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Fridgeirsdottir, G.A.; Harris, R.; Fischer, P.M.; Roberts, C.J. Support Tools in Formulation Development for Poorly Soluble Drugs. J. Pharm. Sci. 2016, 105, 2260–2269. [Google Scholar] [CrossRef] [PubMed]
- Koskela, J.; Sutton, J.; Lipiäinen, T.; Gordon, K.; Strachan, C.; Fraser-Miller, S. Low- versus mid-frequency raman spectroscopy for in situ analysis of crystallization in slurries. Mol. Pharm. 2022, 19, 2316–2326. [Google Scholar] [CrossRef]
- Novakovic, D.; Isomäki, A.; Pleunis, B.; Fraser-Miller, S.; Peltonen, L.; Laaksonen, T.; Strachan, C. Understanding dissolution and crystallization with imaging: A surface point of view. Mol. Pharm. 2018, 15, 5361–5373. [Google Scholar] [CrossRef]
- Lu, B.; Kiani, D.; Taifan, W.; Barauskas, D.; Honer, K.; Zhang, L.; Baltrušaitis, J. Spatially resolved product speciation during struvite synthesis from magnesite (mgco3) particles in ammonium (nh4+) and phosphate (po43–) aqueous solutions. J. Phys. Chem. C 2019, 123, 8908–8922. [Google Scholar] [CrossRef]
- Rautaniemi, K.; Vuorimaa-Laukkanen, E.; Strachan, C.; Laaksonen, T. Crystallization kinetics of an amorphous pharmaceutical compound using fluorescence-lifetime-imaging microscopy. Mol. Pharm. 2018, 15, 1964–1971. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Cheng, J.; Chen, H.; Xu, J.; Liu, Z.; Zhang, C. Recent advances in the application of characterization techniques for studying physical stability of amorphous pharmaceutical solids. Crystals 2021, 11, 1440. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Q.; Guo, M.; Liu, Z.; Cai, T. Melt crystallization of indomethacin polymorphs in the presence of poly(ethylene oxide): Selective enrichment of the polymer at the crystal–liquid interface. Mol. Pharm. 2020, 17, 2064–2071. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Q.; Tao, J.; Peng, Y.; Cai, T. Impact of polymer enrichment at the crystal–liquid interface on crystallization kinetics of amorphous solid dispersions. Mol. Pharm. 2019, 16, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Kim, K. Inline monitoring of taltirelin crystallization in batch cooling mode using raman spectroscopy. Chem. Eng. Technol. 2015, 38, 1059–1067. [Google Scholar] [CrossRef]
- Goh, C.; Boyd, B.; Craig, D.; Lane, M. Profiling of drug crystallization in the skin. Expert Opin. Drug Deliv. 2020, 17, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, K.; Ulrich, J. In situ monitoring of cocrystallization of salicylic acid–4,4′-dipyridyl in solution using raman spectroscopy. Cryst. Growth Des. 2014, 14, 2893–2899. [Google Scholar] [CrossRef]
- Arnold, Y.; Imanidis, G.; Kuentz, M. Advancing in-vitro drug precipitation testing: New process monitoring tools and a kinetic nucleation and growth model. J. Pharm. Pharmacol. 2011, 63, 333–341. [Google Scholar] [CrossRef]
- Pataki, H.; Csontos, I.; Nagy, Z.; Vajna, B.; Molnár, M.; Katona, L.; Marosi, G. Implementation of raman signal feedback to perform controlled crystallization of carvedilol. Org. Process Res. Dev. 2012, 17, 493–499. [Google Scholar] [CrossRef]
- Stillhart, C.; Imanidis, G.; Kuentz, M. Insights into drug precipitation kinetics during in vitro digestion of a lipid-based drug delivery system using in-line raman spectroscopy and mathematical modeling. Pharm. Res. 2013, 30, 3114–3130. [Google Scholar] [CrossRef]
- Wolbert, F.; Nikoleit, K.; Steinbrink, M.; Luebbert, C.; Sadowski, G. The shelf life of asds: 1. measuring the crystallization kinetics at humid conditions. Mol. Pharm. 2022, 19, 2483–2494. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, J.; Ji, Z.; Wang, J.; Rohani, S. Combined application of in situ fbrm, atr-ftir, and raman on polymorphism transformation monitoring during the cooling crystallization. Ind. Eng. Chem. Res. 2012, 51, 12530–12536. [Google Scholar] [CrossRef]
- Acevedo, D.; Yang, X.; Mohammad, A.; Pavurala, N.; Wu, W.; O’Connor, T.; Cruz, C. Raman spectroscopy for monitoring the continuous crystallization of carbamazepine. Org. Process Res. Dev. 2018, 22, 156–165. [Google Scholar] [CrossRef]
- Svoboda, R. Extended theoretical analysis of crystallisation kinetics being studied by in situ XRD. Phil. Mag. 2020, 100, 713–727. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, L.; Kearns, K.L.; Ediger, M.D.; Yu, L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. USA 2011, 108, 5990–5995. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Sun, Y.; Li, N.; de Villiers, M.M.; Yu, L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir 2007, 23, 5148–5153. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, D.; Hasebe, M.; Yu, L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016, 16, 2931–2936. [Google Scholar] [CrossRef]
- Hasebe, M.; Musumeci, D.; Powell, C.T.; Cai, T.; Gunn, E.; Zhu, L.; Yu, L. Fast Surface Crystal Growth on Molecular Glasses and Its Termination by the Onset of Fluidity. J. Phys. Chem. B 2014, 118, 7638–7646. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.; Zografi, G. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Mol. Pharm. 2020, 17, 1761–1777. [Google Scholar] [CrossRef] [PubMed]
- Rams-Baron, M.; Jachowicz, R.; Boldyreva, E.; Zhou, D.; Jamroz, W.; Paluch, M. Amorphous Drugs—Benefits and Challenges; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-72002-9. [Google Scholar]
- Qin, S.; Ting, C. Recent progress on crystallization of amorphous pharmaceutical solids. J. China Pharm. Univ. 2017, 48, 654–662. [Google Scholar]
- Dobreva, A.; Stoyanov, A.; Tzuparska, S.; Gutzow, I. Non-steady-state effects in the kinetics of crystallization of organic polymer glass-forming melts. Thermochim. Acta 1996, 280–281, 127–151. [Google Scholar] [CrossRef]
- Smith, G.P.S.; Huff, G.S.; Gordon, K.C. Investigating Crystallinity Using Low Frequency Raman Spectroscopy: Applications in Pharmaceutical Analysis. Spectroscopy 2016, 31, 42–50. [Google Scholar]
- Svoboda, R. Johnson-Mehl-Avrami kinetics as a universal description of crystallization in glasses? J. Eur. Ceram. Soc. 2024, 44, 4064–4082. [Google Scholar] [CrossRef]
- Johnson, W.A.; Mehl, K.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. (Metall) Eng. 1939, 135, 416–442. [Google Scholar]
- Avrami, M. Kinetics of phase change I—General theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II—Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 7, 212–224. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, phase change, and microstructure—Kinetics of phase change III. J. Chem. Phys. 1941, 7, 177–184. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Šesták, J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Svoboda, R.; Kozlová, K. Thermo-structural characterization of phase transitions in amorphous griseofulvin: From sub-Tg relaxation and crystal growth to high-temperature decomposition. Molecules 2024, 29, 1516. [Google Scholar] [CrossRef]
- Tool, A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946, 29, 240–253. [Google Scholar] [CrossRef]
- Naraynaswamy, O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971, 54, 491–498. [Google Scholar] [CrossRef]
- Moynihan, C.T.; Easteal, A.J.; DeBolt, M.A.; Tucker, J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976, 59, 12–16. [Google Scholar] [CrossRef]
- Van Duong, T.; Lüdeker, D.; Van Bockstal, P.-J.; De Beer, T.; Van Humbeeck, J.; Van den Mooter, G. Polymorphism of Indomethacin in Semicrystalline Dispersions: Formation, Transformation, and Segregation. Mol. Pharm. 2018, 15, 1037–1051. [Google Scholar] [CrossRef]
- Lee, A.Y.; Erdemir, D.; Myerson, A.S. Crystal Polymorphism in Chemical Process Development. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Surwase, S.A.; Boetker, J.; Saville, D.; Boyd, B.; Gordon, K.; Peltonen, L.; Strachan, C.J. Indomethacin: New Polymorphs of an Old Drug. Mol. Pharm. 2013, 10, 4472–4480. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H.; Ida, Y.; Kadota, K.; Tozuka, Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int. J. Pharm. 2014, 462, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ruan, S.; Cai, T.; Yu, L. Fast surface diffusion and crystallization of amorphous griseofulvin. Phys. Chem. B 2017, 121, 9463–9468. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Cai, T. Fast crystal growth of amorphous griseofulvin: Relations between bulk and surface growth modes. Cryst. Growth Des. 2016, 16, 3279–3286. [Google Scholar] [CrossRef]
- Svoboda, R.; Chovanec, J.; Slang, S.; Beneš, L.; Konrád, P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2022, 889, 161672. [Google Scholar] [CrossRef]
- Šesták, J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Pang, Y.; Sun, D.; Gu, Q.; Chou, K.-C.; Wang, X.; Li, Q. Comprehensive Determination of Kinetic Parameters in Solid-State Phase Transitions: An Extended Jonhson-Mehl-Avrami-Kolomogorov Model with Analytical Solutions. Cryst. Growth Des. 2016, 16, 2404–2415. [Google Scholar] [CrossRef]
- Svoboda, R.; Košťálová, D.; Krbal, M.; Komersová, A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules 2022, 27, 5668. [Google Scholar] [CrossRef]
q+ | Tg | Tini | Tp1 | ΔHc | Tp2 | Tm,ons | Tm,p | ΔHm |
---|---|---|---|---|---|---|---|---|
°C·min−1 | °C | °C | °C | J·g−1 | °C | °C | °C | J·g−1 |
0.13 | 68.3 | 52.6 | 58.7 | 48.2 | 59.9 | 203.7 | 209.0 | 84.3 |
0.32 | 70.6 | 55.3 | 67.0 | 55.7 | 68.7 | 206.0 | 211.4 | 88.4 |
0.65 | 72.5 | 62.4 | 74.5 | 54.8 | 79.8 | 208.2 | 213.7 | 107.4 |
1.3 | 74.3 | 65.7 | 79.1 | 55.8 | 90.0 | 211.0 | 214.8 | 104.4 |
1.95 | 75.4 | 70.9 | 82.9 | 53.2 | 97.7 | 212.7 | 215.6 | 111.0 |
2.6 | 76.2 | 77.4 | 84.8 | 50.8 | 101.1 | 213.0 | 215.9 | 113.8 |
3.25 | 76.8 | 81.3 | 87.5 | 48.8 | 106.0 | 214.1 | 216.6 | 115.9 |
4.55 | 77.7 | 82.8 | 88.9 | 60.8 | 107.1 | 214.3 | 216.8 | 124.1 |
6.5 | 78.6 | 85.9 | 93.7 | 57.2 | 113.1 | 215.0 | 217.4 | 116.7 |
9.75 | 79.7 | 89.4 | 97.6 | 63.5 | 115.0 | 215.7 | 217.9 | 123.0 |
q+ | Tg | Tini | Tp | ΔHc | Tm,p1 | ΔHm1 | Tm,p2 | ΔHm2 |
---|---|---|---|---|---|---|---|---|
°C·min−1 | °C | °C | °C | J·g−1 | °C | J·g−1 | °C | J·g−1 |
0.13 | 28.4 | 63.6 | 65.1 | 55.6 | - | - | 155.3 | 103.5 |
0.32 | 28.7 | 68.0 | 69.9 | 61.5 | - | - | 156.2 | 104.8 |
0.65 | 31.0 | 72.6 | 74.6 | 56.8 | 148.4 | 16.3 | 157.2 | 95.6 |
1.3 | 32.1 | 76.9 | 79.2 | 61.4 | 149.3 | 32.0 | 157.1 | 87.5 |
1.95 | 33.6 | 79.7 | 82.2 | 59.0 | 148.9 | 39.3 | 156.8 | 72.8 |
2.6 | 34.9 | 79.9 | 82.9 | 62.0 | 150.6 | 35.3 | 157.3 | 80.9 |
3.25 | 35.4 | 79.9 | 83.0 | 60.1 | 152.0 | 65.4 | 158.5 | 57.6 |
4.55 | 36.1 | 84.2 | 87.0 | 56.8 | 152.3 | 76.0 | 158.7 | 41.8 |
6.5 | 37.9 | 89.9 | 93.7 | 58.7 | 152.9 | 73.1 | 159.0 | 29.5 |
9.75 | 38.9 | 95.2 | 100.3 | 65.2 | 153.1 | 68.4 | 159.2 | 27.4 |
E | ln(A/s−1) | tIRM | md | ln(Ad/s−1) | lnA − lnAd | Ad/A |
---|---|---|---|---|---|---|
kJ·mol−1 | °C | s | - | - | - | - |
50 | 10 | 300 | 3.05 | 9.864 | 0.136 | 0.873 |
75 | 19 | 212 | 3.03 | 18.861 | 0.139 | 0.870 |
100 | 27.7 | 159 | 3.02 | 27.565 | 0.135 | 0.874 |
125 | 36.4 | 130 | 3.02 | 36.264 | 0.136 | 0.873 |
150 | 45 | 110 | 3.02 | 44.863 | 0.137 | 0.872 |
175 | 53.7 | 93 | 3.01 | 53.565 | 0.135 | 0.874 |
200 | 62.3 | 83 | 3.01 | 62.163 | 0.137 | 0.872 |
q+ | m | tIRM | md | ln(Ad/s−1) | Density of Points |
---|---|---|---|---|---|
°C·min−1 | - | s | - | - | p/p |
20 | 1 | 20 | 1.020 | 69.257 | 4 |
10 | 1 | 20 | 1.010 | 69.620 | 7 |
5 | 1 | 20 | 1.005 | 69.806 | 15 |
2 | 1 | 20 | 1.002 | 69.920 | 36 |
1 | 1 | 20 | 1.001 | 69.959 | 71 |
0.5 | 1 | 20 | 1.001 | 69.979 | 135 |
20 | 1 | 10 | 1.010 | 69.627 | 8 |
10 | 1 | 19.7 | 1.010 | 69.627 | 8 |
5 | 1 | 39 | 1.010 | 69.623 | 8 |
2 | 1 | 95.5 | 1.010 | 69.622 | 8 |
1 | 1 | 188 | 1.010 | 69.621 | 8 |
0.5 | 1 | 354 | 1.009 | 69.6379 | 8 |
20 | 3 | 4 | 3.012 | 69.850 | 6 |
10 | 3 | 4 | 3.006 | 69.924 | 12 |
5 | 3 | 4 | 3.003 | 69.961 | 25 |
2 | 3 | 4 | 3.001 | 69.984 | 60 |
1 | 3 | 4 | 3.001 | 69.992 | 115 |
0.5 | 3 | 4 | 3.001 | 69.996 | 222 |
20 | 3 | 4 | 3.012 | 69.850 | 6 |
10 | 3 | 7.8 | 3.012 | 69.851 | 6 |
5 | 3 | 15.3 | 3.012 | 69.851 | 6 |
2 | 3 | 37.5 | 3.012 | 69.851 | 6 |
1 | 3 | 68 | 3.045 | 69.832 | 6 |
0.5 | 3 | 139 | 3.027 | 69.852 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svoboda, R.; Koutná, N.; Hynková, M.; Pakosta, M. In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses. Molecules 2024, 29, 4769. https://doi.org/10.3390/molecules29194769
Svoboda R, Koutná N, Hynková M, Pakosta M. In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses. Molecules. 2024; 29(19):4769. https://doi.org/10.3390/molecules29194769
Chicago/Turabian StyleSvoboda, Roman, Nicola Koutná, Magdalena Hynková, and Marek Pakosta. 2024. "In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses" Molecules 29, no. 19: 4769. https://doi.org/10.3390/molecules29194769
APA StyleSvoboda, R., Koutná, N., Hynková, M., & Pakosta, M. (2024). In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses. Molecules, 29(19), 4769. https://doi.org/10.3390/molecules29194769