Aromas: Lovely to Smell and Nice Solvents for Polyphenols? Curcumin Solubilisation Power of Fragrances and Flavours †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solubility Screening
2.1.1. Aromatic Compounds
2.1.2. Monoterpenoids
2.1.3. Lactones
2.1.4. Solvents
2.2. Interactions
2.2.1. Hydrogen Bonding
2.2.2. NMR Measurements
3. Evaluation
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Solubility Screening
4.2.2. Optical Density Measurements
4.2.3. NMR Measurements
4.2.4. COSMO-RS Theory
4.2.5. COSMO-RS Calculations
5. Conclusions
- A list of curcumin solubility in over forty aroma compounds and solvents was presented;
- The solubility trend of the COSMO-RS calculations is in accordance with the experimental trend,DMSO > δ-lactones > cyclic ketones/γ-lactones > aldehydes in conjugation to aryls >conjugated aldehydes and terpenoids with a carbonyl group> esters > ethers > nonfunctionalized compounds/alcohols;
- Synergistic effects in binary ethanolic mixtures were observed for nearly all aroma compounds;
- Hydrogen bonding as the governing principle of curcumin solubilisation;
- Good solvent (-mixtures) exhibit an excess of HBA abilities;
- In contrast to trans-cinnamaldehyde, no specific interactions between curcumin and citral or δ-valerolactone were found;
- Production of aroma compounds increased consequently, decreasing their price;
- Most aroma compounds are generally regarded as safe;
- Suitable approach for new applications, e.g., packing films.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bitsch, R. Polyphenole in der Ernährung des Menschen. Ernaerhung Med. 2006, 21, 173–177. [Google Scholar] [CrossRef]
- Jucá, M.M.; Cysne Filho, F.M.S.; de Almeida, J.C.; Mesquita, D.d.S.; Barriga, J.R.d.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; et al. Flavonoids: Biological Activities and Therapeutic Potential. Nat. Prod. Res. 2018, 34, 692–705. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Pflanzliche Polyphenole: Chemische Eigenschaften, Biologische Aktivität Und Synthese. Angew. Chem. 2011, 123, 610–646. [Google Scholar] [CrossRef]
- Teplova, V.V.; Isakova, E.P.; Klein, O.I.; Dergachova, D.I.; Gessler, N.N.; Deryabina, Y.I. Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering (Review). Appl. Biochem. Microbiol. 2018, 54, 221–237. [Google Scholar] [CrossRef]
- Chang, S.T.; Chen, P.F.; Chang, S.C. Antibacterial Activity of Leaf Essential Oils and Their Constituents from Cinnamomum Osmophloeum. J. Ethnopharmacol. 2001, 77, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.K.; Hwang, J.S.; So, J.S.; Lee, C.G.; Sahoo, A.; Ryu, J.H.; Jeon, W.K.; Ko, B.S.; Im, C.R.; Lee, S.H.; et al. Cinnamon Extract Induces Tumor Cell Death through Inhibition of NFκB and AP1. BMC Cancer 2010, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huang, R.; Sun, X.; Yu, X.; Xiao, Y.; Wang, L.; Hu, W.; Zhong, T. The P-Anisaldehyde/β-Cyclodextrin Inclusion Complexes as a Sustained Release Agent: Characterization, Storage Stability, Antibacterial and Antioxidant Activity. Food Control 2022, 132, 108561. [Google Scholar] [CrossRef]
- Panten, J.; Surburg, H. Flavors and Fragrances, 3. Aromatic and Heterocyclic Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; WileyVCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016. [Google Scholar]
- Bomhard, A. Use of Tocopherols as Stabilizers for Odorous Substances, Essential Oils and Perfumes. C11B 9/00, A61K 7/46, 29 November 1995. [Google Scholar]
- Marteau, C.; Nardello-Rataj, V.; Favier, D.; Aubry, J.M. Dual Role of Phenols as Fragrances and Antioxidants: Mechanism, Kinetics and Drastic Solvent Effect. Flavour Fragr. J. 2013, 28, 30–38. [Google Scholar] [CrossRef]
- Huber, V.; Schmidt, M.; Touraud, D.; Kunz, W. Towards a Sustainable and Green Extraction of Curcuminoids Using the Essential Oil of Cinnamomum Cassia†. Sustain. Food Technol. 2023, 1, 319–327. [Google Scholar] [CrossRef]
- Tonnesen, H.H. Solubility, Chemical and Photochemical Stability of Curcumin in Surfactant Solutions. Studies of Curcumin and Curcuminoids, XXVIII. Pharmazie 2002, 57, 820–824. [Google Scholar]
- Tang, C.H. Nanocomplexation of Proteins with Curcumin: From Interaction to Nanoencapsulation (A Review). Food Hydrocoll. 2020, 109, 106106. [Google Scholar] [CrossRef]
- Mohanty, C.; Das, M.; Sahoo, S.K. Emerging Role of Nanocarriers to Increase the Solubility and Bioavailability of Curcumin. Expert Opin. Drug Deliv. 2012, 9, 1347–1364. [Google Scholar] [CrossRef] [PubMed]
- Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of Curcumin and Curcuminoids. XXVII. Cyclodextrin Complexation: Solubility, Chemical and Photochemical Stability. Int. J. Pharm. 2002, 244, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; McClements, D.J. Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability. Molecules 2020, 25, 2791. [Google Scholar] [CrossRef] [PubMed]
- Jamróz, E.; Cabaj, A.; Tkaczewska, J.; Kawecka, A.; Krzyściak, P.; Szuwarzyński, M.; Mazur, T.; Juszczak, L. Incorporation of Curcumin Extract with Lemongrass Essential Oil into the Middle Layer of Triple-Layered Films Based on Furcellaran/Chitosan/Gelatin Hydrolysates—In Vitro and in Vivo Studies on Active and Intelligent Properties. Food Chem. 2023, 402, 134476. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Verma, J.P. Sustainable Bio-Ethanol Production from Agro-Residues: A Review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- Mohammadi, M.; Younesi, H.; Najafpour, G.; Mohamed, A.R. Sustainable Ethanol Fermentation from Synthesis Gas by Clostridium Ljungdahlii in a Continuous Stirred Tank Bioreactor. J. Chem. Technol. Biotechnol. 2012, 87, 837–843. [Google Scholar] [CrossRef]
- Degot, P.; Huber, V.; Hofmann, E.; Hahn, M.; Touraud, D.; Kunz, W. Solubilization and Extraction of Curcumin from Curcuma Longa Using Green, Sustainable, and Food-Approved Surfactant-Free Microemulsions. Food Chem. 2021, 336, 127660. [Google Scholar] [CrossRef]
- Huber, V.; Muller, L.; Hio, J.; Degot, P.; Touraud, D.; Kunz, W. Improvement of the Solubilization and Extraction of Curcumin in an Edible Ternary Solvent Mixture. Molecules 2021, 26, 7702. [Google Scholar] [CrossRef]
- Huber, V.; Hioe, J.; Touraud, D.; Kunz, W. Uncovering the Curcumin Solubilization Ability of Selected Natural Deep Eutectic Solvents Based on Quaternary Ammonium Compounds. J. Mol. Liq. 2022, 361, 119661. [Google Scholar] [CrossRef]
- Sternberg, U.; Brunner, E. The Influence of Short-Range Geometry on the Chemical Shift of Protons in Hydrogen Bonds. J. Magn. Reson. Ser. A 1994, 108, 142–150. [Google Scholar] [CrossRef]
- Lommerse, J.P.M.; Price, S.L.; Taylor, R. Hydrogen Bonding of Carbonyl, Ether, and Ester Oxygen Atoms with Alkanol Hydroxyl Groups. J. Comput. Chem. 1997, 18, 757–774. [Google Scholar] [CrossRef]
- Besseau, F.; Laurence, C.; Berthelot, M. Hydrogen-Bond Basicity of Esters, Lactones and Carbonates. J. Chem. Soc. Perkin Trans. 2 1994, 2, 485–489. [Google Scholar] [CrossRef]
- Tamres, M.; Searls, S. Hydrogen Bonding Abilites of Cyclic Sulfoxides and Cyclic Ketones. J. Am. Chem. Soc. 1958, 81, 2100–2104. [Google Scholar] [CrossRef]
- Searles, S.; Tamres, M.; Barrow, G.M. Hydrogen-Bonding of Esters and Lactones. J. Am. Chem. Soc. 1953, 75, 71–73. [Google Scholar] [CrossRef]
- Kamlet, M.J. The B-Scale of Solvent Hydrogen-Bond Acceptor (HBA) Basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar] [CrossRef]
- Marble, C.B.; Xu, X.; Petrov, G.I.; Wang, D.; Yakovlev, V.V. New Insights into a Hydrogen Bond: Hyper-Raman Spectroscopy of DMSO-Water Solution. Phys. Chem. Chem. Phys. 2021, 23, 24047–24051. [Google Scholar] [CrossRef]
- Huber, V.; Muller, L.; Degot, P.; Touraud, D.; Kunz, W. NADES-Based Surfactant-Free Microemulsions for Solubilization and Extraction of Curcumin from Curcuma Longa. Food Chem. 2021, 355, 129624. [Google Scholar] [CrossRef]
- Haynie, D.T. Biological Thermodynamics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Jovanovic, S.V.; Steenken, S.; Boone, C.W.; Simic, M.G. H-Atom Transfer Is A Preferred Antioxidant Mechanism of Curcumin. J. Am. Chem. Soc. 1999, 121, 9677–9681. [Google Scholar] [CrossRef]
- Bhatt, H.; Thomas, S.; Vishwakarma, S.R. Unravelling the Nature of Intra-Molecular Hydrogen Bonds in Curcumin Using in-Situ Low Temperature Spectroscopic Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 259, 119903. [Google Scholar] [CrossRef]
- Nardo, L.; Paderno, R.; Andreoni, A.; Másson, M.; Haukvik, T.; Tønnesen, H.H. Role of H-Bond Formation in the Photoreactivity of Curcumin. Spectroscopy 2008, 22, 187–198. [Google Scholar] [CrossRef]
- Nardo, L.; Andreoni, A.; Bondani, M.; Másson, M.; Haukvik, T.; Tønnesen, H.H. Studies on Curcumin and Curcuminoids. XLVI. Photophysical Properties of Dimethoxycurcumin and Bis-Dehydroxycurcumin. J. Fluoresc. 2012, 22, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Jen, M.; Lee, S.; Lee, G.; Lee, D.; Pang, Y. Intramolecular Charge Transfer of Curcumin and Solvation Dynamics of DMSO Probed by Time-Resolved Raman Spectroscopy. Int. J. Mol. Sci. 2022, 23, 1727. [Google Scholar] [CrossRef] [PubMed]
- Ingold, C.K. Principles of an Electronict Theory of Organic Reactions. Chem. Rev. 1934, 15, 225–274. [Google Scholar] [CrossRef]
- Shimizu, H.; Katayama, M.; Fujiwara, S. Chemical Shifts of Proton Resonance and Mesomeric Effects in Substituted Benzene. Bull. Chem. Soc. Jpn. 1959, 32, 419–420. [Google Scholar] [CrossRef]
- Friebolin, H. Ein- Und Zweidimensionale NMR-Spektroskopie; 4. Auflage; Wiley VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; ISBN 9783527315710. [Google Scholar]
- Neuhaus, D. Nuclear Overhauser Effect. Encycl. Magn. Reson. 2011, 1–16. [Google Scholar] [CrossRef]
- Prasad, D.; Praveen, A.; Mahapatra, S.; Mogurampelly, S.; Chaudhari, S.R. Existence of β-Diketone Form of Curcuminoids Revealed by NMR Spectroscopy. Food Chem. 2021, 360, 130000. [Google Scholar] [CrossRef]
- Horosanskaia, E.; Yuan, L.; Seidel-morgenstern, A.; Lorenz, H. Purification of Curcumin from Ternary Extract-Similar Mixtures of Curcuminoids in a Single Crystallization Step. Crystals 2020, 10, 206. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Patra, J.K.; Das, G.; Bose, S.; Banerjee, S.; Vishnuprasad, C.N.; del Pilar Rodriguez-Torres, M.; Shin, H.S. Star Anise (Illicium Verum): Chemical Compounds, Antiviral Properties, and Clinical Relevance. Phyther. Res. 2020, 34, 1248–1267. [Google Scholar] [CrossRef]
- Berger, R.G. (Ed.) Flavours and Fragrances; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540493389. [Google Scholar]
- Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; et al. The FEMA GRAS assessment of cinnamyl derivatives used as flavor ingredients. Food Chem. Toxicol. 2004, 42, 157–185. [Google Scholar] [CrossRef]
- WHO. Safety Evaluation of Certain Food Additives and Contaminants; WHO Food Additives Series No. 48; WHO: Geneva, Switzerland, 2002.
- Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; et al. The FEMA GRAS Assessment of Benzyl Derivatives Used as Flavor Ingredients. Food Chem. Toxicol. 2005, 43, 1207–1240. [Google Scholar] [CrossRef] [PubMed]
- Valentini, F.; Ferracci, G.; Galloni, P.; Pomarico, G.; Conte, V.; Sabuzi, F. Sustainable Highly Selective Toluene Oxidation to Benzaldehyde. Catalysts 2021, 11, 262. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Chauhan, A.; Bhukya, B. Natural Benzaldehyde from Prunus Persica (L.) Batsch. Int. J. Food Prop. 2017, 20, 1259–1263. [Google Scholar] [CrossRef]
- Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of Clove (Syzygium Aromaticum) Oil and Its Major Components to Human Skin Cells. Cell Prolif. 2006, 39, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Sipes, I.; Mattia, A. Eugenol and Related Hydroxyallylbenzene Derivates; US Food and Drug Administration: Washington, DC, USA, 2006; pp. 155–200.
- Sanal-Ead, N.; Jangchud, A.; Chonhenchob, V.; Suppakul, P. Antimicrobial Activity of Cinnamaldehyde and Eugenol and Their Activity after Incorporation into Cellulose-based Packaging Films. Packag. Technol. Sci. 2012, 25, 7–17. [Google Scholar] [CrossRef]
- Mishra, A.; Mohite, A.M.; Sharma, N. Influence of Particle Size on Physical, Mechanical, Thermal, and Morphological Properties of Tamarind- Fenugreek Mucilage Biodegradable Films. Polym. Bull. 2023, 80, 3119–3133. [Google Scholar] [CrossRef]
- Fahlbusch, K.-G.; Hammerschmidt, F.-J.; Panten, J.; Pickenhagen, W.; Schtkowski, D.; Bauer, K.; Garbe, D.; Surburg, H. Flavors and Fragrances. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; pp. 341–358. [Google Scholar]
- Sell, C.S. (Ed.) A Fragrant Introduction to Terpenoid Chemistry; The Royal Society of Chemistry: Cambridge, UK, 2003; ISBN 085404681X. [Google Scholar]
- Short, P. Citral Moves Front and Center at BASF. Chem. Eng. News 2004, 82, 30. [Google Scholar] [CrossRef]
- Pronk, I.M.E.J. Aliphatic Branched-Chain Saturated and Unsaturated Alcohols, Aldehydes, Acids, and Related Esters; WHO Food Additives Series No. 52; WHO: Geneva, Switzerland, 2004.
- EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on Flavouring Group Evaluation 72, Revision 1 (FGE.72Rev1): Consideration of aliphatic, branched-chain saturated and unsaturated alcohols, aldehydes, acids, and related esters evaluated by the JECFA (61st meeting) structurally related to branched- and straight-chain unsaturated carboxylic acids, esters of these and straight-chain aliphatic saturated alcohols evaluated by EFSA in FGE.05Rev2. EFSA J. 2013, 11, 3392. [Google Scholar] [CrossRef]
- Mohamed Hanaa, A.R.; Sallam, Y.I.; El-Leithy, A.S.; Aly, S.E. Lemongrass (Cymbopogon Citratus) Essential Oil as Affected by Drying Methods. Ann. Agric. Sci. 2012, 57, 113–116. [Google Scholar] [CrossRef]
- Legrum, W. (Ed.) Riechstoffe, Zwischen Gestank Und Duft; Vieweg + Teubner Verlag: Wolfratshausen, Germany, 2011; ISBN 9783834812452. [Google Scholar]
- Beekwilder, J.; van Rossum, H.M.; Koopman, F.; Sonntag, F.; Buchhaupt, M.; Schrader, J.; Hall, R.D.; Bosch, D.; Pronk, J.T.; van Maris, A.J.A.; et al. Polycistronic Expression of a β-Carotene Biosynthetic Pathway in Saccharomyces Cerevisiae Coupled to β-Ionone Production. J. Biotechnol. 2014, 192, 383–392. [Google Scholar] [CrossRef]
- Baldermann, S.; Kato, M.; Fleischmann, P.; Watanabe, N. Biosynthesis of α-and β-Ionone, Prominent Scent Compounds, in Flowers of Osmanthus Fragrans. Acta Biochim. Pol. 2012, 59, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Abbott, P.J. Safety Evaluation of Certain Food Additives; WHO Food Additives Series No. 42; WHO: Geneva, Switzerland, 1999.
- WHO. Safety Evaluation of Certain Food Additives; WHO Food Additives Series No. 70; WHO: Geneva, Switzerland, 2015.
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Wayne Ebelhar, M. Productivity, Oil Content, and Composition of Two Spearmint Species in Mississippi. Agron. J. 2010, 102, 129–133. [Google Scholar] [CrossRef]
- De Carvalho, C.C.C.R.; Da Fonseca, M.M.R. Carvone: Why and How Should One Bother to Produce This Terpene. Food Chem. 2006, 95, 413–422. [Google Scholar] [CrossRef]
- Adams, T.B.; Hallagan, J.B.; Putnam, J.M.; Gierke, T.L.; Doull, J.; Munro, I.C.; Newberne, P.; Portoghese, P.S.; Smith, R.L.; Wagner, B.M.; et al. The FEMA GRAS Assessment of Alicyclic Substances Used as Flavour Ingredients. Food Chem. Toxicol. 1996, 34, 763–828. [Google Scholar] [CrossRef] [PubMed]
- Syed, N.; Singh, S.; Chaturvedi, S.; Nannaware, A.D.; Khare, S.K.; Rout, P.K. Production of Lactones for Flavoring and Pharmacological Purposes from Unsaturated Lipids: An Industrial Perspective. Crit. Rev. Food Sci. Nutr. 2022, 63, 10047–10078. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.L.; Riberio, C.P. Innovation in Food Engineering: New Techniques and Products; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Adams, T.B.; Greer, D.B.; Doull, J.; Munro, I.C.; Newberne, P.; Portoghese, P.S.; Smith, R.L.; Wagner, B.M.; Weil, C.S.; Woods, L.A.; et al. The FEMA GRAS Assessment of Lactones Used as Flavour Ingredients. Food Chem. Toxicol. 1998, 36, 249–278. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed. Scientific Opinion on the Safety and Efficacy of Primary Aliphatic Saturated or Unsaturated Alcohols/Aldehydes/Acids/Acetals/Esters with a Second Primary, Secondary or Tertiary Oxygenated Functional Group Including Aliphatic Lactones (Chemical Group 9) Wh. EFSA J. 2012, 10, 2928. [Google Scholar] [CrossRef]
- Schep, L.J.; Knudsen, K.; Slaughter, R.J.; Vale, J.A.; Mégarbane, B. The Clinical Toxicology of Gamma-Hydroxybutyrate, Gamma-Butyrolactone and 1,4-Butanediol. Clin. Toxicol. 2012, 50, 458–470. [Google Scholar] [CrossRef]
- Kerkel, F.; Markiewicz, M.; Stolte, S.; Müller, E.; Kunz, W. The Green Platform Molecule Gamma-Valerolactone—Ecotoxicity, Biodegradability, Solvent Properties, and Potential Applications. Green Chem. 2021, 23, 2962–2976. [Google Scholar] [CrossRef]
- Sartori, S.K.; Diaz, M.A.N.; Diaz-Muñoz, G. Lactones: Classification, Synthesis, Biological Activities, and Industrial Applications. Tetrahedron 2021, 84, 132001. [Google Scholar] [CrossRef]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M.C. Curcumin and Health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Jaganmohan Rao, L.; Sakariah, K.K. Antioxidant Activities of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin. Food Chem. 2006, 98, 720–724. [Google Scholar] [CrossRef]
- Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. Biomed. Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef]
- Eckert, F.; Klamt, A. Fast Solvent Screening via Quantum Chemistry: COSMO-RS Approach. AIChE J. 2002, 48, 369–385. [Google Scholar] [CrossRef]
- Klamt, A.; Krooshof, G.J.P.; Taylor, R. COSMOSPACE: Alternative to Conventional Activity-Coefficient Models. AIChE J. 2002, 48, 2332–2349. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A. COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- COSMOtherm Release 19, COSMOthermX User Guide Version 19.0; COSMOlogic GmbH & Co. KG: Leverkusen, Germany, 2019; Available online: www.cosmologic.de (accessed on 22 December 2023).
- COSMOtherm Release 19; COSMOlogic GmbH & Co. KG–A Dassault Systèmes Company. 2019. Available online: www.cosmologic.de (accessed on 22 December 2023).
- COSMOconf Release 18; COSMOlogic GmbH & Co. KG–A Dassault Systèmes Company. 2019. Available online: www.cosmologic.de (accessed on 22 December 2023).
Compound Chemical Structure | Factor c(x)/c(EtOH) | Experimental | COSMO-RS | ||
---|---|---|---|---|---|
c(x) (mmol/L) | log10(c) log10 (mol/L) | µ(solv) (kcal/mol) | log10(S) log10 (mol/L) | ||
| 1.00 | 8.2 ± 0.3 | −2.09 | −3.26 | 0.14 |
| 0.05 | 0.410 ± 0.004 | −3.39 | 3.71 | −5.21 |
| 0.25 | 2.03 ± 0.03 | −2.69 | −1.65 | −1.35 |
| 0.25 | 2.08 ± 0.03 | −2.68 | −1.97 | −1.05 |
| 0.75 | 6.1 ± 0.2 | −2.21 | −0.55 | −2.14 |
| 0.81 | 6.69 ± 0.03 | −2.18 | −2.48 | −0.58 |
| 0.82 | 6.7 ± 0.2 | −2.17 | −1.75 | −1.26 |
| 1.09 | 8.97 ± 0.04 | −2.05 | 0.71 | −2.99 |
| 2.36 | 19.4 ± 0.3 | −1.71 | −1.95 | −1.13 |
| 2.82 | 23.2 ± 0.2 | −1.63 | −1.34 | −1.51 |
| 4.65 | 38 ± 2 | −1.42 | −0.83 | −1.99 |
| 5.85 | 48.1 ± 0.4 * | −1.32 | - | 0.00 |
| 7.13 | 59 ± 2 | −1.23 | −1.53 | −1.51 |
| 7.15 | 59 ± 2 | −1.23 | −1.76 | −1.30 |
| 7.62 | 62.7 ± 0.5 | −1.2 | −2.07 | −1.09 |
| 8.26 | 68.0 ± 0.3 | −1.17 | −2.69 | −0.57 |
| 11.38 | 94 ± 4 | −1.03 | −3.22 | 0.08 |
| 13.17 | 108 ± 2 | −0.96 | −2.35 | −0.82 |
| 13.19 | 109 ± 8 | −0.96 | −1.45 | −1.60 |
| 13.31 | 110 ± 1 | −0.96 | −3.09 | −0.15 |
| 14.47 | 119 ± 4 | −0.92 | −2.39 | −0.57 |
| 14.68 | 120.8 ± 0.2 | −0.92 | −2.68 | −0.54 |
| 14.82 | 122 ± 6 | −0.91 | −1.35 | −1.49 |
| 20.84 | 172 ± 5 | −0.77 | −2.38 | −0.86 |
| 21.00 | 172.9 ± 0.7 | −0.76 | −2.91 | −0.30 |
| 22.03 | 181 ± 4 | −0.74 | −2.26 | −0.91 |
| 22.27 | 183 ± 4 | −0.74 | −2.50 | −0.68 |
| 22.76 | 187 ± 5 | −0.73 | −2.98 | −0.29 |
| 25.55 | 210 ± 7 | −0.68 | −3.04 | −0.20 |
| 28.20 | 232 ± 1 | −0.63 | −3.33 | 0.08 |
| 28.64 | 235.8 ± 0.6 * | −0.63 | - | 0.00 |
| 28.94 | 238 ± 6 | −0.62 | −2.47 | −0.72 |
| 31.95 | 263 ± 2 | −0.58 | −3.56 | 0.15 |
| 32.59 | 268 ± 2 | −0.57 | −3.63 | 0.23 |
| 34.71 | 286 ± 10 | −0.54 | −2.57 | −0.44 |
| 40.81 | 336 ± 8 | −0.47 | −3.44 | 0.18 |
| 46.24 | 381 ± 21 | −0.42 | −3.35 | −0.04 |
| 51.18 | 421 ± 2 | −0.38 | −4.09 | 0.40 |
| 58.22 | 0479 ± 10 | −0.32 | −3.10 | −0.04 |
| 63.48 | 523 ± 46 | −0.28 | −4.14 | 0.42 |
| 66.10 | 544 ± 13 | −0.26 | −4.47 | 0.52 |
| 183.34 | 1510 ± 1 | 0.18 | −5.78 | 0.00 |
Compound | Optical Density (a.u.) | c (mol/L) | ΔG (kcal/mol) | ΔG (kT) |
---|---|---|---|---|
trans-Anethole | 491 | 0.009 | 0.05 | 0.09 |
Cinnamyl acetate | 1330 | 0.024 | 0.64 | 1.08 |
Pyruvic acid 1 | 3000 | 0.055 | 1.12 | 1.90 |
Citral | 3723 | 0.068 | 1.25 | 2.11 |
Acetone | 5128 | 0.094 | 1.44 | 2.43 |
trans-Cinnamaldehyde | 9461 | 0.173 | 1.80 | 3.04 |
γ-Valerolactone | 14,684 | 0.268 | 2.06 | 3.48 |
Cyclopentanone | 26,232 | 0.479 | 2.41 | 4.06 |
δ-Hexalactone | 26,690 | 0.488 | 2.42 | 4.08 |
DMSO | 82,603 | 1.510 | 3.09 | 5.21 |
Solvent | Diketo–Keto-Enol Ratio | c(Curcumin) (mol/L) in Respective Nondeuterated Solvent |
---|---|---|
methanol-d4 | 0.22/2.0 (~10% diketo) | 0.008 1 |
acetone-d6 | 0.02/2.0 (~1% diketo) | 0.09 |
DMSO-d6 | 0.02/2.0 (~1% diketo) | 1.5 |
Atom Number | 1&4 | 27 | 21&24 | 10&13 | 11&12 | 7&16 | 19&20 | 3&6 | 22 |
---|---|---|---|---|---|---|---|---|---|
methanol-d4 | 3.91 | -- | 6.63 | 6.82 | 7.11 | 7.22 | 7.57 | -- | -- |
citral | 3.91 | 5.94 | 6.63 | 6.83 | 7.09 | 7.23 | 7.58 | -- | -- |
δ-hexalactone | 3.93 | 6.06 | 6.72 | 6.86 | 7.16 | 7.29 | 7.61 | 9.07 | -- |
trans-cinnamaldehyde 1 | 3.76 | -- | 6.88 | -- | 7.02 | -- | 7.60 | -- | -- |
Sigma Aldrich (Darmstadt, Germany) | TCI (Eschborn, Germany) | ||
---|---|---|---|
Name | Purity | Name | Purity |
3,4-Dimethoxybenzaldehyde (Veratraldehyde) | 99% | Curcumin (synthetic) | >97.0% |
Acetone | ≥99.5% | Cyclohexanone | >99.0% |
Acetone-d6 | 99.9 atom%D | Eugenol | >99% |
α-Ionone | ≥90% | Nerol | >98.0% |
β-Ionone | 96% | p-Anisaldehyde | >99.0% |
Cyclopentanone | >99% | trans-2-hexenal | >97% |
Dimethyl sulfoxide (DMSO) | >95% | trans-2-hexenol | >95% |
Ethanol | ≥99.8% | γ-Butyrolactone | >99.0% |
Methanol-d4 | 99.80% | δ-Hexalactone | >99.0% |
Pseudoionone | ≥90% | δ-Octalactone | >98.0% |
R-(+)-Limonene | ≥93% | δ-Valerolactone | >98.0% |
Sulfolane | 99% | ε-Caprolactone | >99.0% |
trans-Anethole | ≥99% | Fimenich (Satigny, Switzerland) | |
γ-Caprolactone | 98% | Name | Purity |
γ-Decalactone | ≥97% | δ-Decalactone | N/A |
γ-Dodecalactone | ≥97% | δ-Undecalactone | N/A |
γ-Octalactone | >97% | δ-Dodecalactone | N/A |
γ-Valerolactone | ≥98% | δ-Tetradecalactone | N/A |
Vanillin | >97% | Citronellol | N/A |
Massoia lactone | NAT | ||
Merck (Darmstadt, Germany) | All Organic Treasures (Wiggensbach, Germany) | ||
Name | Purity | Name | Purity |
Benzaldehyde | 99% | Citral | N/A |
Citronellal | >96% | ||
trans-Cinnamaldehyde | >98% | ||
Deutero (Kastellaun, Germany) | PCW (Parfum Cosmetic World) (Grasse, France) | ||
Name | Purity | Name | Purity |
Hexadeuterodimethyl sulfoxide (DMSO-d6) | 99.80% | Methyl-octalactone (Whisky lactone) | 98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, M.; Huber, V.; Touraud, D.; Kunz, W. Aromas: Lovely to Smell and Nice Solvents for Polyphenols? Curcumin Solubilisation Power of Fragrances and Flavours. Molecules 2024, 29, 294. https://doi.org/10.3390/molecules29020294
Schmidt M, Huber V, Touraud D, Kunz W. Aromas: Lovely to Smell and Nice Solvents for Polyphenols? Curcumin Solubilisation Power of Fragrances and Flavours. Molecules. 2024; 29(2):294. https://doi.org/10.3390/molecules29020294
Chicago/Turabian StyleSchmidt, Michael, Verena Huber, Didier Touraud, and Werner Kunz. 2024. "Aromas: Lovely to Smell and Nice Solvents for Polyphenols? Curcumin Solubilisation Power of Fragrances and Flavours" Molecules 29, no. 2: 294. https://doi.org/10.3390/molecules29020294
APA StyleSchmidt, M., Huber, V., Touraud, D., & Kunz, W. (2024). Aromas: Lovely to Smell and Nice Solvents for Polyphenols? Curcumin Solubilisation Power of Fragrances and Flavours. Molecules, 29(2), 294. https://doi.org/10.3390/molecules29020294