Stannylenes and Germylenes Stabilized by Tetradentate Bis(amidine) Ligands with a Rigid Naphthalene Backbone †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Bis(amidine) Ligands with a Rigid Naphthalene Backbone
2.2. Synthesis of Stannylenes L1–3Sn
2.3. Synthesis of Germylenes Stabilized by Bis(amidine) Ligands
2.4. Reactivity of Stannylene L1Sn
3. Materials and Methods
3.1. General Comments
3.2. Synthesis
3.2.1. General Synthetic Procedure of Metallylenes
3.2.2. General Reactivity Evaluation Procedure
3.3. X-ray Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aly, A.A.; Brâse, S.; Gomaa, M.A.-M. Amidines: Their synthesis, reactivity, and applications in heterocycle synthesis. Arkivoc 2018, vi, 85–138. [Google Scholar] [CrossRef]
- Aly, A.A.; El-Din, A.M.N. Functionality of Amidines and Amidrazones. Arkivoc 2008, i, 153–194. [Google Scholar] [CrossRef]
- Quek, J.Y.; Davis, T.P.; Lowe, A.B. Amidine Functionality as a Stimulus-Responsive Building Block. Chem. Soc. Rev. 2013, 42, 7326–7334. [Google Scholar] [CrossRef] [PubMed]
- Coles, M.P. Application of Neutral Amidines and Guanidines in Coordination Chemistry. Dalton Trans. 2006, 985–1001. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rodriguez, L.; Cabeza, J.-A.; Garcia-Alvarez, P.; Polo, D. The transition-metal chemistry of amidinatosilylenes, -germylenes and -stannylenes. Coord. Chem. Rev. 2015, 300, 1–28. [Google Scholar] [CrossRef]
- Foley, S.R.; Bensimon, C.; Richeson, D.S. Facile Formation of Rare Terminal Chalcogenido Germanium Complexes with Alkylamidinates as Supporting Ligands. J. Am. Chem. Soc. 1997, 119, 10359–10363. [Google Scholar] [CrossRef]
- Karsch, H.H.; Schlüter, P.A.; Reisky, M. Bis(Amidinate) Complexes of Silicon and Germanium. Eur. J. Inorg. Chem. 1998, 433–436. [Google Scholar] [CrossRef]
- Aubrecht, K.B.; Hillmyer, M.A.; Tolman, W.B. Polymerization of Lactide by Monomeric Sn(II) Alkoxide Complexes. Macromolecules 2002, 35, 644–650. [Google Scholar] [CrossRef]
- Garg, P.; Dange, D.; Jones, C. S- and p-Block Dinuclear Metal(Loid) Complexes Bearing 1,4-Phenylene and 1,4-Cyclohexylene Bridged Bis(Amidinate) Ligands. Eur. J. Inorg. Chem. 2020, 2020, 4037–4044. [Google Scholar] [CrossRef]
- Garg, P.; Dange, D.; Jones, C. Bulky Arene-Bridged Bis(Amide) and Bis(Amidinate) Complexes of Germanium(II) and Tin(II). Dalton Trans. 2021, 50, 9118–9122. [Google Scholar] [CrossRef]
- Dehmel, M.; Wünsche, M.A.; Görls, H.; Kretschmer, R. Dinuclear Chlorotetrylenes of Silicon, Germanium, and Tin Based on a Backbone-Bridged Bis(Amidine). Eur. J. Inorg. Chem. 2021, 2021, 4806–4811. [Google Scholar] [CrossRef]
- Saltarini, S.; Villegas-Escobar, N.; Martínez, J.; Daniliuc, C.G.; Matute, R.A.; Gade, L.H.; Rojas, R.S. Toward a Neutral Single-Component Amidinate Iodide Aluminum Catalyst for the CO2 Fixation into Cyclic Carbonates. Inorg. Chem. 2021, 60, 1172–1182. [Google Scholar] [CrossRef] [PubMed]
- Yakovenko, M.V.; Cherkasov, A.V.; Fukin, G.K.; Cui, D.; Trifonov, A.A. Lanthanide Complexes Coordinated by a Dianionic Bis(Amidinate) Ligand with a Rigid Naphthalene Linker. Eur. J. Inorg. Chem. 2010, 2010, 3290–3298. [Google Scholar] [CrossRef]
- Osorio Meléndez, D.; Castro-Osma, J.A.; Lara-Sánchez, A.; Rojas, R.S.; Otero, A. Ring-Opening Polymerization and Copolymerization of Cyclic Esters Catalyzed by Amidinate Aluminum Complexes. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 2397–2407. [Google Scholar] [CrossRef]
- Nimitsiriwat, N.; Gibson, V.C.; Marshall, E.L.; White, A.J.P.; Dale, S.H.; Elsegood, M.R.J. Tert-Butylamidinate Tin(II) Complexes: High Activity, Single-Site Initiators for the Controlled Production of Polylactide. Dalton Trans. 2007, 4464. [Google Scholar] [CrossRef] [PubMed]
- Phomphrai, K.; Pongchan-o, C.; Thumrongpatanaraks, W.; Sangtrirutnugul, P.; Kongsaeree, P.; Pohmakotr, M. Synthesis of High-Molecular-Weight Poly(ε-Caprolactone) Catalyzed by Highly Active Bis(Amidinate) Tin(II) Complexes. Dalton Trans. 2011, 40, 2157–2159. [Google Scholar] [CrossRef] [PubMed]
- Lentz, N.; Sodreau, A.; Acuña, A.; Mallet-Ladeira, S.; Maerten, E.; Sotiropoulos, J.-M.; Rojas Guerrero, R.S.; Madec, D. Synthesis and structures of homoleptic germylenes and stannylenes with sulfonimidamide ligands. Dalton Trans. 2023, 52, 6841–6846. [Google Scholar] [CrossRef]
- Foley, S.R.; Zhou, Y.; Yap, G.P.A.; Richeson, D.S. Synthesis of MII[N(SiMe3)2][Me3SiNC(tBu)NSiMe3] (M = Sn, Ge) from Amidinate Precursors: Active Catalysts for Phenyl Isocyanate Cyclization. Inorg. Chem. 2000, 39, 924–929. [Google Scholar] [CrossRef]
- Chlupatý, T.; Růžičková, Z.; Horáček, M.; Alonso, M.; De Proft, F.; Kampová, H.; Brus, J.; Růžička, A. Oxidative Additions of Homoleptic Tin(II) Amidinate. Organometallics 2015, 34, 606–615. [Google Scholar] [CrossRef]
- Nakata, N.; Hosoda, N.; Takahashi, S.; Ishii, A. Chlorogermylenes and -Stannylenes Stabilized by Diimidosulfinate Ligands: Synthesis, Structures, and Reactivity. Dalton Trans. 2018, 47, 481–490. [Google Scholar] [CrossRef]
- Okazaki, R.; Tokitoh, N. Heavy Ketones, the heavier Element Congeners of a Ketone. Acc. Chem. Res. 2000, 33, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.R.; Yap, G.P.A.; Richeson, D.S. Oxidative Addition to M(II) (M = Ge, Sn) Amidinate Complexes: Routes to Group 14 Chalcogenolates with Hypervalent Coordination Environments. J. Chem. Soc. Dalton Trans. 2000, 10, 1663–1668. [Google Scholar] [CrossRef]
- Ahmet, I.Y.; Hill, M.S.; Raithby, P.R.; Johnson, A.L. Tin Guanidinato Complexes: Oxidative Control of Sn, SnS, SnSe and SnTe Thin Film Deposition. Dalton Trans. 2018, 47, 5031–5048. [Google Scholar] [CrossRef] [PubMed]
- Ahmet, I.Y.; Thompson, J.R.; Johnson, A.L. Oxidative Addition to Sn(II) Guanidinate Complexes: Precursors to Tin(II) Chalcogenide Nanocrystals. Eur. J. Inorg. Chem. 2018, 2018, 1670–1678. [Google Scholar] [CrossRef]
- Foley, S.R.; Yap, G.P.A.; Richeson, D.S. Formation of Novel Tetrasulfido Tin Complexes and Their Ability to Catalyze the Cyclotrimerization of Aryl Isocyanates. Organometallics 1999, 18, 4700–4705. [Google Scholar] [CrossRef]
- Zhou, Y.; Richeson, D.S. Multiple Bonds between Sn and S: Synthesis and Structural Characterization of (CyNC(tBu)NCy)2SnS and [(CyNC(Me)NCy)2Sn(μ-S)]2. J. Am. Chem. Soc. 1996, 118, 10850–10852. [Google Scholar] [CrossRef]
- Sen, N.; Pal, S.; Khade, V.V.; Khan, S. Cyclic Four-Membered Stanna Thio and Seleno Compounds from 2-Aminopyridinato Stannylenes. Eur. J. Inorg. Chem. 2019, 2019, 4450–4454. [Google Scholar] [CrossRef]
- Shan, Y.-L.; Leong, B.-X.; Xi, H.-W.; Ganguly, R.; Li, Y.; Lim, K.H.; So, C.-W. Reactivity of an Amidinato Silylene and Germylene toward Germanium(ii), Tin(ii) and Lead(ii) Halides. Dalton Trans. 2017, 46, 3642–3648. [Google Scholar] [CrossRef]
- Watson, I.C.; Ferguson, M.J.; Rivard, E. Zinc-Mediated Transmetalation as a Route to Anionic N-Heterocyclic Olefin Complexes in the p-Block. Inorg. Chem. 2021, 60, 18347–18359. [Google Scholar] [CrossRef]
- Brazeau, A.L.; DiLabio, G.A.; Kreisel, K.A.; Monillas, W.; Yap, G.P.A.; Barry, S.T. Theoretical and experimental investigations of ligand exchange in guanidinate ligand systems for group 13 metals. Dalton Trans. 2007, 3297–3304. [Google Scholar] [CrossRef]
- Boeré, R.T.; Klassen, V.; Wolmershäuser, G. Synthesis of Some Very Bulky N,N′-Disubstituted Amidines and Initial Studies of Their Coordination Chemistry. J. Chem. Soc. Dalton Trans. 1998, 24, 4147–4154. [Google Scholar] [CrossRef]
- Davidson, P.; Harris, D.; Lappert, M. Subvalent Group 4B metal alkyls and amides. Part I. The synthesis and physical properties of kinetically stable bis[bis(trimethysilyl)methyl]- germanium(II), -tin(II), and -lead(II). J. Chem. Soc. Chem. Dalton Trans. 1976, 2268–2274. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, P.; Spek, A.L. BYPASS: An effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst. Sect. A 1990, 46, 194–201. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Fukui, K. The path of chemical reactions—The IRC approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Theory and Applications of Computational Chemistry: The First 40 Years; Dykstra, D.C.E., Frenking, G., Kim, K.S., Scuseria, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acuña, A.; Mallet-Ladeira, S.; Sotiropoulos, J.-M.; Maerten, E.; Cabrera, A.R.; Baceiredo, A.; Kato, T.; Rojas, R.S.; Madec, D. Stannylenes and Germylenes Stabilized by Tetradentate Bis(amidine) Ligands with a Rigid Naphthalene Backbone. Molecules 2024, 29, 325. https://doi.org/10.3390/molecules29020325
Acuña A, Mallet-Ladeira S, Sotiropoulos J-M, Maerten E, Cabrera AR, Baceiredo A, Kato T, Rojas RS, Madec D. Stannylenes and Germylenes Stabilized by Tetradentate Bis(amidine) Ligands with a Rigid Naphthalene Backbone. Molecules. 2024; 29(2):325. https://doi.org/10.3390/molecules29020325
Chicago/Turabian StyleAcuña, Alejandra, Sonia Mallet-Ladeira, Jean-Marc Sotiropoulos, Eddy Maerten, Alan R. Cabrera, Antoine Baceiredo, Tsuyoshi Kato, René S. Rojas, and David Madec. 2024. "Stannylenes and Germylenes Stabilized by Tetradentate Bis(amidine) Ligands with a Rigid Naphthalene Backbone" Molecules 29, no. 2: 325. https://doi.org/10.3390/molecules29020325
APA StyleAcuña, A., Mallet-Ladeira, S., Sotiropoulos, J. -M., Maerten, E., Cabrera, A. R., Baceiredo, A., Kato, T., Rojas, R. S., & Madec, D. (2024). Stannylenes and Germylenes Stabilized by Tetradentate Bis(amidine) Ligands with a Rigid Naphthalene Backbone. Molecules, 29(2), 325. https://doi.org/10.3390/molecules29020325