Antioxidant and Inhibitory Activities of Filipendula glaberrima Leaf Constituents against HMG-CoA Reductase and Macrophage Foam Cell Formation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Antioxidant Capacity
2.3. Inhibitory Effect of HMG-CoA Reductase
2.4. Inhibitory Effect of Foam Cell Formation in THP-1 Cells
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Measurement of Antioxidant Activity
3.5. HMG-CoA Reductase (HMGR) Inhibition Assay
3.6. Assay for Foam Cells Formation in THP-1 Cells
3.6.1. Cell Culture
3.6.2. Oil Red O Staining
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butt, M.S.; Nazir, A.; Sultan, M.T.; Schroën, K. Morus alba L. nature’s functional tonic. Trends Food Sci. Technol. 2008, 19, 505–512. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczk, M. (Eds.) Food Phenolics: Sources, Chemistry, Effects and Applications; Technomic Publishing Company Inc.: Lancaster, PA, USA, 1995. [Google Scholar]
- Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef] [PubMed]
- Ekor, M. The growing use of herbal medicine: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.A.; Song, T.C.; Han, D.; Kim, I.H.; Kim, Y.E.; Lee, C.H. Cardiovascular protective properties of kiwi fruit extracts in vitro. Biol. Pharm. Bull. 2005, 28, 1782–1785. [Google Scholar] [CrossRef]
- De Villiers, W.J.S.; Smart, E.J. Macrophage scavenger receptors and foam cell formation. J. Leukoc. Biol. 1999, 66, 740–746. [Google Scholar] [CrossRef]
- Li, A.C.; Glass, C.K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 2002, 8, 1235–1242. [Google Scholar] [CrossRef]
- Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res. 1992, 33, 1569–1582. [Google Scholar] [CrossRef]
- Steinberg, D.; Parthasarathy, S.; Carew, T.E.; Khoo, J.C.; Witztum, J.L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 1989, 320, 915–924. [Google Scholar] [CrossRef]
- Blumenthal, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine: Expanded Commission E Monograpraphs; Integrative Medicine Communications: Boston, MA, USA, 2000. [Google Scholar]
- Yoshida, T.; Namba, O.; Chen, L.; Liu, Y.; Okuda, T. Ellagitannin monomers and oligomers from Euphobia prostrata AIL. and oligomers from Loropetalum chinense OLIV. Chem. Pharm. Bull. 1990, 38, 3296–3302. [Google Scholar] [CrossRef]
- Du, H.Q.; Zhao, X.; Zhao, T.Z.; Wang, M.T.; Zhang, Z.W.; Yao, M.; Yu, S.Z. Studies on the chemical constituents of the roots of Rosa multiflora Thunb. Yao Xue Xue Bao 1983, 18, 314–316. [Google Scholar] [PubMed]
- Okuda, T.; Hatano, T.; Yazaki, K.; Ogawa, N. Rugosin A, B, C and praecoxin A, tannins having a valoneoyl group. Chem. Pharm. Bull. 1982, 30, 4230–4233. [Google Scholar] [CrossRef]
- Nitta, Y.; Kikuzaki, H.; Azuma, T.; Ye, Y.; Sakaue, M.; Higuchi, Y.; Komori, H.; Ueno, H. Inhibitory activity of Filipendula ulmaria constituents on recombinant human histidine decarboxylase. Food Chem. 2013, 138, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Hydrolysable Tannins from Euphorbia thymifolia. Phytochemistry 1990, 29, 3621–3625. [Google Scholar] [CrossRef]
- Nishizawa, M.; Yamagishi, T.; Nonaka, G.; Nishioka, I.T. Tannins and related compounds. Part Isolation and characterization of polygalloylglucoses from Chinese gallotannin. J. Chem. Soc. Perkin Trans. I 1982, 2963–2968. [Google Scholar] [CrossRef]
- Okuda, T.; Yoshida, T.; Hatano, T. New methods of analyzing tannins. J. Nat. Prod. 1989, 52, 1–31. [Google Scholar] [CrossRef]
- Bouktaib, M.; Atmani, A.; Rolando, C. Regio- and stereoselective synthesis of the major metabolite of quercetin, quercetin-3-O-β-D-glucuronide. Tetrahedron Lett. 2002, 43, 6263–6266. [Google Scholar] [CrossRef]
- Dini, I.; Tenore, G.C.; Dini, A. Phenolic constituents of Kancolla seeds. Food Chem. 2004, 84, 163–168. [Google Scholar] [CrossRef]
- Chen, M.; Yu, S. Characterization of lipophilized monomeric and oligomeric grape seed flavan-3-ol derivatives. J. Agric. Food Chem. 2017, 65, 8875–8883. [Google Scholar] [CrossRef]
- Mahato, S.B.; Kundu, A.P. 13C NMR spectra of pentacyclic triterpenoids—A compilation and some salient features. Phytochemistry 1994, 37, 1517–1575. [Google Scholar] [CrossRef]
- Numata, A.; Yang, P.; Takahashi, C.; Fujiki, R.; Nabae, M.; Fujita, E. Cytotoxic triterpenes from a Chinese medicine, Goreishi. Chem. Pharm. Bull. 1989, 37, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Jis, Z.-J.; Liu, X.-Q.; Liu, Z.-M. Triterpenoids from Sanguisorba alpina. Phytochemistry 1993, 32, 155–159. [Google Scholar] [CrossRef]
- Zhou, X.H.; Kasai, R.; Ohtani, K.; Tanaka, O.; Nie, R.; Yang, C.; Zhou, J.; Yamasaki, K. Oleanane and ursane glucosides from Rubus species. Phytochemistry 1992, 31, 3642–3644. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Carvalho, L.M.; Ferreira, A.M.; Silva, A.M.S. A new xanthone from Hedychium gardnerianum. Nat. Prod. Res. 2003, 17, 445–449. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.-T.; Du, G.-H.; Zhang, D.-M. Synthesis and anti-nociceptive and anti-inflammatory effects of gaultherin and its analogs. J. Asian Nat. Prod. Res. 2011, 13, 817–825. [Google Scholar] [CrossRef]
- Pan, H.; Lundgren, L.N. Rhododendrol glycosides and phenyl glucoside esters from inner bark of Betula pubescens. Phytochemistry 1994, 36, 79–83. [Google Scholar] [CrossRef]
- Miyase, T.; Ueno, A.; Takizawa, N.; Kobayashi, H.; Karasawa, H. Studies on the glycosides of Epimedium grandiflorum Morr. var. thunbergianum (Miq.) Nakai. I. Chem. Pharm. Bull. 1987, 35, 1109–1117. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Huang, R.; Zhang, H.-B.; LI, L. Chromone glycosides from Knoxia corymbose. J. Asian Nat. Prod. Res. 2006, 8, 663–670. [Google Scholar] [CrossRef]
- Pereira, R.B.; Sousa, C.; Costa, A.; Andrade, P.B.; Valentão, P. Glutathione and the antioxidant potential of binary mixtures with flavonoids: Synergisms and antagonisms. Molecules 2013, 18, 8858–8872. [Google Scholar] [CrossRef]
- Hernández, V.; Malafronte, N.; Mora, F.; Pesca, M.S.; Aquino, R.P.; Mencherini, T. Antioxidant and antiangiogenic activity of Astronium graveolens Jacq. Leaves. Nat. Prod. Res. 2014, 28, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kruglova, M.Y. A new quercetin glycoside and other phenolic compounds from the genus Filipendula. Chem. Nat. Compd. 2013, 49, 610–616. [Google Scholar] [CrossRef]
- Kim, H.J.; Saleem, M.; Seo, S.H.; Jin, C.; Lee, Y.S. Two new antioxidant stilbene dimers, parthenostilbenins A and B from Parthenocissus tricuspidata. Planta Medica 2005, 71, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, M.; Rao, N.A.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Sanz, M.J.; Ferrandiz, M.L.; Cejudo, M.; Terencio, M.C.; Gil, B.; Bustos, G.; Ubeda, A.; Gunasegaran, R.; Alcaraz, M.J. Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiotica 1994, 24, 689–699. [Google Scholar] [CrossRef]
Position | δH | δC | |
---|---|---|---|
α-anomer | β-anomer | α-/β-anomer | |
glucose-1 | 5.47, d (3.6) | 5.06, d (7.6) | 91.7/97.0 |
2 | 5.11, dd (3.6, 10.0) | 5.18, dd (7.6, 9.6) | 73.4/74.3 |
3 | 5.82, t (10.0) | 5.58, t (9.6) | 72.0/73.9 |
4 | 5.09, t (10.0) | 5.09, t (10.0) | 71.9/71.7 |
5 | 4.61, br dd (7.2, 9.6) | 4.17, dd (6.8, 9.6) | 67.5/72.7 |
6 | 5.24, br dd (6.8, 13.6) | 5.33, br dd (6.0, 13.6) | 64.3/64.2 |
3.76, br d (13.6) | 3.84, br d (13.2) | ||
galloyl-1 | 120.8, 120.6/120.9, 120.7 | ||
2/6 | 7.04, 6.95 | 7.02, 6.91 | 110.4, 110.38, 110.5/110.33 |
3/5 | 146.38, 146.21/146.35, 146.19 | ||
4 | 140.14, 139.94/140.0, 139.97 | ||
7 | 167.9, 167.6/167.7, 167.1 | ||
valoneoyl-1, 1′ | 116.2, 118.5 | ||
2, 2′ | 125.74, 125.93/125.6125.91 | ||
3, 3′ | 6.52, 6.20 | 6.48, 6.19 | 108.1, 106.0 |
4, 4′ | 145.9, 147.6 | ||
5, 5′ | 137.6, 138.3 | ||
6, 6′ | 144.9, 145.3 | ||
7, 7′ | 169.4, 169.2/169.3, 169.1 | ||
1″ | 115.1 | ||
2″ | 137.7/137.66 | ||
3″ | 140.82 | ||
4″ | 140.87 | ||
5″ | 143.8 | ||
6″ | 7.06 | 6.95 | 109.9 |
7″ | 167.5 | ||
OMe | 3.74 | 3.75 | 52.5 |
Sample | Antioxidant Activity (IC50, μg/mL) a | HMGR Inhibition (IC50, μg/mL) a | ||
---|---|---|---|---|
DPPH | Superoxide Anion Radical | LPO | ||
F. glaberrima-MeOH | 11.1 ± 0.97 | 18.1 ± 3.89 | 26.3 ± 2.14 | 2.86 ± 0.24 |
CH2Cl2 | 38.4 ± 3.10 | >50 | 75.2 ± 2.57 | 19.9 ± 2.73 |
EtOAc | 4.62 ± 0.28 | 4.07 ± 0.08 | 9.67 ± 0.14 | 1.73 ± 0.23 |
BuOH | 5.25 ± 0.13 | 4.64 ± 0.23 | 18.8 ± 0.58 | 0.74 ± 0.30 |
F. glaberrima-30EtOH | 22.1 ± 1.10 | 11.3 ± 4.73 | 40.1 ± 4.91 | 3.67 ± 0.78 |
70EtOH | 19.9 ± 0.45 | 14.9 ± 0.97 | 34.7 ± 0.76 | 3.38 ± 0.55 |
Compound | Antioxidant Activity (IC50, μM) a | HMGR Inhibition (IC50, μM) a | ||
---|---|---|---|---|
DPPH | Superoxide Anion Radical | LPO | ||
1 | 3.62 ± 0.57 | 4.29 ± 0.23 | 3.54 ± 0.29 | 1.46 ± 0.22 |
2 | 3.00 ± 0.08 | 5.53 ± 0.21 | 6.02 ± 0.14 | 17.7 ± 0.04 |
3 | 4.27 ± 0.45 | 4.25 ± 0.11 | 3.83 ± 0.52 | 8.40 ± 0.84 |
4 | 3.19 ± 0.13 | 3.21 ± 0.05 | 3.75 ± 0.52 | 12.2 ± 0.50 |
5 | 4.34 ± 0.17 | 4.75 ± 0.14 | 3.61 ± 0.34 | 26.7 ± 0.90 |
6 | 4.70 ± 0.14 | 4.10 ± 0.53 | 3.93 ± 0.53 | >50 |
7 | 3.81 ± 0.19 | 4.47 ± 0.07 | 3.87 ± 0.61 | 4.98 ± 0.18 |
8 | 20.9 ± 0.98 | 3.60 ± 0.23 | 3.54 ± 0.15 | 13.8 ± 1.53 |
9 | 3.94 ± 0.25 | 4.64 ± 0.45 | 5.88 ± 0.13 | 41.5 ± 3.90 |
10 | 15.7 ± 0.15 | 21.5 ± 2.03 | 34.1 ± 2.98 | >50 |
11 | 23.0 ± 0.45 | 17.7 ± 0.30 | >50 | >50 |
Quercetin | 17.3 ± 1.09 | 21.3 ± 0.34 | 7.45 ± 1.33 | n.d. b |
Trolox | 31.3 ± 1.27 | >50 | 33.2 ± 3.60 | n.d. b |
Resveratrol | 42.1 ± 1.91 | >50 | 47.6 ± 6.35 | n.d. b |
Vitamin C | 31.7 ± 0.21 | >50 | n.d. b | n.d. b |
Pravastatin | n.d. b | n.d. b | n.d. b | 0.41 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.B.; Lee, H.; Jeon, H.-J.; Lee, J.Y.; Kim, H.J. Antioxidant and Inhibitory Activities of Filipendula glaberrima Leaf Constituents against HMG-CoA Reductase and Macrophage Foam Cell Formation. Molecules 2024, 29, 354. https://doi.org/10.3390/molecules29020354
Cho YB, Lee H, Jeon H-J, Lee JY, Kim HJ. Antioxidant and Inhibitory Activities of Filipendula glaberrima Leaf Constituents against HMG-CoA Reductase and Macrophage Foam Cell Formation. Molecules. 2024; 29(2):354. https://doi.org/10.3390/molecules29020354
Chicago/Turabian StyleCho, You Bin, Hyunbeom Lee, Hui-Jeon Jeon, Jae Yeol Lee, and Hyoung Ja Kim. 2024. "Antioxidant and Inhibitory Activities of Filipendula glaberrima Leaf Constituents against HMG-CoA Reductase and Macrophage Foam Cell Formation" Molecules 29, no. 2: 354. https://doi.org/10.3390/molecules29020354
APA StyleCho, Y. B., Lee, H., Jeon, H. -J., Lee, J. Y., & Kim, H. J. (2024). Antioxidant and Inhibitory Activities of Filipendula glaberrima Leaf Constituents against HMG-CoA Reductase and Macrophage Foam Cell Formation. Molecules, 29(2), 354. https://doi.org/10.3390/molecules29020354