Construction of Co-Modified MXene/PES Catalytic Membrane for Effective Separation and Degradation of Tetracycline Antibiotics in Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Membrane Characterization
2.3. Membrane Permeability and Separation
2.4. Catalytic Membrane Coupled with PMS for TC Removal
2.4.1. Removal Efficiency of Different Membranes
2.4.2. Effect of PMS Concentration on TC Removal Efficiency
2.4.3. Effect of pH on TC Removal Efficiency
2.4.4. Effect of Temperature on TC Removal Efficiency
2.5. Antibacterial Properties of the Catalytic Membrane
2.6. Stability of the Catalytic Membrane
2.7. Degradation Mechanism
3. Materials and Methods
3.1. Preparation and Alkalization Modification of MXene
3.2. Synthesis of Co-MXene Materials
3.3. Construction of Two-Dimensional Co@MXene/PES Membranes
3.4. Permeability and Separation Properties
3.5. Removal Capacity of the Antibiotics
3.6. Antibacterial Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Lin, Q.; Zeng, G.; Zhao, S.; Yan, G.; Ang, M.; Chiao, Y.; Pu, S. Ternary hetero-structured BiOBr/Bi2MoO6@MXene composite membrane: Construction and enhanced removal of antibiotics and dyes from water. J. Membr. Sci. 2023, 669, 121329. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Z.; Dong, B. Occurrence, fate, and ecological risk of antibiotics in wastewater treatment plants in China: A review. J. Hazard. Mater. 2024, 469, 133925. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Mesdaghinia, A. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total Environ. 2018, 619, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef]
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. CLEAN—Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Pang, N.; Wang, M.; He, Y.; Wang, X.; Guo, J. Efficient Removal of Tetracyclines and Quinolones Enabled by Polyphenol-Mediated Supramolecular Coagulation. Langmuir 2024, 40, 3586–3595. [Google Scholar] [CrossRef]
- Li, Y.; Fu, M.; Wang, R.; Wu, S.; Tan, X. Efficient removal TC by Zn@SnO2/PI via the synergy of adsorption and photocatalysis under visible light. Chem. Eng. J. 2022, 444, 136567. [Google Scholar] [CrossRef]
- Nicoud, L.; Gonzalez, K.; Portier, A.; Nicoud, R. Using Mechanistic Modeling for Understanding Antibiotics Purification with Ion Exchange Chromatography. Solvent Extr. Ion Exch. 2020, 38, 555–570. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Lu, H.; Jin, K.; Lin, Y.; Ren, H.; Xu, K. Simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes enrichment by a modified activated sludge process with static magnetic field. Water Res. 2024, 262, 122107. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, P.; Ye, L.; Xu, D. Progress of anaerobic membrane bioreactor in municipal wastewater treatment. Sci. Adv. Mater. 2023, 15, 1277–1298. [Google Scholar] [CrossRef]
- Lin, Q.; Zeng, G.; Yan, G.; Luo, J.; Cheng, X.; Zhao, Z.; Li, H. Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal. Chem. Eng. J. 2022, 427, 131668. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Q.; Zeng, G.; Zhang, L.; Zhou, Y.; Sengupta, A. Nature-inspired green method decorated MXene-based composite membrane for high-efficiency oil/water separation. Sep. Purif. Technol. 2022, 283, 120218. [Google Scholar] [CrossRef]
- Zeng, G.; He, Z.; Wan, T.; Wang, T.; Yang, Z.; Liu, Y.; Lin, Q.; Wang, Y.; Sengupta, A.; Pu, S. A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater. Sep. Purif. Technol. 2022, 292, 121037. [Google Scholar] [CrossRef]
- Lin, Q.; Zeng, G.; Pu, S.; Yan, G.; Luo, J.; Wan, Y.; Zhao, Z. A dual regulation strategy for MXene-based composite membrane to achieve photocatalytic self-cleaning properties and multi-functional applications. Chem. Eng. J. 2022, 443, 136335. [Google Scholar] [CrossRef]
- Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, Y.; Yang, Z.; He, Z.; Wang, H.; Zhang, L.; Ang, M.; Zeng, G. Construction and application of two-dimensional MXene-based membranes for water treatment: A mini-review. Results Eng. 2022, 15, 100494. [Google Scholar] [CrossRef]
- Ding, L.; Li, L.; Liu, Y.; Wu, Y.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302. [Google Scholar] [CrossRef]
- Li, Z.; Wei, Y.; Gao, X.; Ding, L.; Lu, Z.; Deng, J.; Yang, X.; Caro, J.; Wang, H. Antibiotics Separation with MXene Membranes Based on Regularly Stacked High-Aspect-Ratio Nanosheets. Angew. Chem.-Int. Edit. 2020, 59, 9751–9756. [Google Scholar] [CrossRef]
- Zeng, G.; Liu, Y.; Lin, Q.; Pu, S.; Zheng, S.; Ang, M.; Chiao, Y. Constructing composite membranes from functionalized metal organic frameworks integrated MXene intended for ultrafast oil/water emulsion separation. Sep. Purif. Technol. 2022, 293, 121052. [Google Scholar] [CrossRef]
- He, Z.; Zheng, H.; Zeng, G.; Yang, Z.; Wang, H.; Qin, X.; Xiang, Y.; Sengupta, A.; Zhao, Z.; Pu, S. Structurally optimized MXene-based photocatalytic membrane to achieve self-cleaning properties and enhanced removal for small molecule from wastewater. Sep. Purif. Technol. 2023, 324, 124542. [Google Scholar] [CrossRef]
- Margellou, A.; Manos, D.; Petrakis, D.; Konstantinou, I. Activation of persulfate by LaFe1-xCoxO3 perovskite catalysts for the degradation of phenolics: Effect of synthetic method and metal substitution. Sci. Total Environ. 2022, 832, 155063. [Google Scholar] [CrossRef] [PubMed]
- Idrees, K.; Khalid, S.; Nisar, A.; Ibrahim, K.; Zhang, B.; Muhammad, S. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Hussain, H.; Green, I.R.; Ahmed, I. Journey describing applications of oxone in synthetic chemistry. Chem. Rev. 2013, 113, 3329–3371. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sun, S.; Hu, Y.; Gong, S.; Bao, S.; Li, H.; Zhang, X.; Yuan, Z.; Wu, X. Activation of Peroxymonosulfate by Fe, O Co-Embedded Biochar for the Degradation of Tetracycline: Performance and Mechanisms. Catalysts 2024, 14, 556. [Google Scholar] [CrossRef]
- Nikitin, D.; Kaur, B.; Preis, S.; Dulova, N. Degradation of Antibiotic Vancomycin by UV Photolysis and Pulsed Corona Discharge Combined with Extrinsic Oxidants. Catalysts 2023, 13, 466. [Google Scholar] [CrossRef]
- Yin, Y.; Shi, L.; Li, W.; Li, X.; Sun, H. Boosting Fenton-Like Reactions via Single Atom Fe Catalysis. Environ. Sci. Technol. 2019, 53, 11391–11400. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, D.; Zhang, Q.; Cui, R.; Hassan, M.; Dong, L.; Li, J.; He, Y. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants. Appl. Catal. B-Environ. 2020, 279, 119363. [Google Scholar] [CrossRef]
- Chu, C.; Yang, J.; Zhou, X.; Huang, D.; Qi, H.; Weon, S.; Li, J.; Elimelech, M.; Wang, A.; Kim, J. Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. Environ. Sci. Technol. 2021, 55, 1242–1250. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, Y.; Xiao, J.; Zhao, Z.; Wang, Y.; Xu, Z.; Zhang, Y.; Yin, L.; Cao, H.; Gong, J. Single-Atom Mn-N4 Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution. J. Am. Chem. Soc. 2019, 141, 12005–12010. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Miao, J.; Jiang, Y.; Wang, X.; Li, X.; Zhu, Y.; Shao, Z.; Long, M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem. Sci. 2024, 15, 11699–11718. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Li, H.; Wang, Z.; Tong, F.; Liu, M.; Zheng, Z.; Wang, P.; Cheng, H.; Liu, Y.; Dai, Y.; et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Appl. Catal. B Environ. 2021, 286, 119885. [Google Scholar] [CrossRef]
- Han, Z.; Niu, Y.; Shi, X.; Pan, D.; Liu, H.; Qiu, H.; Chen, W.; Xu, B.; El-Bahy, Z.; Hou, H.; et al. MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments. Nano-Micro Lett. 2024, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Rigby, K.; Huang, D.; Hedtke, T.; Wang, X.; Chung, M.; Weon, S.; Stavitski, E.; Kim, J. Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation. Environ. Sci. Technol. 2022, 56, 1341–1351. [Google Scholar] [CrossRef]
- Hassan, T.; Iqbal, A.; Yoo, B.; Jo, J.; Cakmakci, N.; Naqvi, S.; Kim, H.; Jung, S.; Hussain, N.; Zafar, U.; et al. Multifunctional MXene/Carbon Nanotube Janus Film for Electromagnetic Shielding and Infrared Shielding/Detection in Harsh Environments. Nano-Micro Lett. 2024, 16, 216. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yang, Y.; Wu, S.; Wang, C.; You, C.; Tian, N. Thermally conductive MWCNTs/Fe3O4/Ti3C2Tx MXene multi-layer films for broadband electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 130, 75–85. [Google Scholar] [CrossRef]
- Li, P.; Xu, D.; Gao, Y.; Liu, P.; Liu, Z.; Ding, J.; Zhu, J.; Liang, H. Nano-confined catalysis with Co nanoparticles-encapsulated carbon nanotubes for enhanced peroxymonosulfate oxidation in secondary effluent treatment: Water quality improvement and membrane fouling alleviation. Water Res. 2024, 266, 122357. [Google Scholar] [CrossRef]
- Tian, M.; Liu, Y.; Zhang, S.; Yu, C.; Ostrikov, K.; Zhang, Z. Overcoming the permeability-selectivity challenge in water purification using two-dimensional cobalt-functionalized vermiculite membrane. Nat. Commun. 2024, 41, 391. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, W.; Jie, H.; Tang, W.; Chen, D.; Ruan, T.; Bai, H. Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction. RSC Adv. 2020, 10, 38024–38032. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Yuan, J.; Wang, Z. Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation. Chem. Eng. J. 2022, 441, 136061. [Google Scholar] [CrossRef]
- Rasool, K.; Helal, M.; Ali, A.; Ren, C.; Gogotsi, Y.; Mahmoud, K. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.; Asnis, J.; Häfeli, U.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Huang, Z.; Xu, J.; Lin, S.; Hong, Y.; Zhang, Q.; Xiao, J.; Hong, J. Co and N co-doped carbon nanotubes catalyst for PMS activation: Role of non-radicals. Sep. Purif. Technol. 2025, 353, 128528. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, R.; Li, Y.; Qi, J.; Wang, C.; Li, J.; Sun, X.; Wang, L. Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for Bisphenol A degradation. Chem. Eng. J. 2018, 347, 731–740. [Google Scholar] [CrossRef]
- Hao, C.; Rao, F.; Zhang, Y.; Wang, H.; Chen, J.; Wågberg, T.; Hu, G. Low-temperature molten-salt synthesis of Co3O4 nanoparticles grown on MXene can rapidly remove ornidazole via peroxymonosulfate activation. Environ. Pollut. 2023, 334, 121811. [Google Scholar] [CrossRef]
- Zeng, G.; Lin, Q.; Wei, K.; Liu, Y.; Chiao, Y. High-performing composite membrane based on dopamine-functionalized graphene oxide incorporated two-dimensional MXene nanosheets for water purification. J. Mater. Sci. 2021, 56, 6814–6829. [Google Scholar] [CrossRef]
- Dong, C.; Wang, Z.; Wu, J.; Wang, Y.; Wang, J.; Wang, S. A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property. Desalination 2017, 401, 32–41. [Google Scholar] [CrossRef]
Membrane | The Concentration of Co Atoms | The Mass of Co-MXene |
---|---|---|
M0 | 0 mg/mL | 12 mg |
M1 | 0.005 mg/mL | 12 mg |
M2 | 0.01 mg/mL | 12 mg |
M3 | 0.03 mg/mL | 12 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Qin, X.; Zhao, R.; Chen, J.; Zheng, X.; Liu, K.; Xin, M. Construction of Co-Modified MXene/PES Catalytic Membrane for Effective Separation and Degradation of Tetracycline Antibiotics in Aqueous Solutions. Molecules 2024, 29, 4995. https://doi.org/10.3390/molecules29214995
Cheng X, Qin X, Zhao R, Chen J, Zheng X, Liu K, Xin M. Construction of Co-Modified MXene/PES Catalytic Membrane for Effective Separation and Degradation of Tetracycline Antibiotics in Aqueous Solutions. Molecules. 2024; 29(21):4995. https://doi.org/10.3390/molecules29214995
Chicago/Turabian StyleCheng, Xiaojie, Xiaojun Qin, Runxue Zhao, Jiamin Chen, Xia Zheng, Ke Liu, and Meixuan Xin. 2024. "Construction of Co-Modified MXene/PES Catalytic Membrane for Effective Separation and Degradation of Tetracycline Antibiotics in Aqueous Solutions" Molecules 29, no. 21: 4995. https://doi.org/10.3390/molecules29214995
APA StyleCheng, X., Qin, X., Zhao, R., Chen, J., Zheng, X., Liu, K., & Xin, M. (2024). Construction of Co-Modified MXene/PES Catalytic Membrane for Effective Separation and Degradation of Tetracycline Antibiotics in Aqueous Solutions. Molecules, 29(21), 4995. https://doi.org/10.3390/molecules29214995