Effect of Beech Sawdust Conditions Modification on the Efficiency of the Sorption of Anionic and Cationic Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of pH of Sawdust Activation with Epichlorohydrin on the Efficiency of Dye Sorption
2.2. Effect of Epichlorohydrin Dose on Sorption Capacity of Sorbent
2.3. Effect of Ammonia Dose on the Efficiency of Dye Removal
2.4. Effect of pH of Activation with Epichlorohydrin on the Sorption Efficiency of Aminated Sawdust
2.5. Effect of Epichlorohydrin Dose on the Efficiency of Dye Sorption on an Amination-Treated Sorbent
2.6. Determining the Dose of Ammonia After Epichlorohydrin Activation
2.7. FTIR Analysis
3. Materials
3.1. Beech Sawdust
3.2. Dyes
3.3. Modifying Agents
3.4. Names of the Sorbents Used in the Tests
- S-AB—sawdust treated with acid and basic;
- S-AB-E—sawdust treated with acid and basic and activated with epichlorohydrin;
- S-AB-A—sawdust treated with acid and basic and activated with a 25% aqueous solution of ammonia;
- S-AB-E-A—sawdust treated with acid and basic and activated with 25% aqueous ammonia solution, with initial activation of epichlorohydrin.
3.5. Chemical Reagents and Measuring Equipment
4. Methodology
4.1. Preparation of Dye Solutions
4.2. Preparation of Epichlorohydrin and Ammonia Solutions
4.3. Treating Sawdust with Sulfuric Acid and Sodium Hydroxide (S-AB)
4.4. Preparation of an Epichlorohydrin-Activated Sorbent (S-AB-E)
4.5. Preparation of the Aminated Sorbent (S-AB-A)
4.6. Preparation of an Aminated Sorbent with Epichlorohydrin Preactivation (S-AB-E-A)
4.7. FTIR Analysis
4.8. Determination of the Conditions for the Modification of Beech Sawdust
4.8.1. Determination of the pH of Sawdust Activation with Epichlorohydrin
4.8.2. Determining the Dose of the Activating Factor (Epichlorohydrin)
4.8.3. Determining the Ammonia Dose
4.8.4. Determination of the pH of Epichlorohydrin Activation, Which Will Ensure High Efficiency of Dye Sorption on Aminated Sawdust
4.8.5. Determination of the Dose of Epichlorohydrin, Which Will Ensure High Efficiency of Dye Sorption on Aminated Sawdust
4.8.6. Determining the Dose of Ammonia After Epichlorohydrin Activation
4.9. Analytical Methods
Determination of Dye Concentration in Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaballah, I.; Goy, D.; Allain, E.; Kilbertus, G.; Thaurónt, J. Recovery of Copper through Decontamination of Synthetic Solutions Using Modified Barks. Metall. Mater. Trans. B 1997, 28, 13–23. [Google Scholar] [CrossRef]
- Azanaw, A.; Birlie, B.; Teshome, B.; Jemberie, M. Textile Effluent Treatment Methods and Eco-Friendly Resolution of Textile Wastewater. Case Stud. Chem. Environ. Eng. 2022, 6, 100230. [Google Scholar] [CrossRef]
- Upadhye, G.; Yamgar, R. Analytical Study of Agricultural Waste as Non-Conventional Low Cost Adsorbent Removal of Dyes from Aqueous Solutions. Int. J. Chem. Stud. 2016, 4, 128–133. [Google Scholar]
- Hanafiah, M.A.K.M.; Megat, M.A.K.; Ibrahim, S.C.; Yahya, M.Z.A. Equilibrium Adsorption Study of Lead Ions onto Sodium Hydroxide Modified Lalang (Imperata cylindrica) Leaf Powder. J. Appl. Sci. Res. 2006, 2, 1169–1174. [Google Scholar]
- Šćiban, M.; Klašnja, M.; Škrbić, B. Modified Softwood Sawdust as Adsorbent of Heavy Metal Ions from Water. J. Hazard. Mater. 2006, 136, 266–271. [Google Scholar] [CrossRef]
- Baral, S.S.; Das, S.N.; Rath, P. Hexavalent Chromium Removal from Aqueous Solution by Adsorption on Treated Sawdust. Biochem. Eng. J. 2006, 31, 216–222. [Google Scholar] [CrossRef]
- Cao, J.S.; Lin, J.X.; Fang, F.; Zhang, M.T.; Hu, Z.R. A New Absorbent by Modifying Walnut Shell for the Removal of Anionic Dye: Kinetic and Thermodynamic Studies. Bioresour. Technol. 2014, 163, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Ouali, M.S.; Elandaloussi, E.H.; De Menorval, L.C.; Lindheimer, M. Chemically Modified Olive Stone: A Low-Cost Sorbent for Heavy Metals and Basic Dyes Removal from Aqueous Solutions. J. Hazard. Mater. 2009, 163, 441–447. [Google Scholar] [CrossRef]
- Eren, E.; Cubuk, O.; Ciftci, H.; Eren, B.; Caglar, B. Adsorption of Basic Dye from Aqueous Solutions by Modified Sepiolite: Equilibrium, Kinetics and Thermodynamics Study. Desalination 2010, 252, 88–96. [Google Scholar] [CrossRef]
- Zhuang, J.; Kim, K.H.; Jia, L.; Meng, X.; Kumar, D.; Leem, G.; Kang, S.B.; Li, Y.; Ragauskas, A.J.; Hou, Y.; et al. Ferric Chloride Aided Peracetic Acid Pretreatment for Effective Utilization of Sugarcane Bagasse. Fuel 2022, 319, 123739. [Google Scholar] [CrossRef]
- Cai, C.; Hirth, K.; Gleisner, R.; Lou, H.; Qiu, X.; Zhu, J.Y. Maleic Acid as a Dicarboxylic Acid Hydrotrope for Sustainable Fractionation of Wood at Atmospheric Pressure and ≤100 °C: Mode and Utility of Lignin Esterification. Green Chem. 2020, 22, 1605–1617. [Google Scholar] [CrossRef]
- Akindolie, M.S.; Choi, H.J. Acid Modification of Lignocellulosic Derived Material for Dye and Heavy Metals Removal: A Review. Environ. Eng. Res. 2023, 28, 210574. [Google Scholar] [CrossRef]
- Zhou, Z.; Ouyang, D.; Liu, D.; Zhao, X. Oxidative Pretreatment of Lignocellulosic Biomass for Enzymatic Hydrolysis: Progress and Challenges. Bioresour. Technol. 2023, 367, 128208. [Google Scholar] [CrossRef]
- Meng, F.; Li, N.; Yang, H.; Shi, Z.; Zhao, P.; Yang, J. Investigation of Hydrogen Peroxide-Acetic Acid Pretreatment to Enhance the Enzymatic Digestibility of Bamboo Residues. Bioresour. Technol. 2022, 344, 126162. [Google Scholar] [CrossRef]
- Teo, S.H.; Ng, C.H.; Islam, A.; Abdulkareem-Alsultan, G.; Joseph, C.G.; Janaun, J.; Taufiq-Yap, Y.H.; Khandaker, S.; Islam, G.J.; Znad, H.; et al. Sustainable Toxic Dyes Removal with Advanced Materials for Clean Water Production: A Comprehensive Review. J. Clean. Prod. 2022, 332, 130039. [Google Scholar] [CrossRef]
- Min, S.H.; Han, J.S.; Shin, E.W.; Park, J.K. Improvement of Cadmium Ion Removal by Base Treatment of Juniper Fiber. Water Res. 2004, 38, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Nasuha, N.; Hameed, B.H. Adsorption of Methylene Blue from Aqueous Solution onto NaOH-Modified Rejected Tea. Chem. Eng. J. 2011, 166, 783–786. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Kumar, U.; Bandyopadhyay, M. Sorption of Cadmium from Aqueous Solution Using Pretreated Rice Husk. Bioresour. Technol. 2006, 97, 104–109. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chowdhury, S.; Das Saha, P. Adsorption of Crystal Violet from Aqueous Solution onto NaOH-Modified Rice Husk. Carbohydr. Polym. 2011, 86, 1533–1541. [Google Scholar] [CrossRef]
- Mana, M.; Ouali, M.S.; de Menorval, L.C. Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth. J. Colloid. Interface Sci. 2007, 307, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Sciban, M.; Klasnja, M.; Skrbic, B. Modified Hardwood Sawdust as Adsorbent of Heavy Metal Ions from Water. Wood Sci. Technol. 2006, 40, 217–227. [Google Scholar] [CrossRef]
- Cimino, G.; Cappello, R.M.; Caristi, C.; Toscano, G. Characterization of Carbons from Olive Cake by Sorption of Wastewater Pollutants. Chemosphere 2005, 61, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, E.; Kobya, M.; Senturk, E.; Ozkan, T. Adsorption Kinetics for the Removal of Chromium (VI) from Aqueous Solutions on the Activated Carbons Prepared from Agricultural Wastes. Water SA 2004, 30, 533–539. [Google Scholar] [CrossRef]
- Toor, M.; Jin, B. Adsorption Characteristics, Isotherm, Kinetics, and Diffusion of Modified Natural Bentonite for Removing Diazo Dye. Chem. Eng. J. 2012, 187, 79–88. [Google Scholar] [CrossRef]
- Nasiruddin Khan, M.; Farooq Wahab, M. Characterization of Chemically Modified Corncobs and Its Application in the Removal of Metal Ions from Aqueous Solution. J. Hazard. Mater. 2007, 141, 237–244. [Google Scholar] [CrossRef]
- Jaikumar, V.; Ramamurthi, V. Biosorption of Acid Yellow by Spent Brewery Grains in a Batch System: Equilibrium and Kinetic Modelling. Int. J. Biol. 2009, 1, 21. [Google Scholar] [CrossRef]
- Inbaraj, B.S.; Sulochana, N. Carbonised Jackfruit Peel as an Adsorbent for the Removal of Cd(II) from Aqueous Solution. Bioresour. Technol. 2004, 94, 49–52. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of Heavy Metal Ions from Aqueous Solutions by Activated Carbon Prepared from Apricot Stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef]
- Krishnan, K.A.; Anirudhan, T.S. Removal of Cadmium(II) from Aqueous Solutions by Steam-Activated Sulphurised Carbon Prepared from Sugar-Cane Bagasse Pith: Kinetics and Equilibrium Studies. Water SA 2003, 29, 147–156. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, T.; Zhang, D. Adsorption of Copper Ions from Aqueous Solution by Citric Acid Modified Soybean Straw. J. Hazard. Mater. 2008, 153, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Sajab, M.S.; Chia, C.H.; Zakaria, S.; Jani, S.M.; Ayob, M.K.; Chee, K.L.; Khiew, P.S.; Chiu, W.S. Citric Acid Modified Kenaf Core Fibres for Removal of Methylene Blue from Aqueous Solution. Bioresour. Technol. 2011, 102, 7237–7243. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Dai, Z.; Liu, X.; Dahlgren, R.A.; Xu, J. Modification of Agricultural Wastes to Improve Sorption Capacities for Pollutant Removal from Water—A Review. Carbon Res. 2022, 1, 24. [Google Scholar] [CrossRef]
- Geay, M.; Marchetti, V.; Clément, A.; Loubinoux, B.; Gérardin, P. Decontamination of Synthetic Solutions Containing Heavy Metals Using Chemically Modified Sawdusts Bearing Polyacrylic Acid Chains. J. Wood Sci. 2000, 46, 331–333. [Google Scholar] [CrossRef]
- Shukla, S.R.; Pai, R.S. Adsorption of Cu(II), Ni(II) and Zn(II) on Modified Jute Fibres. Bioresour. Technol. 2005, 96, 1430–1438. [Google Scholar] [CrossRef]
- Hassan, L.; Magalhães, S.; Fernandes, C.; Pedrosa, J.F.S.; Alves, L.; Medronho, B.; Ferreira, P.J.T.; Da, M.; Rasteiro, G. Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview. Polymers 2023, 15, 3138. [Google Scholar] [CrossRef]
- Okieimen, F.E.; Sogbaike, C.E.; Ebhoaye, J.E. Removal of Cadmium and Copper Ions from Aqueous Solution with Cellulose Graft Copolymers. Sep. Purif. Technol. 2005, 44, 85–89. [Google Scholar] [CrossRef]
- Júnior, O.K.; Gurgel, L.V.A.; Melo, J.C.P.; Botaro, V.R.; Melo, T.M.S.; Gil, R.P.F.; Gil, L.F. Adsorption of Heavy Metal Ion from Aqueous Single Metal Solution by Chemically Modified Sugarcane Bagasse. Bioresour. Technol. 2007, 98, 1291–1297. [Google Scholar]
- Modern Variants of the Mannich Reaction—Arend—1998—Angewandte Chemie International Edition—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-3773(19980504)37:8%3C1044::AID-ANIE1044%3E3.0.CO;2-E (accessed on 28 August 2024).
- Lü, Q.F.; Huang, Z.K.; Liu, B.; Cheng, X. Preparation and Heavy Metal Ions Biosorption of Graft Copolymers from Enzymatic Hydrolysis Lignin and Amino Acids. Bioresour. Technol. 2012, 104, 111–118. [Google Scholar] [CrossRef]
- Pan, H.; Sun, G.; Zhao, T. Synthesis and Characterization of Aminated Lignin. Int. J. Biol. Macromol. 2013, 59, 221–226. [Google Scholar] [CrossRef]
- Ge, Y.; Song, Q.; Li, Z. A Mannich Base Biosorbent Derived from Alkaline Lignin for Lead Removal from Aqueous Solution. J. Ind. Eng. Chem. 2015, 23, 228–234. [Google Scholar] [CrossRef]
- Song, Y.; Xu, H.; Ren, J. Adsorption Study for Removal of Sunset Yellow by Ethylenediamine-Modified Peanut Husk. Desalin. Water Treat. 2016, 57, 17585–17592. [Google Scholar] [CrossRef]
- Shchukina, O.I.; Zatirakha, A.V.; Smolenkov, A.D.; Shpigun, O.A. Using Epichlorohydrin for a Simultaneous Increase of Functional Group Hydrophilicity and Spatial Separation from the Matrix of Anion Exchangers for Ion Chromatography. Mosc. Univ. Chem. Bull. 2014, 69, 168–174. [Google Scholar] [CrossRef]
- Xu, X.; Gao, B.; Wang, W.; Yue, Q.; Wang, Y.; Ni, S. Adsorption of Phosphate from Aqueous Solutions onto Modified Wheat Residue: Characteristics, Kinetic and Column Studies. Colloids Surf. B Biointerfaces 2009, 70, 46–52. [Google Scholar] [CrossRef]
- Sakkayawong, N.; Thiravetyan, P.; Nakbanpote, W. Adsorption Mechanism of Synthetic Reactive Dye Wastewater by Chitosan. J. Colloid. Interface Sci. 2005, 286, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, T.; Filipkowska, U. The Use of Rapeseed Husks to Remove Acidic and Basic Dyes from Aquatic Solutions. Appl. Sci. 2024, 14, 1174. [Google Scholar] [CrossRef]
- Maurya, N.S.; Mittal, A.K.; Cornel, P.; Rother, E. Biosorption of Dyes Using Dead Macro Fungi: Effect of Dye Structure, Ionic Strength and PH. Bioresour. Technol. 2006, 97, 512–521. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Wu, Q. Surface Molecular Imprinting on Polypropylene Fibers for Rhodamine B Selective Adsorption. J. Colloid. Interface Sci. 2012, 385, 193–201. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Paczyńska, K.; Jóźwiak, T.; Filipkowska, U. The Effect of Modifying Canadian Goldenrod (Solidago Canadensis) Biomass with Ammonia and Epichlorohydrin on the Sorption Efficiency of Anionic Dyes from Water Solutions. Materials 2023, 16, 4586. [Google Scholar] [CrossRef]
- Moradi, S.E.; Khodaveisy, J.; Dashti, R. Removal of Anionic Surfactants by Sorption onto Aminated Mesoporous Carbon. Chem. Ind. Chem. Eng. Q. 2013, 19, 347–357. [Google Scholar] [CrossRef]
- Zhu, H.; Kong, Q.; Cao, X.; He, H.; Wang, J.; He, Y. Adsorption of Cr(VI) from Aqueous Solution by Chemically Modified Natural Cellulose. Desalin. Water Treat. 2016, 57, 20368–20376. [Google Scholar] [CrossRef]
- Ding, Z.; Yu, R.; Hu, X.; Chen, Y.; Zhang, Y. Graft Copolymerization of Epichlorohydrin and Ethylenediamine onto Cellulose Derived from Agricultural By-Products for Adsorption of Pb(II) in Aqueous Solution. Cellulose 2014, 21, 1459–1469. [Google Scholar] [CrossRef]
- Hashem, A. Preparation of a New Adsorbent Based on Wood Pulp for the Removal of Direct Blue 2 from Aqueous Solutions. Polym. Plast. Technol. Eng. 2006, 45, 779–783. [Google Scholar] [CrossRef]
- Silva Filho, E.C.; Lima, L.C.B.; Silva, F.C.; Sousa, K.S.; Fonseca, M.G.; Santana, S.A.A. Immobilization of Ethylene Sulfide in Aminated Cellulose for Removal of the Divalent Cations. Carbohydr. Polym. 2013, 92, 1203–1210. [Google Scholar] [CrossRef]
- Franco, P.; Senso, A.; Oliveros, L.; Minguillón, C. Covalently Bonded Polysaccharide Derivatives as Chiral Stationary Phases in High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 906, 155–170. [Google Scholar] [CrossRef] [PubMed]
- da Silva Filho, E.C.; de Melo, J.C.P.; Airoldi, C. Preparation of Ethylenediamine-Anchored Cellulose and Determination of Thermochemical Data for the Interaction between Cations and Basic Centers at the Solid/Liquid Interface. Carbohydr. Res. 2006, 341, 2842–2850. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Li, B. Adsorption of Hg2+ and Cd2+ by Ethylenediamine Modified Peanut Shells. Carbohydr. Polym. 2010, 81, 335–339. [Google Scholar] [CrossRef]
- da Silva Filho, E.C.; da Silva, L.S.; Lima, L.C.B.; de Santos, L.S.; de Santos, M.R.M.C.; de Matos, J.M.E.; Airoldi, C. Thermodynamic Data of 6-(4′-Aminobutylamino)-6-Deoxycellulose Sorbent for Cation Removal from Aqueous Solutions. Sep. Sci. Technol. 2011, 46, 2566–2574. [Google Scholar] [CrossRef]
- Da Silva Filho, E.C.; Monteiro, P.D.R.; Sousa, K.S.; Airoldi, C. Ethylenesulfide as a Useful Agent for Incorporation on the Biopolymer Chitosan in a Solvent-Free Reaction for Use in Lead and Cadmium Removal. J. Therm. Anal. Calorim. 2011, 106, 369–373. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
Component | Dry Matter Content |
---|---|
Cellulose | 41.0% |
Hemicellulose | 27.9% |
Lignin | 26.7% |
Ash | 0.1% |
Extracts and other ingredients | 4.3% |
Dye Name | Reactive Black 5—(RB5) | Basic Violet 10—(BV10) |
---|---|---|
Structural formula | ||
Molar weight | 991 g/mol | 479 g/mol |
λmax | 600 [nm] | 554 [nm] |
Type of dye | Anionic—reactive | Cationic |
Use | Dyeing of wool, cotton, viscose, polyamide fibers | Dyeing paper, leather, cotton, paint production |
Cross-Linking/Activating Agent Name | Epichlorohydrin | 25% Ammonia Aqueous Solution |
---|---|---|
Molecular formula | C3H5ClO | NH3 · H2O |
Molar mass | 93.5 g/mol | 35 g/mol |
Function groups | 1 epoxy group, 1 chloromethyl group | 1 amino group |
Use | Used in the production of epoxy resins, synthetic glycerin, ethers, waterproof paper, surfactants, insecticides, bactericides and fungicides; solvent for resins and paints | It is used in the tanning and glass industries and in the production of fertilizers, explosives and dyes. |
Ratio of Epichlorohydrin Functional Groups to the Amount of Hydroxyl Groups of Sawdust | Epichlorohydrin Dosage per 1 g s.m. S-AB [g] | |
---|---|---|
1:10 | 0.1 | 0.125 |
1:5 | 0.2 | 0.25 |
1:3 | 0.3 | 0.417 |
1:2 | 0.5 | 0.625 |
1:1 | 1.0 | 1.25 |
2:1 | 2.0 | 2.5 |
3:1 | 3.0 | 3.75 |
5:1 | 5.0 | 6.25 |
8:1 | 8.0 | 10.0 |
10:1 | 10.0 | 12.5 |
Ratio of Amino Groups to the Amount of Hydroxyl Groups of Sawdust | Dose of 25% Aqueous Ammonia Solution per 1 g d.m. S-AB [g] | |
---|---|---|
1:10 | 0.1 | 0.023 |
1:5 | 0.2 | 0.046 |
1:3 | 0.3 | 0.077 |
1:2 | 0.5 | 0.115 |
1:1 | 1.0 | 0.23 |
2:1 | 2.0 | 0.46 |
3:1 | 3.0 | 0.69 |
5:1 | 5.0 | 1.15 |
10:1 | 10.0 | 2.3 |
15:1 | 15.0 | 3.45 |
20:1 | 20.0 | 4.6 |
30:1 | 30.0 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bugajska, P.; Filipkowska, U.; Jóźwiak, T. Effect of Beech Sawdust Conditions Modification on the Efficiency of the Sorption of Anionic and Cationic Dyes. Molecules 2024, 29, 5017. https://doi.org/10.3390/molecules29215017
Bugajska P, Filipkowska U, Jóźwiak T. Effect of Beech Sawdust Conditions Modification on the Efficiency of the Sorption of Anionic and Cationic Dyes. Molecules. 2024; 29(21):5017. https://doi.org/10.3390/molecules29215017
Chicago/Turabian StyleBugajska, Paula, Urszula Filipkowska, and Tomasz Jóźwiak. 2024. "Effect of Beech Sawdust Conditions Modification on the Efficiency of the Sorption of Anionic and Cationic Dyes" Molecules 29, no. 21: 5017. https://doi.org/10.3390/molecules29215017
APA StyleBugajska, P., Filipkowska, U., & Jóźwiak, T. (2024). Effect of Beech Sawdust Conditions Modification on the Efficiency of the Sorption of Anionic and Cationic Dyes. Molecules, 29(21), 5017. https://doi.org/10.3390/molecules29215017