Pressurized Liquid Extraction of Antioxidant and α-Amylase-Inhibitory Compounds from Red Seaweed Using Water–Ethanol Mixtures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Polyphenol Content (TPC)
2.2. Antioxidant Activity
2.3. Effect of Water-Ethanol Mixtures at High Temperatures on the Polyphenol Profile
2.3.1. Phenolic Acids
2.3.2. Flavanols
2.3.3. Flavonols
2.3.4. Phlorotannins
2.4. Effect of Water-Ethanol Mixtures at High Temperatures on α-Amylase
3. Discussion
3.1. Total Polyphenol Content (TPC)
3.2. Antioxidant Activity
3.3. Effect of Water-Ethanol Mixtures at High Temperatures on the Polyphenol Profile
3.3.1. Phenolic Acids
3.3.2. Flavanols
3.3.3. Flavonols
3.3.4. Phlorotannins
3.4. Effect of Water-Ethanol Mixtures at High Temperatures on α-Amylase
4. Materials and Methods
4.1. Samples
4.2. Chemicals and Reagents
4.3. Extraction Technique
4.4. Total Polyphenol Quantification
4.5. Determining Antioxidant Efficacy (DPPH)
4.6. Antioxidant Capacity Evaluated by ORAC Assay
4.7. α-Amylase Activity
4.8. Polyphenol Profiling
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diaz Ruíz, J.T.; Fretell Timoteo, W.J.; Baltazar Guerrero, P.M.; Castañeda Franco, M.; Meza Balvin, S.J.; Ordoñez Suñiga, C.A. Factibilidad Económica de La Producción de Chondracanthus Chamissoi, Cultivo Vía Esporas En Laboratorio, San Andrés-Pisco, Perú. Arnaldoa 2021, 28, 163–182. [Google Scholar]
- Berger, C. La Acuicultura y Sus Oportunidades Para Lograr El Desarrollo Sostenible En El Perú. South Sustain. 2020, 1, e003. [Google Scholar] [CrossRef]
- Carpena, M.; Caleja, C.; Pereira, E.; Pereira, C.; Ćirić, A.; Soković, M.; Soria-Lopez, A.; Fraga-Corral, M.; Simal-Gandara, J.; Ferreira, I.C.F.R.; et al. Red Seaweeds as a Source of Nutrients and Bioactive Compounds: Optimization of the Extraction. Chemosensors 2021, 9, 132. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Domínguez, H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs 2019, 17, 314. [Google Scholar] [CrossRef]
- Lecaro-Zambrano, J.L.; Garzón-Montealegre, V.J. Las Algas En La Productividad Económica de Las Industrias Internacionales. Rev. Científico-Académica Multidiscip. 2021, 6, 686–703. [Google Scholar]
- Vilcanqui, Y.; Mamani-Apaza, L.O.; Flores, M.; Ortiz-Viedma, J.; Romero, N.; Mariotti-Celis, M.S.; Huamán-Castilla, N.L. Chemical Characterization of Brown and Red Seaweed from Southern Peru, a Sustainable Source of Bioactive and Nutraceutical Compounds. Agronomy 2021, 11, 1669. [Google Scholar] [CrossRef]
- Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; Jorge, G.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological Effects of Gallic Acid in Health and Disease: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.Y.; Sang, L.X.; Jiang, M.; McPhee, D.J. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017, 22, 484. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, K.; Kang, K.A.; Lee, N.H.; Hyun, J.W.; Kim, H.S. Phloroglucinol Exerts Protective Effects against Oxidative Stress-Induced Cell Damage in SH-SY5Y Cells. J. Pharmacol. Sci. 2012, 119, 186–192. [Google Scholar] [CrossRef]
- SIGMA ALDRICH Catalog Products. Available online: http://www.sigmaaldrich.com/ (accessed on 6 July 2016).
- Yoon, M.; Kim, J.S.; Um, M.Y.; Yang, H.; Kim, J.; Kim, Y.T.; Lee, C.; Kim, S.B.; Kwon, S.; Cho, S. Extraction Optimization for Phlorotannin Recovery from the Edible Brown Seaweed Ecklonia Cava. J. Aquat. Food Prod. Technol. 2017, 26, 801–810. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.W.F.; Ho, C.W.; Yong, W.T.L.; Abas, F.; Tan, T.B.; Tan, C.P. Extraction of phenolic antioxidants from four selected seaweeds obtained from Sabah. Int. Food Res. J. 2016, 23, 2363–2369. [Google Scholar]
- Matos, G.S.; Pereira, S.G.; Genisheva, Z.A.; Gomes, A.M.; Teixeira, J.A.; Rocha, C.M.R. Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods 2021, 10, 516. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Silva, A.M.; Freitas, V.; Vallverdú-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Microwave-Assisted Extraction as a Green Technology Approach to Recover Polyphenols from Castanea Sativa Shells. ACS Food Sci. Technol. 2021, 1, 229–241. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Díaz Huamaní, K.S.; Palomino Villegas, Y.C.; Allcca-Alca, E.E.; León-Calvo, N.C.; Colque Ayma, E.J.; Zirena Vilca, F.; Mariotti-Celis, M.S. Exploring a Sustainable Process for Polyphenol Extraction from Olive Leaves. Foods 2024, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A.A. Extraction of Antioxidant Compounds from Jabuticaba (Myrciaria cauliflora) Skins: Yield, Composition and Economical Evaluation. J. Food Eng. 2010, 101, 23–31. [Google Scholar] [CrossRef]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A.A. Optimization and Economic Evaluation of Pressurized Liquid Extraction of Phenolic Compounds from Jabuticaba Skins. J. Food Eng. 2012, 108, 444–452. [Google Scholar] [CrossRef]
- Huaman-Castilla, N.L.; Martínez-Cifuentes, M.; Camilo, C.; Pedreschi, F.; Mariotti-Celis, M.; Pérez-Correa, J.R. The Impact of Temperature and Ethanol Concentration on the Global Recovery of Specific Polyphenols in an Integrated HPLE/RP Process on Carménère Pomace Extracts. Molecules 2019, 24, 314. [Google Scholar] [CrossRef]
- Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Huamán-Castilla, N.; Pedreschi, F.; Iglesias-Rebolledo, N.; Pérez-Correa, J.R. Impact of an Integrated Process of Hot Pressurised Liquid Extraction–Macroporous Resin Purification over the Polyphenols, Hydroxymethylfurfural and Reducing Sugars Content of Vitis Vinifera ‘Carménère’ Pomace Extracts. Int. J. Food Sci. Technol. 2018, 53, 1072–1078. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Copa-Chipana, C.; Mamani-Apaza, L.O.; Luque-Vilca, O.M.; Campos-Quiróz, C.N.; Zirena-Vilca, F.; Mariotti-Celis, M.S. Selective Recovery of Polyphenols from Discarded Blueberries (Vaccinium corymbosum L.) Using Hot Pressurized Liquid Extraction Combined with Isopropanol as an Environmentally Friendly Solvent. Foods 2023, 12, 3694. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Garmendia-Lorena, F. Current Situation of the Prevention of Type 2 Diabetes Mellitus. Acta Med. Peru. 2022, 39, 51–58. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Miao, M. Inhibition of α-Amylase by Polyphenolic Compounds: Substrate Digestion, Binding Interactions and Nutritional Intervention. Trends Food Sci. Technol. 2020, 104, 190–207. [Google Scholar] [CrossRef]
- Pacheco, L.V.; Parada, J.; Pérez-Correa, J.R.; Mariotti-Celis, M.S.; Erpel, F.; Zambrano, A.; Palacios, M. Bioactive Polyphenols from Southern Chile Seaweed as Inhibitors of Enzymes for Starch Digestion. Mar. Drugs 2020, 18, 353. [Google Scholar] [CrossRef]
- Erpel, F.; Mariotti-Celis, M.S.; Parada, J.; Pedreschi, F.; Pérez-Correa, J.R. Pressurized Hot Liquid Extraction with 15% v/v Glycerol-Water as an Effective Environment-Friendly Process to Obtain Durvillaea Incurvata and Lessonia Spicata Phlorotannin Extracts with Antioxidant and Antihyperglycemic Potential. Antioxidants 2021, 10, 1105. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.K.; Koide, M.; Rao, T.P.; Okubo, T.; Ogasawara, Y.; Juneja, L.R. ORAC and DPPH Assay Comparison to Assess Antioxidant Capacity of Tea Infusions: Relationship between Total Polyphenol and Individual Catechin Content. Int. J. Food Sci. Nutr. 2010, 61, 109–124. [Google Scholar] [CrossRef]
- Goyeneche, R.; Roura, S.; Ponce, A.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Di Scala, K. Chemical Characterization and Antioxidant Capacity of Red Radish (Raphanus sativus L.) Leaves and Roots. J. Funct. Foods 2015, 16, 256–264. [Google Scholar] [CrossRef]
- Otero, P.; López-martínez, M.I.; García-risco, M.R. Application of Pressurized Liquid Extraction (PLE) to Obtain Bioactive Fatty Acids and Phenols from Laminaria Ochroleuca Collected in Galicia (NW Spain). J. Pharm. Biomed. Anal. 2018, 164, 86–92. [Google Scholar] [CrossRef]
- Allcca-Alca, E.E.; León-Calvo, N.C.; Luque-Vilca, O.M.; Martínez-Cifuentes, M.; Pérez-Correa, J.R.; Mariotti-Celis, M.S.; Huamán-Castilla, N.L. Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis vinifera L. Cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste. Agronomy 2021, 11, 866. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Gajardo-Parra, N.; Pérez-Correa, J.R.; Canales, R.I.; Martínez-Cifuentes, M.; Contreras-Contreras, G.; Mariotti-Celis, M.S. Enhanced Polyphenols Recovery from Grape Pomace: A Comparison of Pressurized and Atmospheric Extractions with Deep Eutectic Solvent Aqueous Mixtures. Antioxidants 2023, 12, 1446. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Neoformation of Antioxidants in Glycation Model Systems Treated under Subcritical Water Extraction Conditions. Food Res. Int. 2010, 43, 1123–1129. [Google Scholar] [CrossRef]
- Tierney, M.S.; Smyth, T.J.; Hayes, M.; Soler-vila, A.; Croft, A.K.; Brunton, N. Influence of Pressurised Liquid Extraction and Solid—Liquid Extraction Methods on the Phenolic Content and Antioxidant Activities of Irish Macroalgae. Int. J. Food Sci. Technol. 2013, 860–869. [Google Scholar] [CrossRef]
- Cuevas-Valenzuela, J.; González-Rojas, Á.; Wisniak, J.; Apelblat, A.; Pérez-Correa, J.R. Solubility of (+)-Catechin in Water and Water-Ethanol Mixtures within the Temperature Range 277.6-331.2K: Fundamental Data to Design Polyphenol Extraction Processes. Fluid Phase Equilib. 2015, 382, 279–285. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Goulas, V.; Tsakona, S.; Manganaris, G.A.; Gekas, V. A Knowledge Base for the Recovery of Natural Phenols with Different Solvents. Int. J. Food Prop. 2013, 16, 382–396. [Google Scholar] [CrossRef]
- Parí, S.M.; Juárez, M.L.M.; Vilca, F.Z.; Vilca, O.M.L.; Alca, E.E.A.; Escobedo-Pacheco, E.; Huamán-Castilla, N.L. Alternative Green Extraction Techniques to Enhance Recovery of Antioxidant Compounds from Red Peel Prickly Pear (Opuntia ficus-indica L. Miller). Discov. Food 2024, 4, 58. [Google Scholar] [CrossRef]
- Gan, A.; Baroutian, S. Subcritical Water Extraction for Recovery of Phenolics and Fucoidan from New Zealand Wakame (Undaria Pinnatifida) Seaweed. J. Supercrit. Fluids 2022, 190, 105732. [Google Scholar] [CrossRef]
- Jessop, P.G. Searching for Green Solvents. Green Chem. 2011, 13, 1391–1398. [Google Scholar] [CrossRef]
- Castejón, N.; Parailloux, M.; Izdebska, A.; Lobinski, R.; Fernandes, S.C.M. Valorization of the Red Algae Gelidium Sesquipedale by Extracting a Broad Spectrum of Minor Compounds Using Green Approaches. Mar. Drugs 2021, 19, 574. [Google Scholar] [CrossRef]
- Plaza, M.; Abrahamsson, V.; Turner, C. Extraction and Neoformation of Antioxidant Compounds by Pressurized Hot Water Extraction from Apple Byproducts. J. Agric. Food Chem. 2013, 61, 5500–5510. [Google Scholar] [CrossRef] [PubMed]
- Erpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J.R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137, 109589. [Google Scholar] [CrossRef] [PubMed]
- Ayua, E.O.; Nkhata, S.G.; Namaumbo, S.J.; Kamau, E.H.; Ngoma, T.N.; Aduol, K.O. Polyphenolic Inhibition of Enterocytic Starch Digestion Enzymes and Glucose Transporters for Managing Type 2 Diabetes May Be Reduced in Food Systems. Heliyon 2021, 7, e06245. [Google Scholar] [CrossRef] [PubMed]
- Huamán-Castilla, N.L.; Campos, D.; García-Ríos, D.; Parada, J.; Martínez-Cifuentes, M.; Mariotti-Celis, M.S.; Pérez-Correa, J.R. Chemical Properties of Vitis Vinifera Carménère Pomace Extracts Obtained by Hot Pressurized Liquid Extraction, and Their Inhibitory Effect on Type 2 Diabetes Mellitus Related Enzymes. Antioxidants 2021, 10, 472. [Google Scholar] [CrossRef]
- Moein, S.; Pimoradloo, E.; Moein, M.; Vessal, M. Evaluation of Antioxidant Potentials and α-Amylase Inhibition of Different Fractions of Labiatae Plants Extracts: As a Model of Antidiabetic Compounds Properties. BioMed Res. Int. 2017, 2017, 7319504. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Richardson, S.J.; Brennan, C.S.; Kasapis, S. Mechanistic Insights into α-Amylase Inhibition, Binding Affinity and Structural Changes upon Interaction with Gallic Acid. Food Hydrocoll. 2024, 148, 109467. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Chambia, F.; Chirinosa, R.; Pedreschic, R.; Betalleluz-Pallardela, I.; Debasteb, F.; Campos, D. Antioxidant Potential of Hydrolyzed Polyphenolic Extracts from Tara (Caesalpinia spinosa) Pods. Ind. Crops Prod. 2013, 47, 168–175. [Google Scholar] [CrossRef]
Description | Pure water | Ethanol (15%) | Ethanol (30%) | ||||||
---|---|---|---|---|---|---|---|---|---|
90 °C | 120 °C | 150 °C. | 90 °C | 120 °C | 150 °C | 90 °C | 120 °C | 150 °C | |
Mean ± DS | Mean ± DS | Mean ± DS | Mean ± DS | Mean ± DS | Mean ± DS | Mean ± DS | Mean ± DS | Mean ± DS | |
Phenolic acids (µg/g dw) | |||||||||
Gallic | 2.83 a ± 0.34 | 3.08 b ± 0.12 | 5.63 ± 0.41 d | 4.11 c ± 0.33 | 5.16 d ± 1.02 | 8.86 e ± 1.52 | 7.23 e ± 1.88 | 8.66 e ± 1.23 | 15.26 f ± 2.32 |
Caffeic | ND | ND | 0.47 a ± 0.07 | ND | 0.89 b ± 0.06 | 1.35 c ± 0.22 | 3.44 d ± 0.78 | 4.98 d ± 0.79 | 7.78 e ± 1.71 |
Vanillic | ND | 2.22 a ± 0.09 | 4.35 c ± 0.61 | ND | 3.01 b ± 0.44 | 6.42 d ± 0.71 | 5.67 d ± 1.03 | 8.73 e ± 0.81 | 11.14 f ± 1.02 |
Flavanols (µg/g dw) | |||||||||
Catechin | 2.11 a ± 0.27 | 3.67 b ± 0.12 | 5.26 c ± 1.05 | 4.11 c ± 1.07 | 12.09 d ± 1.55 | 19.05 f ± 3.45 | 10.18 d ± 0.81 | 13.89 d ± 0.83 | 15.46 e ± 1.01 |
Epicatechin | 13.45 a ± 1.08 | 16.78 b ± 1.45 | 20.21 c ± 1.12 | 15.23 b ± 1.98 | 21.87 c ± 1.98 | 25.03 d ± 1.88 | 19.23 c ± 1.04 | 24.53 d ± 2.78 | 28.53 e ± 2.77 |
Procyanidin B2 | 6.77 a ± 1.11 | 7.12 a ± 1.89 | 10.85 b ± 1.15 | 12.33 b ± 1.33 | 18.44 c ± 2.89 | 22.34 c ± 1.76 | 16.78 c ± 1.11 | 27.89 d ± 1.47 | 25.88 d ± 2.99 |
Procyanidin A2 | 16.88 a ± 1.21 | 18.33 a ± 1.07 | 22.93 b ± 1.81 | 19.36 b ± 1.78 | 23.41 b ± 1.08 | 27.37 c ± 1.98 | 23.15 b ± 1.75 | 30.56 c ± 2.47 | 34.15 c ± 3.22 |
Flavonols (µg/g dw) | |||||||||
Quercetin | 6.89 a ± 1.38 | 17.89 d ± 1.11 | 23.15 c ± 1.55 | 4.35 a ± 1.55 | 10.92 b ± 1.09 | 17.89 d ± 1.78 | 9.09 b ± 1.05 | 14.78 c ± 1.61 | 16.15 d ± 1.56 |
Kaempferol | 8.96 b ± 1.82 | 18.66 c ± 2.29 | 27.60 d ± 1.21 | 8.18 b ± 1.22 | 16.02 c ± 1.44 | 18.13 c ± 1.66 | 5.92 a ± 0.96 | 14.03 c ± 1.18 | 15.60 c ± 1.09 |
rutin | 67.87 a ± 2.44 | 81.34 b ± 3.13 | 95.70 c ± 7.92 | 55.54 a ± 7.41 | 65.66 a ± 4.28 | 69.01 a ± 7.27 | 51.67 a ± 5.34 | 59.77 a ± 3.33 | 62.70 a ± 5.77 |
Phlorotannins (µg/g dw) | |||||||||
Phloroglucinol | 13.09 a ± 2.56 | 15.67 a ± 1.78 | 28.45 c ± 2.88 | 14.11 a ± 1.78 | 19.55 b ± 2.31 | 39.67 d ± 3.05 | 28.99 c ± 3.43 | 29.24 c ± 3.77 | 58.67 e ± 4.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huamán-Castilla, N.L.; Allcca-Alca, E.E.; Hervas Nina, F.; León-Calvo, N.C.; Zirena Vilca, F.; Vilcanqui Chura, Y.L. Pressurized Liquid Extraction of Antioxidant and α-Amylase-Inhibitory Compounds from Red Seaweed Using Water–Ethanol Mixtures. Molecules 2024, 29, 5018. https://doi.org/10.3390/molecules29215018
Huamán-Castilla NL, Allcca-Alca EE, Hervas Nina F, León-Calvo NC, Zirena Vilca F, Vilcanqui Chura YL. Pressurized Liquid Extraction of Antioxidant and α-Amylase-Inhibitory Compounds from Red Seaweed Using Water–Ethanol Mixtures. Molecules. 2024; 29(21):5018. https://doi.org/10.3390/molecules29215018
Chicago/Turabian StyleHuamán-Castilla, Nils Leander, Erik Edwin Allcca-Alca, Frank Hervas Nina, Nilton Cesar León-Calvo, Franz Zirena Vilca, and Yesica Luz Vilcanqui Chura. 2024. "Pressurized Liquid Extraction of Antioxidant and α-Amylase-Inhibitory Compounds from Red Seaweed Using Water–Ethanol Mixtures" Molecules 29, no. 21: 5018. https://doi.org/10.3390/molecules29215018
APA StyleHuamán-Castilla, N. L., Allcca-Alca, E. E., Hervas Nina, F., León-Calvo, N. C., Zirena Vilca, F., & Vilcanqui Chura, Y. L. (2024). Pressurized Liquid Extraction of Antioxidant and α-Amylase-Inhibitory Compounds from Red Seaweed Using Water–Ethanol Mixtures. Molecules, 29(21), 5018. https://doi.org/10.3390/molecules29215018