Two-Dimensional Covalent Organic Frameworks with Carbazole-Embedded Frameworks Facilitate Photocatalytic and Electrocatalytic Processes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses and Characteristics
2.2. Photocatalytic Performance Toward Oxidative Coupling of Benzylamines
2.3. Electrocatalytic Oxygen Reduction
3. Materials and Methods
3.1. Materials Characterization
3.2. Oxidative Coupling of Amino Groups
3.3. Electrocatalytic Oxygen Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, Y.; Qin, Y.; Yin, Y.; Zhang, J.; Li, X. Humidification Strategy for Polymer Electrolyte Membrane Fuel Cells—A Review. Appl. Energy 2018, 230, 643–662. [Google Scholar] [CrossRef]
- Rentschler, J.; Leonova, N. Global Air Pollution Exposure and Poverty. Nat. Commun. 2023, 14, 4432. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and Sustainable Clean Energy Development and Impact on Social, Economic, and Environmental Health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Roduner, E. Understanding Catalysis. Chem. Soc. Rev. 2014, 43, 8226–8239. [Google Scholar] [CrossRef] [PubMed]
- Candish, L.; Collins, K.D.; Cook, G.C.; Douglas, J.J.; Gómez-Suárez, A.; Jolit, A.; Keess, S. Photocatalysis in the Life Science Industry. Chem. Rev. 2022, 122, 2907–2980. [Google Scholar] [CrossRef]
- Santoro, C.; Bollella, P.; Erable, B.; Atanassov, P.; Pant, D. Oxygen Reduction Reaction Electrocatalysis in Neutral Media for Bioelectrochemical Systems. Nat. Catal. 2022, 5, 473–484. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, Y.; Yaghi, O.M. Covalent Chemistry Beyond Molecules. J. Am. Chem. Soc. 2016, 138, 3255–3265. [Google Scholar] [CrossRef]
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Wang, W. Covalent Organic Frameworks (COFs): From Design to Applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, Y.; Zhu, Y.; Liu, C.-Y.; Yan, Q.; Wu, X.; Ling, K.; Zhang, X.; Ajayan, P.M.; Senftle, T.P.; et al. Versatile Metal-Free Photocatalysts Based on 3D Covalent Organic Frameworks Capable of Reductive and Oxidative Organic Transformations and Polymerizations. Macromolecules 2024, 57, 1038–1049. [Google Scholar] [CrossRef]
- Haase, F.; Lotsch, B.V. Solving the COF Trilemma: Towards Crystalline, Stable and Functional Covalent Organic Frameworks. Chem. Soc. Rev. 2020, 49, 8469–8500. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X.; et al. Covalent Organic Framework Photocatalysts: Structures and Applications. Chem. Soc. Rev. 2020, 49, 4135–4165. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, A.F.M.; Hung, Y.-H.; Mansoure, T.H.; Yu, H.-H.; Hsu, Y.-S.; Wu, K.C.W.; Kuo, S.-W. Synthesis of [3 + 3] Β-Ketoenamine-Tethered Covalent Organic Frameworks (COFs) for High-Performance Supercapacitance and CO2 Storage. J. Taiwan Inst. Chem. Eng. 2019, 103, 199–208. [Google Scholar] [CrossRef]
- Verma, K.; Addicoat, M.A.; Justin Thomas, K.R. Carbazole-Based Imine-Linked Covalent Organic Framework for Efficient Heterogeneous Photocatalysis. ACS Appl. Polym. Mater. 2024, 6, 3909–3917. [Google Scholar] [CrossRef]
- Gropp, C.; Canossa, S.; Wuttke, S.; Gándara, F.; Li, Q.; Gagliardi, L.; Yaghi, O.M. Standard Practices of Reticular Chemistry. ACS Cent. Sci. 2020, 6, 1255–1273. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Acc. Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef]
- Gu, Z.; Shan, Z.; Wang, Y.; Wang, J.; Liu, T.; Li, X.; Yu, Z.; Su, J.; Zhang, G. Tuning the Exciton Binding Energy of Covalent Organic Frameworks for Efficient Photocatalysis. Chin. Chem. Lett. 2024, 35, 108356. [Google Scholar] [CrossRef]
- Jin, F.; Lin, E.; Wang, T.; Yan, D.; Yang, Y.; Chen, Y.; Cheng, P.; Zhang, Z. Rationally Fabricating 3D Porphyrinic Covalent Organic Frameworks with Scu Topology as Highly Efficient Photocatalysts. Chem 2022, 8, 3064–3080. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Zhang, S.-B.; Zhang, M.; Li, Z.-H.; Liu, Y.-F.; Liao, X.; Lu, M.; Li, S.-L.; Lan, Y.-Q. Three-Motif Molecular Junction Type Covalent Organic Frameworks for Efficient Photocatalytic Aerobic Oxidation. J. Am. Chem. Soc. 2024, 146, 3396–3404. [Google Scholar] [CrossRef]
- An, S.; Li, X.; Shang, S.; Xu, T.; Yang, S.; Cui, C.-X.; Peng, C.; Liu, H.; Xu, Q.; Jiang, Z.; et al. One-Dimensional Covalent Organic Frameworks for the 2e− Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2023, 62, e202218742. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Fernández, M.; Martínez-Periñán, E.; de la Peña Ruigómez, A.; Cabrera-Trujillo, J.J.; Navarro, J.A.R.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Ramos, M.; Vismara, R.; Zamora, F.; et al. Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angew. Chem. Int. Ed. 2023, 62, e202313940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qiao, Z.; Zhang, R.; Wang, Z.; Wang, H.-J.; Zhao, J.; Cao, D.; Wang, S. Multicomponent Synthesis of Imidazole-Linked Fully Conjugated 3D Covalent Organic Framework for Efficient Electrochemical Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2023, 62, e202314539. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, J.; Suo, J.; Li, C.; Wang, Z.; Li, H.; Valtchev, V.; Qiu, S.; Liu, X.; Fang, Q. Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 2023, 11, 18349–18355. [Google Scholar] [CrossRef]
- Jiang, R.; Zhi, Q.; Han, B.; Li, N.; Wang, K.; Qi, D.; Li, W.; Jiang, J. Hydrophilic phthalocyanine covalent organic frameworks for enhanced electrocatalytic H2O2 production. Chem. Eng. J. 2024, 489, 151232. [Google Scholar] [CrossRef]
- Li, J.; Liu, P.; Mao, J.; Yan, J.; Song, W. Revealing the structure–activity relationship in woven covalent organic frameworks for the electrocatalytic oxygen reduction reaction. Nanoscale 2022, 14, 6126–6132. [Google Scholar] [CrossRef]
- Shin, Y.; Park, S.; Jang, H.; Shin, G.; Shin, D.; Park, S. Atomically dispersed Co-based species containing electron withdrawing groups for electrocatalytic oxygen reduction reactions. Nanoscale 2024, 16, 17419–17425. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, B.; Wu, D.; Xu, Y.; Hu, H.; Duan, F.; Zhu, H.; Du, M.; Lu, S. Linkage engineering in covalent organic frameworks as metal-free oxygen reduction electrocatalysts for hydrogen peroxide production. Appl. Catal. B Environ. 2024, 340, 123216. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, P.; Zou, X.; Shi, Z.; Zhang, J.; Sun, Z.; Guo, S.; Yan, F. Interlayer Polymerization to Construct a Fully Conjugated Covalent Organic Framework as a Metal-Free Oxygen Reduction Reaction Catalyst for Anion Exchange Membrane Fuel Cells. Small 2024, 20, 2401880. [Google Scholar] [CrossRef]
- Yang, X.; Fu, Y.; Liu, M.; Zheng, S.; Li, X.; Xu, Q.; Zeng, G. Solvent Effects on Metal-free Covalent Organic Frameworks in Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2024, 63, e202319247. [Google Scholar] [CrossRef]
- Liu, M.; Yang, S.; Fu, Y.; Yang, X.; Li, X.; He, J.; Xu, Q.; Zeng, G. Ladder type covalent organic frameworks constructed with natural units for the oxygen and carbon dioxide reduction reactions. Chem. Eng. J. 2024, 488, 150812. [Google Scholar] [CrossRef]
- Ju, J.-M.; Lee, C.H.; Park, J.H.; Lee, J.-H.; Lee, H.; Shin, J.-H.; Kwak, S.-Y.; Lee, S.U.; Kim, J.-H. Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn–Air Batteries. ACS Appl. Mater. Interfaces 2022, 14, 24404–24414. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, S.; Cui, C.X.; Miao, Q.; He, Y.; Li, X.; Xu, Q.; Zeng, G. Construction of catalytic covalent organic frameworks with redox-active sites for the oxygen reduction and the oxygen evolution reaction. Angew. Chem. 2022, 134, e202213522. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X.; Li, X.; Hai, G.; Li, B.; Wang, G. Covalent-organic frameworks with keto-enol tautomerism for efficient photocatalytic oxidative coupling of amines to imines under visible light. Sci. China Chem. 2021, 64, 2169–2179. [Google Scholar] [CrossRef]
- Xiong, K.; Wang, Y.; Huang, F.; Zhang, K.; Zeng, B.; Lang, X. Tailoring β-ketoenamine covalent organic framework with azo for blue light-driven selective oxidation of amines with oxygen. J. Colloid Interface Sci. 2024, 665, 252–262. [Google Scholar] [CrossRef]
- Kou, J.; Wang, G.; Guo, H.; Li, L.; Fang, J.; Ma, J.; Dong, Z. Photocatalytic benzylamine coupling dominated by modulation of linkers in donor-acceptor covalent organic frameworks. Appl. Catal. B Environ. Energy 2024, 352, 124020. [Google Scholar] [CrossRef]
- Zhao, X.; Li, A.; Yang, D.; Qiu, T.-Y.; Zhao, Z.; Wang, S.-L.; Mu, X.; Tan, H.-Q. Coralloid W18O49@ covalent organic frameworks S-scheme heterojunction for high efficiency photocatalytic aerobic oxidation. J. Colloid Interface Sci. 2024, 653, 67–76. [Google Scholar] [CrossRef]
- Zhang, K.; Xi, Z.; Wu, Z.; Lu, G.; Huang, X. Visible-light-induced selective oxidation of amines into imines over UiO-66-NH2@ Au@ COF core–shell photocatalysts. ACS Sustain. Chem. Eng. 2021, 9, 12623–12633. [Google Scholar] [CrossRef]
Entry | Photocatalyst | Time (h) | Conv. (%) | Sel. (%) |
---|---|---|---|---|
1 | FCTD-TAPy | 12 | 95 | 99 |
2 | FCTD-TAET | 12 | 76 | 99 |
3 | FCTD-TABT | 12 | 78 | 78 |
4 | FCTD-TAPy | 4 | 55 | 99 |
5 | FCTD-TAPy | 8 | 85 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Wei, S.; Wu, X.; Lu, C. Two-Dimensional Covalent Organic Frameworks with Carbazole-Embedded Frameworks Facilitate Photocatalytic and Electrocatalytic Processes. Molecules 2024, 29, 5071. https://doi.org/10.3390/molecules29215071
Xiao Y, Wei S, Wu X, Lu C. Two-Dimensional Covalent Organic Frameworks with Carbazole-Embedded Frameworks Facilitate Photocatalytic and Electrocatalytic Processes. Molecules. 2024; 29(21):5071. https://doi.org/10.3390/molecules29215071
Chicago/Turabian StyleXiao, Yuchen, Shanyue Wei, Xiaowei Wu, and Canzhong Lu. 2024. "Two-Dimensional Covalent Organic Frameworks with Carbazole-Embedded Frameworks Facilitate Photocatalytic and Electrocatalytic Processes" Molecules 29, no. 21: 5071. https://doi.org/10.3390/molecules29215071
APA StyleXiao, Y., Wei, S., Wu, X., & Lu, C. (2024). Two-Dimensional Covalent Organic Frameworks with Carbazole-Embedded Frameworks Facilitate Photocatalytic and Electrocatalytic Processes. Molecules, 29(21), 5071. https://doi.org/10.3390/molecules29215071