The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis
Abstract
:1. Introduction
2. Results
2.1. Antifungal Effects of Berberine In Vitro
2.2. Electron Microscopy
2.3. Ultrastructural Analysis Demonstrated the Effective Activity of Berberine in C. neoformans
2.4. Berberine Does Not Induce Fungal Necrosis or Apoptosis
2.5. Evaluation of Reactive Oxygen Species (ROS) Production and Mitochondrial Membrane Potential Dynamics in Response to Berberine Treatment
2.6. Molecular Docking Analysis and Molecular Interaction Analysis
2.7. Efficacy of Once-Daily Berberine Application on Treating Dermatophytosis
2.8. Administration of Berberine Prolonged Survival and Enhanced Body Weight Following C. neoformans Infection
2.9. Efficacy of Berberine in a Murine Model of Cryptococcal Infection
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Pathogens and Culture Conditions
4.3. Microbroth Dilution Assay
4.4. Scanning Electron Microscopy (SEM)
4.5. Transmission Electron Microscopy (TEM)
4.6. Flow Cytometry Assay
4.7. Fungal Intracellular Reactive Oxygen Species (ROS) Assay
4.8. Mitochondrial Membrane Potential Assay
4.9. In Silico Docking
4.10. Binding Affinity Assay
4.11. Guinea Pig Dermatophytosis Model and Antifungal Treatment
4.12. Murine Model of C. neoformans Infection
4.13. Histopathological Assay
4.14. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Y.; Xu, X.Y.; Song, X. A review of antifungal natural products against the pathogenic fungi causing athletes’ foot disease. Current. Organic. Chem. 2017, 21, 1907–1919. [Google Scholar] [CrossRef]
- Zhang, C.W.; Zhong, X.J.; Zhao, Y.S.; Rajoka, M.S.R.; Hashmi, M.H.; Zhai, P.; Song, X. Antifungal natural products and their derivatives: A review of their activity and mechanism of actions. Pharmacol. Res. Mod. Chin. Med. 2023, 7, 100262. [Google Scholar] [CrossRef]
- Kanafani, Z.A.; Perfect, J.R. Resistance to antifungal agents: Mechanisms and clinical impact. Clin. Infect. Dis. 2008, 46, 120–128. [Google Scholar] [CrossRef]
- Zhou, H.A.O.; Wang, W.A.O.; Cai, L.A.O.; Yang, T.A.O. Potentiation and mechanism of berberine as an antibiotic adjuvant against multidrug-resistant bacteria. Infect. Drug Resist. 2023, 21, 7313–7326. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Lou, G.H.; Zeng, H.R.; Hu, J.; Huang, Q.W.; Peng, W.; Yang, X.B. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm. Biol. 2019, 57, 193–225. [Google Scholar] [CrossRef]
- Ryuk, J.A.; Zheng, M.S.; Lee, M.Y.; Seo, C.S.; Li, Y.; Lee, S.H.; Moon, D.C.; Lee, H.W.; Lee, J.H.; Park, J.Y.; et al. Discrimination of Phellodendron amurense and P. chinense based on DNA analysis and the simultaneous analysis of alkaloids. Arch. Pharm. Res. 2012, 35, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Gawel, K.; Kukula-Koch, W.; Nieoczym, D.; Stepnik, K.; Ent, W.V.; Banono, N.S.; Tarabasz, D.; Turski, W.A.; Esguerra, C.V. The influence of palmatine isolated from berberis sibiricaradix on pentylenetetrazole-induced seizures in zebrafish. Cells 2020, 9, 1233. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef]
- Han, Y.; Lee, J.H. Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol. Pharm. Bull. 2005, 28, 541–544. [Google Scholar] [CrossRef]
- da Silva, A.R.; de Andrade Neto, J.B.; da Silva, C.R.; Campos, R.D.S.; Costa Silva, R.A.; Freitas, D.D.; do Nascimento, F.B.; de Andrade, L.N.; Sampaio, L.S.; Grangeiro, T.B.; et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob. Agents. Chemother. 2016, 60, 3551–3557. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Yang, R.; Chen, F.; Liao, Y.; Zhu, Z.; Wu, Z.; Sun, X.; Wang, L. Effects of berberine on the gastrointestinal microbiota. Front. Cell. Infect. Microbiol. 2021, 10, 588517. [Google Scholar] [CrossRef]
- Harrison, S.A.; Gunn, N.; Neff, G.W.; Kohli, A.; Liu, L.; Flyer, A.; Goldkind, L.; Di, A.M. A phase 2, proof of concept, randomised controlled trial of berberine ursodeoxycholate in patients with presumed non-alcoholic steatohepatitis and type 2 diabetes. Nat. Commun. 2021, 12, 5503. [Google Scholar] [CrossRef] [PubMed]
- Kosalec, I.; Jazvinšćak Jembrek, M.; Vlainić, J. The spectrum of berberine antibacterial and antifungal activities. In Promising Antimicrobials from Natural Products; Springer International Publishing: Cham, Switzerland, 2022; pp. 119–132. [Google Scholar]
- Hu, Z.; Hu, H.; Hu, Z.; Zhong, X.; Guan, Y.; Zhao, Y.; Wang, L.; Ye, L.; Ming, L.; Riaz Rajoka, M.S.; et al. Sanguinarine, isolated from macleaya cordata, exhibits potent antifungal efficacy against Candida albicans through inhibiting ergosterol synthesis. Front. Microbiol. 2022, 13, 908461. [Google Scholar] [CrossRef]
- Iyer, K.R.; Revie, N.M.; Fu, C.; Robbins, N.; Cowen, L.A.O. Treatment strategies for cryptococcal infection: Challenges, advances and future outlook. Nat. Rev. Microbiol. 2021, 19, 454–466. [Google Scholar] [CrossRef]
- Bermas, A.; Geddes-McAlister, J.A.O. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol. Microbiol. 2020, 114, 721–734. [Google Scholar] [CrossRef]
- Sousa, N.A.O.; Almeida, J.A.O.; Frickmann, H.A.O.; Lacerda, M.A.O.; Souza, J.A.O. Searching for new antifungals for the treatment of cryptococcosis. Rev. Soc. Bras. Med. Trop. 2023, 24, e01212023. [Google Scholar] [CrossRef] [PubMed]
- Wong-Deyrup, S.W.; Song, X.; Ng, T.W.; Liu, X.B.; Zeng, J.G.; Qing, Z.X.; Deyrup, S.T.; He, Z.D.; Zhang, H.J. Plant-derived isoquinoline alkaloids that target ergosterol biosynthesis discovered by using a novel antifungal screening tool. Biomed. Pharmacother. 2021, 137, 111348. [Google Scholar] [CrossRef]
- Qin, Z.; Tang, R.; Liang, J.; Jia, X. Berberine, a natural alkaloid: Advances in its pharmacological effects and mechanisms in the treatment of autoimmune diseases. Int. Immunopharmacol. 2024, 137, 112422. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, X.; Wu, N.; Han, Y.; Wang, J.; Yu, Y.; Chen, Q. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol. 2021, 12, 653887. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, D.; Yong, J.; Li, Y. Antifungal activity and potential mechanism of berberine hydrochloride against fluconazole-resistant Candida albicans. J. Med. Microbiol. 2022, 71, 001542. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, M.; Yi, Y.; Patel, A.; Song, Z.; Li, Y. Inhibition of berberine hydrochloride on Candida. albicans. biofilm formation. Biotechnol. Lett. 2020, 42, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Pei, R.; Zhang, Z.; Liao, J.; Yu, W.; Qiao, N.; Han, Q.; Li, Y.; Hu, L.; Guo, J.; et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2019, 54, 310–316. [Google Scholar] [CrossRef]
- Qian, Z.; Mengxun, Z.; Yingchao, W.; Tingting, Z.; Roujuan, W.; Shuhong, W.; Yi, D.; Ruirui, Y.; Peng, Y.; Yifan, S.; et al. Natural compound 2-Chloro-1,3-dimethoxy-5-methylbenzene, isolated from Hericium. erinaceus, inhibits fungal growth by disrupting membranes and triggering apoptosis. J. Agric. Food Chem. 2022, 70, 6444–6454. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, H.; Pal, S.; Sabnam, S.; Pal, A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life Sci. 2020, 241, 117148. [Google Scholar] [CrossRef] [PubMed]
- Menzies, F.M.; Cookson, M.R.; Taylor, R.W.; Turnbull, D.M.; Chrzanowska-Lightowlers, Z.M.; Dong, L.; Figlewicz, D.A.; Shaw, P.J. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain J. Neurol. 2002, 125, 1522–1533. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Lv, Q.; Yan, L.; Wang, Y.; Jiang, Y. The Fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Front. Microbiol. 2019, 10, 691. [Google Scholar] [CrossRef]
- Rosam, K.; Monk, B.C.; Lackner, M. Sterol 14α-demethylase ligand-binding pocket-mediated acquired and intrinsic azole resistance in fungal pathogens. J. Fungi. 2020, 7, 1. [Google Scholar] [CrossRef]
- Jordá, T.; Puig, S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, X.; Zhou, P. In vitro Antifungal Effects of Berberine against Candida spp. in planktonic and biofilm conditions. Drug Des. Dev. Ther. 2020, 14, 87–101. [Google Scholar] [CrossRef]
- Nataša, Z.; Ivan, K.; Siniša, T.; Ivan, B.; Mario, J.; Toni, V.l.; Josipa, V. Membrane of Candida albicans as a target of berberine. BMC Complement. Altern. Med. 2017, 17, 268. [Google Scholar]
- Luo, X.F.; Zhou, H.; Deng, P.; Zhang, S.Y.; Wang, Y.R.; Ding, Y.Y.; Wang, G.H.; Zhang, Z.J.; Wu, Z.R.; Liu, Y.Q. Current development and structure-activity relationship study of berberine derivatives. Bioorganic. Med. Chem. 2024, 112, 117880. [Google Scholar] [CrossRef] [PubMed]
- Almatroodi, S.A.; Alsahli, M.A.; Rahmani, A.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules 2022, 27, 5889. [Google Scholar] [CrossRef]
- Luo, H.; Pan, K.S.; Luo, X.L.; Zheng, D.Y.; Andrianopoulos, A.; Wen, L.M.; Zheng, Y.Q.; Guo, J.; Huang, C.Y.; Li, X.Y.; et al. In vitro susceptibility of berberine combined with antifungal agents against the yeast form of Talaromyces marneffei. Mycopathologia 2019, 184, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Shi, G.; Wang, T.; Wu, D.; Wang, C. Antiproliferation of berberine in combination with fluconazole from the perspectives of reactive oxygen species, ergosterol and drug efflux in a fluconazole-resistant Candida tropicalis isolate. Front. Microbiol. 2016, 7, 1516. [Google Scholar] [CrossRef]
- Sajeev, A.; Sailo, B.; Unnikrishnan, J.; Talukdar, A.; Alqahtani, M.S.; Abbas, M.; Alqahtani, A.; Sethi, G.; Kunnumakkara, A.B. Unlocking the potential of berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett. 2024, 597, 217019. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; Wang, L.; Kang, G.; Wang, P.; Yin, H.; Huang, H. A potential combination therapy of berberine hydrochloride with antibiotics against multidrug-resistant Acinetobacter baumannii. Front. Cell. Infect. Microbiol. 2021, 11, 660431. [Google Scholar] [CrossRef]
- Wei, G.X.; Xu, X.; Wu, C.D. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Arch. Oral. Biol. 2011, 56, 565–572. [Google Scholar] [CrossRef]
- Simões Gobbi, L.P.; Costa, E.H.E.; Fernandez, C.M.M.; Lorenzetti, F.B.; Fonseca, D.P.; Gomes, A.V.; Baldoqui, D.C.; Fernandes, C.S.; Ueda-Nakamura, T.; Nakamura, C.V.; et al. Berberine-fluconazole microparticle-based combination therapy to treat candidiasis infections. J. Appl. Microbiol. 2023, 134, 12. [Google Scholar] [CrossRef] [PubMed]
- Iwazaki, R.S.; Endo, E.H.; Ueda-Nakamura, T.; Nakamura, C.V.; Garcia, L.B.; Filho, B.P.D. In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek 2010, 97, 201–205. [Google Scholar] [CrossRef]
- Song, X.; Gaascht, F.; Schmidt-Dannert, C.; Salomon, C.E. Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique North American Hericium sp. fungus. Molecules 2020, 25, 963. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; CLSI standard M02 Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Song, X.; Wei, Y.X.; Lai, K.-M.; He, Z.D.; Zhang, H.J. In vivo antifungal activity of dipyrithione against Trichophyton rubrum on guinea pig dermatophytosis models. Biomed. Pharmacother. 2018, 108, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; He, J.; Xu, H.; Hu, X.P.; Wu, X.L.; Wu, H.Q.; Liu, L.Z.; Liao, C.H.; Zeng, Y.; Li, Y.; et al. The antiviral effects of acteoside and the underlying IFN-γ-inducing action. Food Funct. 2016, 7, 3017–3030. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.-W.; Huang, D.-Y.; Rajoka, M.S.R.; Wu, Y.; He, Z.-D.; Ye, L.; Wang, Y.; Song, X. The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis. Molecules 2024, 29, 5079. https://doi.org/10.3390/molecules29215079
Zhang C-W, Huang D-Y, Rajoka MSR, Wu Y, He Z-D, Ye L, Wang Y, Song X. The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis. Molecules. 2024; 29(21):5079. https://doi.org/10.3390/molecules29215079
Chicago/Turabian StyleZhang, Chao-Wei, Dong-Yu Huang, Muhammad Shahid Riaz Rajoka, Yan Wu, Zhen-Dan He, Liang Ye, Yan Wang, and Xun Song. 2024. "The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis" Molecules 29, no. 21: 5079. https://doi.org/10.3390/molecules29215079
APA StyleZhang, C.-W., Huang, D.-Y., Rajoka, M. S. R., Wu, Y., He, Z.-D., Ye, L., Wang, Y., & Song, X. (2024). The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis. Molecules, 29(21), 5079. https://doi.org/10.3390/molecules29215079