Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients—A Review
Abstract
:1. Introduction
2. Methods
3. Boraginaceae Species in Ethnobotany
3.1. Primary and Secondary Molecules in Boraginaceae
3.2. Primary Metabolites
Fatty Acids
4. Secondary Metabolites
4.1. Essential Oils
4.2. Phenolic Compounds
4.2.1. Phenolic Acids
4.2.2. Flavonoids
4.2.3. Tannins
4.3. Other Subgroups of Secondary Metabolites
4.3.1. Naphtoquinone Pigments
4.3.2. Saponins
4.3.3. Allantoin
4.3.4. Mucilages
4.3.5. Pyrrolizidine Alkaloids
5. Bioelements
Silicon (Si) and Silicon Dioxide (SiO2)
6. In Vitro Production of Secondary Metabolites
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonard, C. Global Beauty Industry Trends. Ski. Inc. 2011, 8, 48–50. [Google Scholar]
- González-Minero, F.J.; Bravo-Díaz, L. The Use of Plants in Skin-Care Products, Cosmetics and Fragrances: Past and Present. Cosmetics 2018, 5, 50. [Google Scholar] [CrossRef]
- Faccio, G. Plant Complexity and Cosmetic Innovation. iScience 2020, 23, 101358. [Google Scholar] [CrossRef] [PubMed]
- Dresler, S.; Szymczak, G.; Wójcik, M. Comparison of Some Secondary Metabolite Content in the Seventeen Species of the Boraginaceae Family. Pharm. Biol. 2017, 55, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Rode, D. Comfrey Toxicity Revisited. Trends Pharmacol. Sci. 2002, 23, 497–499. [Google Scholar] [CrossRef]
- Kumar, A.; Shashni, S.; Kumar, P.; Pant, D.; Singh, A.; Verma, R.K. Phytochemical Constituents, Distributions and Traditional Usages of Arnebia Euchroma: A Review. J. Ethnopharmacol. 2021, 271, 113896. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A.; Nayik, G.A.; Cooper, R.; Bhardwaj, G.; Sohal, H.S.; Mutreja, V.; Kaur, R.; Areche, F.O.; AlOudat, M.; et al. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front. Pharmacol. 2022, 13, 905755. [Google Scholar] [CrossRef]
- Das, S.; Agarwal, S.; Samanta, S.; Kumari, M.; Das, R. Formulation and Evaluation of Herbal Soap. J. Pharmacogn. Phytochem. 2024, 13, 14–19. [Google Scholar] [CrossRef]
- Cohen, J.I. A Phylogenetic Analysis of Morphological and Molecular Characters of Boraginaceae: Evolutionary Relationships, Taxonomy, and Patterns of Character Evolution. Cladistics 2014, 30, 139–169. [Google Scholar] [CrossRef]
- Selvi, F.; Bigazzi, M. Leaf Surface and Anatomy in Boraginaceae Tribe Boragineae with Respect to Ecology and Taxonomy. Flora 2001, 196, 269–285. [Google Scholar] [CrossRef]
- Fazly Bazzaz, B.S.; Haririzadeh, G.; Imami, S.; Rashed, M. Survey of Iranian Plants for Alkaloids, Flavonoids, Saponins, and Tannins [Khorasan Province]. Pharm. Biol. 1997, 35, 17–30. [Google Scholar] [CrossRef]
- Özcan, T. Analysis of the Total Oil and Fatty Acid Composition of Seeds of Some Boraginaceae Taxa from Turkey. Oesterr Bot. Wochenbl. 2008, 274, 143–153. [Google Scholar] [CrossRef]
- Zarzycki, K.; Szeląg, Z.; Wojewoda, W. Red List of the Vascular Plants in Poland; Polish Academy of Sciences: Krakow, Poland, 2006; pp. 9–20. [Google Scholar]
- Mosyakin, A.S. Invasive Plants in North America: A View from Ukraine. Biodivers. Res. Conserv. 2008, 9–10, 11–18. [Google Scholar] [CrossRef]
- Brosche, T.; Platt, D. Effect of Borage Oil Consumption on Fatty Acid Metabolism, Transepidermal Water Loss and Skin Parameters in Elderly People. Arch. Gerontol. Geriatr. 2000, 30, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, A.; Ooyama, K.; Kojima, K.; Kachi, H.; Abe, T.; Amano, K.; Aoyama, T. Dietary Supplementation of Gamma-Linolenic Acid Improves Skin Parameters in Subjects with Dry Skin and Mild Atopic Dermatitis. J. Oleo Sci. 2011, 60, 597–607. [Google Scholar] [CrossRef]
- Dawid-Pać, R. Medicinal Plants Used in Treatment of Inflammatory Skin Diseases. Adv. Dermatol. Allergol. 2013, 30, 170–177. [Google Scholar] [CrossRef]
- Asadi-Samani, M.; Bahmani, M.; Rafieian-Kopaei, M. The Chemical Composition, Botanical Characteristic and Biological Activities of Borago officinalis: A Review. Asian Pac. J. Trop. Med. 2014, 7 (Suppl. S1), 22–28. [Google Scholar] [CrossRef]
- Seo, S.A.; Park, B.; Hwang, E.; Park, S.-Y.; Yi, T.-H. Borago officinalis L. Attenuates UVB-Induced Skin Photodamage via Regulation of AP-1 and Nrf2/ARE Pathway in Normal Human Dermal Fibroblasts and Promotion of Collagen Synthesis in Hairless Mice. Exp. Gerontol. 2018, 107, 178–186. [Google Scholar] [CrossRef]
- Salehi, B.; Sharopov, F.; Tumer, T.B.; Ozleyen, A.; Rodríguez-Pérez, C.; Ezzat, S.M.; Azzini, E.; Hosseinabadi, T.; Butnariu, M.; Sarac, I.; et al. Symphytum Species: A Comprehensive Review on Chemical Composition, Food Applications and Phytopharmacology. Molecules 2019, 24, 2272. [Google Scholar] [CrossRef]
- Tanwar, B.; Goyal, A.; Kumar, V.; Rasane, P.; Sihag, M.K. Borage (Borago officinalis) Seed. In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Singapore, 2021; pp. 351–371. ISBN 9789811541940. [Google Scholar]
- Pietrosiuk, A.; Budzianowska, A.; Budzianowski, J.; Ekiert, H.M.; Jeziorek, M.; Kawiak, A.; Kikowska, M.; Krauze-Baranowska, M.E.; Królicka, A.; Kuźma, Ł.M.; et al. Polish Achievements in Bioactive Compound Production from In Vitro Plant Cultures. Acta Soc. Bot. Pol. 2022, 91, 1–38. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Koh, J.; Kim, Y.S.; Park, D. Effect of Rosmarinic Acid on Atopic Dermatitis. J. Dermatol. 2008, 35, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Brudzyńska, P.; Khan, M.R.; Sytar, O.; Makhzoum, A.; Sionkowska, A. Natural Plant-Derived Compounds in Food and Cosmetics: A Paradigm of Shikonin and Its Derivatives. Materials 2023, 16, 4377. [Google Scholar] [CrossRef] [PubMed]
- Sykłowska-Baranek, K.; Gaweł, M.; Kuźma, Ł.; Wileńska, B.; Kawka, M.; Jeziorek, M.; Graikou, K.; Chinou, I.; Szyszko, E.; Stępień, P.; et al. Rindera graeca (A. DC.) Boiss. & Heldr. (Boraginaceae) In Vitro Cultures Targeting Lithospermic Acid B and Rosmarinic Acid Production. Molecules 2023, 28, 4880. [Google Scholar] [CrossRef] [PubMed]
- Staiger, C. Comfrey: A Clinical Overview. Phytother. Res. 2012, 26, 1441–1448. [Google Scholar] [CrossRef]
- Vogl, S.; Picker, P.; Mihaly-Bison, J.; Fakhrudin, N.; Atanasov, A.G.; Heiss, E.H.; Wawrosch, C.; Reznicek, G.; Dirsch, V.M.; Saukel, J.; et al. Ethnopharmacological In Vitro Studies on Austria’s Folk Medicine—An Unexplored Lore In Vitro Anti-Inflammatory Activities of 71 Austrian Traditional Herbal Drugs. J. Ethnopharmacol. 2013, 149, 750–771. [Google Scholar] [CrossRef]
- Mirsadraee, M.; Khashkhashi Moghaddam, S.; Saeedi, P.; Ghaffari, S. Effect of Borago officinalis Extract on Moderate Persistent Asthma: A Phase Two Randomized, Double Blind, Placebo-Controlled Clinical Trial. Tanaffos 2016, 15, 168–174. [Google Scholar]
- Soliman, G.; Yusufoglu, H.; Tatli, I.; Abdel-Rahman, R.; Anul, S.; Akaydın, G. Hepatoprotective Activities of Lappula Barbata and Plantago Holosteum against Paracetamol Induced Liver Damage in Rats and Their In Vitro Antioxidant Effects. Planta Medica 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Mu, Z.; Guo, J.; Zhang, D.; Xu, Y.; Zhou, M.; Guo, Y.; Hou, Y.; Gao, X.; Han, X.; Geng, L. Therapeutic Effects of Shikonin on Skin Diseases: A Review. Am. J. Chin. Med. 2021, 49, 1871–1895. [Google Scholar] [CrossRef]
- Oberlies, N.H.; Kim, N.-C.; Brine, D.R.; Collins, B.J.; Handy, R.W.; Sparacino, C.M.; Wani, M.C.; Wall, M.E. Analysis of Herbal Teas Made from the Leaves of Comfrey (Symphytum officinale): Reduction of N-Oxides Results in Order of Magnitude Increases in the Measurable Concentration of Pyrrolizidine Alkaloids. Public Health Nutr. 2004, 7, 919–924. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Üstün Alkan, F.; Anlas, C.; Ustuner, O.; Bakırel, T.; Sari, A. Antioxidant and Proliferative Effects of Aqueous and Ethanolic Extracts of Symphytum officinale on 3T3 Swiss Albino Mouse Fibroblast Cell Line. Asian J. Plant Sci. 2014, 4, 62–68. [Google Scholar]
- Lozano-Baena, M.-D.; Tasset, I.; Muñoz-Serrano, A.; Alonso-Moraga, Á.; de Haro-Bailón, A. Cancer Prevention and Health Benefices of Traditionally Consumed Borago officinalis Plants. Nutrients 2016, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, G.; Asfaw, Z.; Kelbessa, E. Cordia africana (Boraginaceae) in Ethiopia: A Review on Its Taxonomy, Distribution, Ethnobotany and Conservation Status. Int. J. Bot. Stud. 2016, 1, 38–46. [Google Scholar]
- Oza, M.J.; Kulkarni, Y.A. Traditional Uses, Phytochemistry and Pharmacology of the Medicinal Species of the Genus Cordia (Boraginaceae). J. Pharm. Pharmacol. 2017, 69, 755–789. [Google Scholar] [CrossRef]
- Taravati, G.; Masoudian, N.; Gholamian, A. Evaluation of Medical Metabolites in Boraginaceae Family. J. Chem. Health Risks 2014, 2, 53–61. [Google Scholar]
- Rodino, S.; Butu, M. Herbal Extracts—New Trends in Functional and Medicinal Beverages. In Functional and Medicinal Beverages; Academic Press: Cambridge, MA, USA, 2019; pp. 73–108. ISBN 978-0-12-816397-9. [Google Scholar]
- Aliasl, J.; Barikbin, B.; Khoshzaban, F.; Naseri, M.; Sedaghat, R.; Kamalinejad, M.; Talei, D.; Emadi, F.; Akbari, Z.; Aliasl, F.; et al. Effect of Arnebia euchroma Ointment on Post-Laser Wound Healing in Rats. J. Cosmet. Laser Ther. 2015, 17, 41–45. [Google Scholar] [CrossRef]
- Frost, R.; MacPherson, H.; O’Meara, S. A Critical Scoping Review of External Uses of Comfrey (Symphytum spp.). Complement. Ther. Med. 2013, 21, 724–745. [Google Scholar] [CrossRef]
- Horinouchi, C.D.; Otuki, M.F. Botanical Briefs: Comfrey (Symphytum officinale). Cutis 2013, 91, 225–228. [Google Scholar]
- Pieszak, M.; Mikolajczak, P.; Manikowska, K. Borage (Borago officinalis L.)—A Valuable Medicinal Plant Used in Herbal Medicine. Herba Pol. 2012, 58, 95–103. [Google Scholar]
- Bennett, R.N.; Wallsgrove, R.M. Secondary Metabolites in Plant Defence Mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant Physiology Meets Phytopathology: Plant Primary Metabolism and Plant–Pathogen Interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef] [PubMed]
- Bocso, N.-S.; Butnariu, M. The Biological Role of Primary and Secondary Plants Metabolites. Crit. Rev. Food Sci. Nutr. 2022, 5, 1–7. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L.; Lombardo, M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 1683. [Google Scholar] [CrossRef] [PubMed]
- Qaderi, M.M.; Martel, A.B.; Strugnell, C.A. Environmental Factors Regulate Plant Secondary Metabolites. Plants 2023, 12, 447. [Google Scholar] [CrossRef]
- Tianero, M.D.B.; Kwan, J.C.; Wyche, T.P.; Presson, A.P.; Koch, M.; Barrows, L.R.; Bugni, T.S.; Schmidt, E.W. Species Specificity of Symbiosis and Secondary Metabolism in Ascidians. ISME J. 2015, 9, 615–628. [Google Scholar] [CrossRef]
- Król, B.; Kowalski, R. Content of Fatty Acids in Oil of Blueweed (Echium spp. L.): Potential Source in Prophylaxis, Therapy and Functional Food. Żyw Człow Metab. 2004, 31, 166–171. [Google Scholar]
- De Spirt, S.; Stahl, W.; Tronnier, H.; Sies, H.; Bejot, M.; Maurette, J.-M.; Heinrich, U. Intervention with Flaxseed and Borage Oil Supplements Modulates Skin Condition in Women. Br. J. Nutr. 2009, 101, 440–445. [Google Scholar] [CrossRef]
- Fedoreyev, S.; Vereshchagina, Y.; Bulgakov, V.; Veselova, M.; Tchernoded, G.; Gerasimenko, A.; Zhuravlev, Y. Production of Allantoin, Rabdosiin and Rosmarinic Acid in Callus Cultures of the Seacoastal Plant Mertensia maritima (Boraginaceae). PCTOC 2012, 110, 183–188. [Google Scholar] [CrossRef]
- Trifan, A.; Opitz, S.E.W.; Josuran, R.; Grubelnik, A.; Esslinger, N.; Peter, S.; Bräm, S.; Meier, N.; Wolfram, E. Is Comfrey Root More than Toxic Pyrrolizidine Alkaloids? Salvianolic Acids among Antioxidant Polyphenols in Comfrey (Symphytum officinale L.) Roots. Food Chem. Toxicol. 2018, 112, 178–187. [Google Scholar] [CrossRef]
- Hussein, H.M.; Mohsen, E.; Abdelmonem, A.R.; Kawy, M.A.A. An Overview on Botanical Characteristics, Phytochemical Constituents and Pharmacological Effects of Cordia dichotoma (G. Forst.) and Cordia sebestena (L.) (Boraginaceae). Egypt. J. Chem. 2023, 66, 437–459. [Google Scholar] [CrossRef]
- Kohlmünzer, S. Farmakognozja: Podręcznik Dla Studentów Farmacji; Państwowy Zakład Wydawnictw Lekarskich: Warszawa, Poland, 1998. [Google Scholar]
- Kawatra, A.; Gupta, S.; Dhankhar, R.; Singh, P.; Gulati, P. Application of Phytochemicals in Therapeutic, Food, Flavor, and Cosmetic Industries. In Phytochemical Genomics; Swamy, M.K., Kumar, A., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 85–108. ISBN 978-981-19577-8-9. [Google Scholar]
- CosIng-Cosmetic Database. European Commission. Available online: https://ec.europa.eu/growth/tools-databases/cosing/ (accessed on 22 May 2024).
- Velasco, L.; Goffman, F.D. Chemotaxonomic Significance of Fatty Acids and Tocopherols in Boraginaceae. Phytochemistry 1999, 52, 423–426. [Google Scholar] [CrossRef]
- Benamar, H.; Marouf, A.; Bennaceur, M. Analysis and Chemotaxonomic Significance of Pyrrolizidine Alkaloids from Two Boraginaceae Species Growing in Algeria. Z. Naturforsch C J. Biosci. 2021, 76, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Hegnauer, R. Chemotaxonomie Der Pflanzen, Volume VI.; Birkhäuser Verlag: Basel, Switzerland, 1973. [Google Scholar]
- Neagu, E.; PĂun, G.; Radu, L.G. Phytochemical Study of Some Symphytum officinalis Extracts Concentrated by Membranous Procedures. Sci. Bull-Univ. Politeh. Buchacharest 2011, 73, 65–74. [Google Scholar]
- Araújo, L.U.; Grabe-Guimarães, A.; Mosqueira, V.C.F.; Carneiro, C.M.; Silva-Barcellos, N.M. Profile of Wound Healing Process Induced by Allantoin. Acta Cir. Bras. 2010, 25, 460–461. [Google Scholar] [CrossRef] [PubMed]
- Gharib, A.; Godarzee, M. Determination of Secondary Metabolites and Antioxidant Activity of Some Boraginaceae Species Growing in Iran. Trop. J. Pharm. Res. 2016, 15, 2459. [Google Scholar] [CrossRef]
- Di Paola-Naranjo, R.D.; Sánchez-Sánchez, J.; González-Paramás, A.M.; Rivas-Gonzalo, J.C. Liquid Chromatographic-Mass Spectrometric Analysis of Anthocyanin Composition of Dark Blue Bee Pollen from Echium Plantagineum. J. Chromatogr. A 2004, 1054, 205–210. [Google Scholar] [CrossRef]
- Xi, X.; Li, J.; Guo, S.; Li, Y.; Xu, F.; Zheng, M.; Cao, H.; Cui, X.; Guo, H.; Han, C. The Potential of Using Bee Pollen in Cosmetics: A Review. J. Oleo Sci. 2018, 67, 1071–1082. [Google Scholar] [CrossRef]
- Pilerood, S.A.; Prakash, J. Evaluation of Nutritional Composition and Antioxidant Activity of Borage (Echium amoenum) and Valerian (Valerian officinalis). J. Food Sci. Technol. 2014, 51, 845–854. [Google Scholar] [CrossRef]
- Câmara, J.S.; Locatelli, M.; Pereira, J.A.; Oliveira, H.; Arlorio, M.; Fernandes, I.; Perestrelo, R.; Freitas, V.; Bordiga, M. Behind the Scenes of Anthocyanins—From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022, 14, 5133. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Li, Y.; Yuan, K.; Zhang, W.; Cai, D.; Peng, Z.; Hu, Y.; Sun, J.; Bai, W. Bioactivity and Application of Anthocyanins in Skin Protection and Cosmetics: An Extension as a Functional Pigment. Phytochem. Rev. 2023, 22, 1441–1467. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical Studies of Anthocyanins: A Review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Chan, C.-F.; Lien, C.-Y.; Lai, Y.-C.; Huang, C.-L.; Liao, W.C. Influence of Purple Sweet Potato Extracts on the UV Absorption Properties of a Cosmetic Cream. J. Cosmet. Sci. 2010, 61, 333–341. [Google Scholar] [PubMed]
- Znajdek-Awiżeń, P.; Bylka, W.; Gawenda-Kempczyńska, D.; Paszek, I. Comparative Study on the Essential Oils of Myosotis Arvensis and Myosotis Palustris Herbs (Boraginaceae). Acta Physiol. Plant 2014, 36, 2283–2286. [Google Scholar] [CrossRef]
- Costa, J.G.M.; Rodrigues, F.F.G.; Machado, L.L.; Fonseca, A.M.; Lemos, T.L.G. Essential Oil of Auxemma Glazioviana Taub.(Boraginaceae): Chemical Composition, Antibacterial and Antioxidant Activities. Res. J. Biol. Sci. 2007, 2, 2283–2286. [Google Scholar]
- Morteza-Semnani, K.; Saeedi, M. Essential Oil Composition of Echium Amoenum Fisch. & C.A. Mey. J. Essent. Oil-Bear. Plants 2005, 8, 61–64. [Google Scholar] [CrossRef]
- Erdoğan, M.K.; Geçibesler, İ.H.; Behçet, L. Chemical Constituents, Antioxidant, Antiproliferative and Apoptotic Effects of a New Endemic Boraginaceae Species: Paracaryum Bingoelianum. Results Chem. 2020, 2, 100032. [Google Scholar] [CrossRef]
- Kazemi, M. Essential Oil Composition of Anchusa Italica from Iran. Chem. Nat. Compd. 2013, 49, 369–370. [Google Scholar] [CrossRef]
- Mahmoudzadeh, E.; Nazemiyeh, H.; Valizadeh, H.; Khaleseh, F.; Mohammadi, S.; Hamedeyazdan, S. Nanoencapsulation of N-Butanol Extract of Symphytum Kurdicum and Symphytum Asperrimum: Focus on Phytochemical Analysis, Anti-Oxidant and Antibacterial Activity. Iran. J. Basic. Med. Sci. 2022, 25, 364–371. [Google Scholar] [CrossRef]
- de Sá de Sousa Nogueira, T.B.; de Sá de Sousa Nogueira, R.B.; E Silva, D.A.; Tavares, J.F.; de Oliveira Lima, E.; de Oliveira Pereira, F.; da Silva Maciel, J.K.; de Souza Fernandes, M.M.M.; de Medeiros, F.A.; do Socorro Ferreira Rodrigues Sarquis, R.; et al. First Chemical Constituents from Cordia Exaltata Lam and Antimicrobial Activity of Two Neolignans. Molecules 2013, 18, 11086–11099. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-Inflammatory Effects of Compounds Alpha-Humulene and (-)-Trans-Caryophyllene Isolated from the Essential Oil of Cordia Verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Ghasemian, M.; Owlia, S.; Owlia, M.B. Review of Anti-Inflammatory Herbal Medicines. Adv. Pharmacol. Sci. 2016, 2016, 9130979. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.; García-Maroto, F.; Giménez, A. Fatty Acid Profiles from Forty-Nine Plant Species That Are Potential New Sources of γ-Linolenic Acid. J. Am. Oil Chem. Soc. 2001, 78, 677–684. [Google Scholar] [CrossRef]
- Lyashenko, S.; González-Fernández, M.J.; Borisova, S.; Belarbi, E.-H.; Guil-Guerrero, J.L. Mertensia (Boraginaceae) Seeds Are New Sources of γ-Linolenic Acid and Minor Functional Compounds. Food Chem. 2021, 350, 128635. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Kong, S.; Seong, K.; Cho, Y. Gamma-Linolenic Acid in Borage Oil Reverses Epidermal Hyperproliferation in Guinea Pigs. J. Nutr. 2002, 132, 3090–3097. [Google Scholar] [CrossRef]
- Yunusova, S.; Lyashenko, S.; Fedorov, N.; Yunusov, M.; Denisenko, O. Lipids and Lipophilic Constituents of Comfrey (Symphytum officinale L.) Seeds. Pharm. Chem. J. 2017, 50, 728–731. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Lira, M.M.; de Sousa, T.L.; Campos, S.B.; Lemes, A.C.; Egea, M.B. Plant-Based Mucilage with Healing and Anti-Inflammatory Actions for Topical Application: A Review. Food Hydrocoll. Hlth 2021, 1, 100012. [Google Scholar] [CrossRef]
- Tosif, M.M.; Najda, A.; Bains, A.; Kaushik, R.; Dhull, S.B.; Chawla, P.; Walasek-Janusz, M. A Comprehensive Review on Plant-Derived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Polymers 2021, 13, 1066. [Google Scholar] [CrossRef]
- Mohammadi, S.; Piri, K.; Dinarvand, M. Identification of Chemical Compositions in Some Medicinal Plants by GC/MS Analysis. Leban. Sci. J. 2019, 20, 161. [Google Scholar] [CrossRef]
- Abolhassani, M. Antiviral Activity of Borage (Echium amoenum). Arch. Med. Res. 2010, 6, 366–369. [Google Scholar]
- Ruzicka, J.; Berger-Büter, K.; Esslinger, N.; Novak, J. Assessment of the Diversity of Comfrey (Symphytum officinale L. and S. × Uplandicum Nyman). Genet. Resour. Crop Evol. 2021, 68, 2813–2825. [Google Scholar] [CrossRef]
- Jędrzejko, K.; Kowalczyk, B.; Bacler-Żbikowska, B. Rośliny Kosmetyczne, 3rd ed. 2012. Available online: https://ppm.edu.pl/info/book/SUM0f975af5bc994879bcb6e6af0fcee768/ (accessed on 20 August 2024).
- Jurkowska, S. Tezaurus. Substancje Czynne Wykorzystywane w Kosmetykach, 1st ed.; Wydawnictwo Oficyna Wydawnicza MIRIAM, Ośrodek Informatyczno-Badawczy, “Ekoprzem” Sp. z o.o.: Dąbrowa Górnicza, Poland, 2001. [Google Scholar]
- Makri, O.; Kintzios, S. In Vitro Rosmarinic Acid Production: An Update. In Biotechnology of Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2004; pp. 33–46. [Google Scholar]
- Iqbal, K.; Nawaz, S.A.; Malik, A.; Riaz, N.; Mukhtar, N.; Mohammad, P.; Choudhary, M.I. Isolation and Lipoxygenase-Inhibition Studies of Phenolic Constituents from Ehretia obtusifolia. Chem. Biodivers. 2005, 2, 104–111. [Google Scholar] [CrossRef]
- Petersen, M.; Abdullah, Y.; Benner, J.; Eberle, D.; Gehlen, K.; Hücherig, S.; Janiak, V.; Kim, K.H.; Sander, M.; Weitzel, C.; et al. Evolution of Rosmarinic Acid Biosynthesis. Phytochemistry 2009, 70, 1663–1679. [Google Scholar] [CrossRef] [PubMed]
- Biyik, B.; Sarialtin, S.Y.; Gökbulut, A.; Çoban, T.; Coşkun, M. Trachystemon orientalis (L.) G. Don as a Valuable Source of Rosmarinic Acid: Biological Activities and HPLC Profiles. Turk. J. Pharm. Sci. 2023, 20, 141. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical Features and Therapeutic Potential of Rosmarinic Acid. Arch. Pharm. Res. 2022, 45, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Tsiokanos, E.; Cartabia, A.; Tsafantakis, N.; Lalaymia, I.; Termentzi, A.; Miguel, M.; Declerck, S.; Fokialakis, N. The Metabolic Profile of Anchusa officinalis L. Differs According to Its Associated Arbuscular Mycorrhizal Fungi. Metabolites 2022, 12, 573. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, V.P.; Assimopoulou, A.N.; Couladouros, E.A.; Hepworth, D.; Nicolaou, K.C. The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products. Angew. Chem. Int. Ed. Engl. 1999, 38, 270–301. [Google Scholar] [CrossRef]
- Chauhan, S.; Jaiswal, V.; Cho, Y.-I.; Lee, H.-J. Biological Activities and Phytochemicals of Lungworts (Genus Pulmonaria) Focusing on Pulmonaria officinalis. Appl. Sci. 2022, 12, 6678. [Google Scholar] [CrossRef]
- Jing, W.; Xiaolan, C.; Yu, C.; Feng, Q.; Haifeng, Y. Pharmacological Effects and Mechanisms of Tannic Acid. Biomed. Pharmacother. 2022, 154, 113561. [Google Scholar] [CrossRef]
- Mhamdi, B.; Aidi Wannes, W.; Bourgou, S.; Marzouk, B. Biochemical Characterization of Borage (Borago officinalis L.) Seeds. J. Food Biochem. 2009, 33, 331–341. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; García-Maroto, F.; Vilches-Ferrón, M.A.; López-Alonso, D. Gamma-Linolenic Acid from Fourteen Boraginaceae Species. Ind. Crops Prod. 2003, 18, 85–89. [Google Scholar] [CrossRef]
- Payne, G.; Lad, M.; Foster, T.; Khosla, A.; Gray, D. Composition and Properties of the Surface of Oil Bodies Recovered from Echium Plantagineum. Colloids Surf. B Biointerfaces 2014, 116, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Puch, F.; Samson-Villeger, S.; Guyonnet, D.; Blachon, J.-L.; Rawlings, A.V.; Lassel, T. Consumption of Functional Fermented Milk Containing Borage Oil, Green Tea and Vitamin E Enhances Skin Barrier Function. Exp. Dermatol. 2008, 17, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Iversen, L.; Fogh, K.; Bojesen, G.; Kragballe, K. Linoleic Acid and Dihomogammalinolenic Acid Inhibit Leukotriene B4 Formation and Stimulate the Formation of Their 15-Lipoxygenase Products by Human Neutrophils in Vitro. Evidence of Formation of Antiinflammatory Compounds. Agents Actions 1991, 33, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Kawish, S.M.; Qadir, A.; Saad, S.; Beg, S.; Jain, G.K.; Aqil, M.; Alanazi, A.M.; Khan, A.A.; Rashid, M.A.; Rab, R.A.; et al. A Validated, Rapid and Cost-Efficient HPTLC Method for Quantification of Gamma-Linolenic Acid in Borage Oil and Evaluation of Antioxidant Activity. J. Chromatogr. Sci. 2022, 60, 364–371. [Google Scholar] [CrossRef]
- Shin, J.A.; Sun, M.; Jeong, J.-M. Borage Oil Treated with Immobilized Lipase Inhibits Melanogenesis. Lipids 2020, 55, 649–659. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Five Important Seeds in Traditional Medicine, and Pharmacological Benefits. Seeds 2023, 2, 290–308. [Google Scholar] [CrossRef]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Feijó, E.V.d.S.; de Oliveira, R.A.; Costa, L.C.D.B. Light Affects Varronia Curassavica Essential Oil Yield by Increasing Trichomes Frequency. Rev. Bras. Farm. 2014, 24, 516–523. [Google Scholar] [CrossRef]
- de Carvalho, P.M.; Rodrigues, R.F.O.; Sawaya, A.C.H.F.; Marques, M.O.M.; Shimizu, M.T. Chemical Composition and Antimicrobial Activity of the Essential Oil of Cordiaverbenacea D.C. J. Ethnopharmacol. 2004, 95, 297–301. [Google Scholar] [CrossRef]
- Zribi, I.; Bleton, J.; Moussa, F.; Abderrabba, M. GC-MS Analysis of the Volatile Profile and the Essential Oil Compositions of Tunisian Borago officinalis L.: Regional Locality and Organ Dependency. Ind. Crops Prod. 2019, 129, 290–298. [Google Scholar] [CrossRef]
- de Lima Guimarães, L.G.; das Graças Cardoso, M.; Ferreira Lucas, E.M.; Puggina de Freitas, M.; Francisco, W.; Lee Nelson, D. Structural Elucidation of a New Sesquiterpene Alcohol by Comparative NMR Studies. Rec. Nat. Prod. 2015, 9, 201–207. [Google Scholar]
- Facanali, R.; Marques, M.O.M.; Hantao, L.W. Metabolic Profiling of Varronia Curassavica Jacq. Terpenoids by Flow Modulated Two-Dimensional Gas Chromatography Coupled to Mass Spectrometry. Separations 2020, 7, 18. [Google Scholar] [CrossRef]
- Poma, P.; Labbozzetta, M.; Notarbartolo, M.; Bruno, M.; Maggio, A.; Rosselli, S.; Sajeva, M.; Zito, P. Chemical Composition, in Vitro Antitumor and pro-Oxidant Activities of Glandora rosmarinifolia (Boraginaceae) Essential Oil. PLoS ONE 2018, 13, e0196947. [Google Scholar] [CrossRef]
- Meccia, G.; Rojas, L.B.; Velasco, J.; Díaz, T.; Usubillaga, A.; Arzola, J.C.; Ramos, S. Chemical Composition and Antibacterial Activity of the Essential Oil of Cordia Verbenacea from the Venezuelan Andes. Nat. Prod. Commun. 2009, 4, 1119–1122. [Google Scholar] [CrossRef]
- Jin, J.; Boersch, M.; Nagarajan, A.; Davey, A.K.; Zunk, M. Antioxidant Properties and Reported Ethnomedicinal Use of the Genus Echium (Boraginaceae). Antioxidants 2020, 9, 722. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Viljoen, A.M. A Review of the Application and Pharmacological Properties of α-Bisabolol and α-Bisabolol-Rich Oils. J. Am. Oil Chem. Soc. 2010, 87, 1–7. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.; Sun, L.; Cheng, K.; Lv, Z.; Chen, K.; Qian, F.; Li, Y. (-)-α-Bisabolol Alleviates Atopic Dermatitis by Inhibiting MAPK and NF-κB Signaling in Mast Cell. Molecules 2022, 27, 3985. [Google Scholar] [CrossRef]
- Gómez-Patiño, M.B.; Leyva Pérez, J.P.; Alcibar Muñoz, M.M.; Arzate-Vázquez, I.; Arrieta-Baez, D. Rapid and Simultaneous Extraction of Bisabolol and Flavonoids from Gymnosperma Glutinosum and Their Potential Use as Cosmetic Ingredients. Separations 2023, 10, 406. [Google Scholar] [CrossRef]
- Berganayeva, G.; Kudaibergenova, B.; Litvinenko, Y.; Nazarova, I.; Sydykbayeva, S.; Vassilina, G.; Izdik, N.; Dyusebaeva, M. Medicinal Plants of the Flora of Kazakhstan Used in the Treatment of Skin Diseases. Molecules 2023, 28, 4192. [Google Scholar] [CrossRef]
- Sangthong, S.; Promputtha, I.; Pintathong, P.; Chaiwut, P. Chemical Constituents, Antioxidant, Anti-Tyrosinase, Cytotoxicity, and Anti-Melanogenesis Activities of Etlingera Elatior (Jack) Leaf Essential Oils. Molecules 2022, 27, 3469. [Google Scholar] [CrossRef]
- Pouchieu, C.; Pourtau, L.; Gaudout, D.; Gille, I.; Chalothorn, K.; Perin, F. Effect of an Oral Formulation on Skin Lightening: Results from In Vitro Tyrosinase Inhibition to a Double-Blind Randomized Placebo-Controlled Clinical Study in Healthy Asian Participants. Cosmetics 2023, 10, 143. [Google Scholar] [CrossRef]
- Mermer, A.; Demirci, S. Recent Advances in Triazoles as Tyrosinase Inhibitors. Eur. J. Med. Chem. 2023, 259, 115655. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, E.; Aguilera, J.; Figueroa, F.L. Tissular Localization of Coumarins in the Green Alga Dasycladus Vermicularis (Scopoli) Krasser: A Photoprotective Role? J. Exp. Bot. 2003, 54, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Roh, E.-J. Inhibitory Effects of Coumarin Derivatives on Tyrosinase. Molecules 2021, 26, 2346. [Google Scholar] [CrossRef]
- Al-Burtamani, S.K.S.; Fatope, M.O.; Marwah, R.G.; Onifade, A.K.; Al-Saidi, S.H. Chemical Composition, Antibacterial and Antifungal Activities of the Essential Oil of Haplophyllum tuberculatum from Oman. J. Ethnopharmacol. 2005, 96, 107–112. [Google Scholar] [CrossRef]
- Abd Rashed, A.; Rathi, D.-N.G.; Ahmad Nasir, N.A.H.; Abd Rahman, A.Z. Antifungal Properties of Essential oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. Molecules 2021, 26, 1093. [Google Scholar] [CrossRef]
- Białoń, M.; Krzyśko-Łupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P.P. Chemical Composition of Two Different Lavender Essential Oils and Their Effect on Facial Skin Microbiota. Molecules 2019, 24, 3270. [Google Scholar] [CrossRef]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in Cosmetic and Personal Care Products: Concentrations and Possible Dermal Exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef]
- Bunse, M.; Daniels, R.; Gründemann, C.; Heilmann, J.; Kammerer, D.R.; Keusgen, M.; Lindequist, U.; Melzig, M.F.; Morlock, G.E.; Schulz, H.; et al. Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being. Front. Pharmacol. 2022, 13, 956541. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.; Carvalho, A.; Sánchez-Mata, M.; Cámara, M.; Fernández-Ruiz, V.; Pardo de Santayana, M.; Tardío, J. Mediterranean Non-Cultivated Vegetables as Dietary Sources of Compounds with Antioxidant and Biological Activity. Leb. Wiss. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef]
- Jakovljević, D.; Vasić, S.; Stanković, M.; Topuzović, M.; Čomić, L. The Content of Secondary Metabolites and in Vitro Biological Activity of Anchusa officinalis L. (Boraginaceae). NISCAIR-CSIR 2016, 15, 587–593. [Google Scholar]
- Petreska Stanoeva, J.; Stefova, M.; Matevski, V. Extraction, Distribution and Diversity of Phenolic Compounds in Most Widespread Boraginaceae Species from Macedonia. Chem. Biodivers. 2023, 20, e202201149. [Google Scholar] [CrossRef] [PubMed]
- Hossan, M.S.; Rahman, S.; Bashar, A.; Jahan, R.; Al-Nahain, A.; Rahmatullah, M. Rosmarinic Acid: A Review of Its Anticancer Action. World J. Pharm. Sci. 2014, 3, 57–70. [Google Scholar]
- Ekiert, H.; Kwiecień, I.; Szopa, A. Rosmarinic Acid Production in Plant in Vitro Cultures. Pol. J. Cosmetol. 2013, 16, 49–58. [Google Scholar]
- Ganos, C.; Aligiannis, N.; Chinou, I.; Naziris, N.; Chountoulesi, M.; Mroczek, T.; Graikou, K. Rindera graeca (Boraginaceae) Phytochemical Profile and Biological Activities. Molecules 2020, 25, 3625. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z. Effects of Solvent Type on Phenolics and Flavonoids Content and Antioxidant Activities in Two Varieties of Young Ginger (Zingiber officinale Roscoe) Extracts. J. Med. Plant Res. 2011, 5, 1147–1154. [Google Scholar]
- Yang, J.H.; Kim, S.C.; Shin, B.Y.; Jin, S.H.; Jo, M.J.; Jegal, K.H.; Kim, Y.W.; Lee, J.R.; Ku, S.K.; Cho, I.J.; et al. O-Methylated Flavonol Isorhamnetin Prevents Acute Inflammation through Blocking of NF-κB Activation. Food Chem. Toxicol. 2013, 59, 362–372. [Google Scholar] [CrossRef]
- Abu-Al-Basal, M.A. Healing Potential of Rosmarinus officinalis L. on Full-Thickness Excision Cutaneous Wounds in Alloxan-Induced-Diabetic BALB/c Mice. J. Ethnopharmacol. 2010, 131, 443–450. [Google Scholar] [CrossRef]
- de Macedo, L.M.; Santos, É.M.D.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., Syn Salvia Rosmarinus Spenn.) and Its Topical Applications: A Review. Plants 2020, 9, 651. [Google Scholar] [CrossRef]
- Nejati, H.; Farahpour, M.; Neyriz Naghadehi, M. Topical Rosemary officinalis Essential Oil Improves Wound Healing against Disseminated Candida Albicans Infection in Rat Model. Comp. Clin. Path 2015, 24, 1377–1383. [Google Scholar] [CrossRef]
- Anwar, S.; Shamsi, A.; Shahbaaz, M.; Queen, A.; Khan, P.; Hasan, G.M.; Islam, A.; Alajmi, M.F.; Hussain, A.; Ahmad, F. Rosmarinic Acid Exhibits Anticancer Effects via MARK4 Inhibition. Sci. Rep. 2020, 10, 10300. [Google Scholar] [CrossRef] [PubMed]
- Pilut, C.N.; Manea, A.; Macasoi, I.; Dobrescu, A.; Georgescu, D.; Buzatu, R.; Faur, A.; Dinu, S.; Chioran, D.; Pinzaru, I.; et al. Comparative Evaluation of the Potential Antitumor of Helleborus Purpurascens in Skin and Breast Cancer. Plants 2022, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, S.; Iqbal, J.; Abbasi, B.A.; Ullah, Z.; Yaseen, T.; Kanwal, S.; Mahmood, T.; Sydykbayeva, S.; Ydyrys, A.; Almarhoon, Z.M.; et al. Rosmarinic Acid and Its Derivatives: Current Insights on Anticancer Potential and Other Biomedical Applications. Biomed. Pharmacother. 2023, 162, 114687. [Google Scholar] [CrossRef]
- Lin, R.-J.; Wu, M.-H.; Ma, Y.-H.; Chung, L.-Y.; Chen, C.-Y.; Yen, C.-M. Anthelmintic Activities of Aporphine from Nelumbo nucifera Gaertn. Cv. Rosa-Plena against Hymenolepis Nana. Int. J. Mol. Sci. 2014, 15, 3624–3639. [Google Scholar] [CrossRef] [PubMed]
- Fernando, P.M.D.J.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Hewage, S.R.K.M.; Chae, S.W.; Hyun, J.W. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells. Biomol. Ther. 2016, 24, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023, 11, 545. [Google Scholar] [CrossRef]
- Huang, N.; Hauck, C.; Yum, M.-Y.; Rizshsky, L.; Widrlechner, M.P.; McCoy, J.-A.; Murphy, P.A.; Dixon, P.M.; Nikolau, B.J.; Birt, D.F. Rosmarinic Acid in Prunella Vulgaris Ethanol Extract Inhibits Lipopolysaccharide-Induced Prostaglandin E2 and Nitric Oxide in RAW 264.7 Mouse Macrophages. J. Agric. Food Chem. 2009, 57, 10579–10589. [Google Scholar] [CrossRef]
- Osakabe, N.; Yasuda, A.; Natsume, M.; Yoshikawa, T. Rosmarinic Acid Inhibits Epidermal Inflammatory Responses: Anticarcinogenic Effect of Perilla Frutescens Extract in the Murine Two-Stage Skin Model. Carcinogenesis 2004, 25, 549–557. [Google Scholar] [CrossRef]
- Huerta-Madroñal, M.; Caro-León, J.; Espinosa-Cano, E.; Aguilar, M.R.; Vázquez-Lasa, B. Chitosan—Rosmarinic Acid Conjugates with Antioxidant, Anti-Inflammatory and Photoprotective Properties. Carbohydr. Polym. 2021, 273, 118619. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, T.-H.; Kang, K.-C.; Pyo, H.-B.; Jeong, H.-H. Microencapsulation of Rosmarinic Acid Using Polycaprolactone and Various Surfactants. Int. J. Cosmet. Sci. 2010, 32, 185–191. [Google Scholar] [CrossRef]
- Sharma, A.; Kuhad, A.; Bhandari, R. Novel Nanotechnological Approaches for Treatment of Skin-Aging. J. Tissue Viability 2022, 31, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Kuruüzüm-Uz, A.; GÜVENALP, Z.; Demirezer, L.Ö. Phenolic Compounds from the Roots of Anchusa azurea Var. Azurea. Turk. J. Pharm. Sci. 2013, 10, 177–184. [Google Scholar]
- Adamtsevich, N.Y.; Zakrzheuskaya, Y.I.; Feskova, E.V.; Leontiev, V.N.; Titok, V.V. Development and Validation of a Method to Quantify Flavonoids in Leaves of Lithospermum officinale (Boraginaceae). Dokl. Biol. Sci. 2023, 512, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Arct, J.; Pytkowska, K. Flavonoids as Components of Biologically Active Cosmeceuticals. Clin. Dermatol. 2008, 26, 347–357. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, D.-W.; Park, S.-E.; Lee, H.-J.; Kim, K.-M.; Kim, K.-J.; Kim, M.-K.; Kim, S.-J.; Kim, S. Anti-Thrombotic Effect of Rutin Isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng. 2015, 120, 181–186. [Google Scholar] [CrossRef]
- Čižmárová, B.; Hubková, B.; Tomečková, V.; Birková, A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int. J. Mol. Sci. 2023, 24, 6324. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional Roles of Flavonoids in Photoprotection: New Evidence, Lessons from the Past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef]
- Al-Nimer, M.S.M.; Wahbee, Z. Ultraviolet Light Assisted Extraction of Flavonoids and Allantoin from Aqueous and Alcoholic Extracts of Symphytum officinale. J. Intercult. Ethnopharmacol. 2017, 6, 280–283. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Ayvaz, H.; Ruginǎ, D.; Leopold, L.; Stǎnilǎ, A.; Socaciu, C.; Tăbăran, F.; Luput, L.; Mada, D.C.; Pintea, A.; et al. Melanoma Inhibition by Anthocyanins Is Associated with the Reduction of Oxidative Stress Biomarkers and Changes in Mitochondrial Membrane Potential. Plant Foods Hum. Nutr. 2017, 72, 404–410. [Google Scholar] [CrossRef]
- Fallah, A.A.; Sarmast, E.; Fatehi, P.; Jafari, T. Impact of Dietary Anthocyanins on Systemic and Vascular Inflammation: Systematic Review and Meta-Analysis on Randomised Clinical Trials. Food Chem. Toxicol. 2020, 135, 110922. [Google Scholar] [CrossRef] [PubMed]
- Diaconeasa, Z.; Știrbu, I.; Xiao, J.; Leopold, N.; Ayvaz, Z.; Danciu, C.; Ayvaz, H.; Stǎnilǎ, A.; Nistor, M.; Socaciu, C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, X.; Zhu, C.; Sun, J.; Tian, L.; Chen, W.; Bai, W. The Target Cells of Anthocyanins in Metabolic Syndrome. Crit. Rev. Food Sci. Nutr. 2019, 59, 921–946. [Google Scholar] [CrossRef] [PubMed]
- Golovko, T. Plant Anthocyanins: Structure, Biosynthesis Regulation, Functions, and Ecology. Russ. J. Plant Physiol. 2023, 70, 161. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and Therapeutic Properties of Bee Pollen: A Review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
- INCT. Cosmetic Ingredient Review. 2023. Available online: https://www.cir-safety.org/ingredients (accessed on 20 August 2024).
- Liu, H.; Zhou, K.; Jiang, H.; Wen, L.; He, Y.; Lu, S.; Wang, B.; Li, J. Current Advances in Anthocyanins: Structure, Bioactivity and Human Health. Food Nutr. Res. 2021, 60, 203–216. [Google Scholar]
- de Melo, L.F.M.; Aquino-Martins, V.G.d.Q.; da Silva, A.P.; Rocha, H.A.O.; Scortecci, K.C. Biological and Pharmacological Aspects of Tannins and Potential Biotechnological Applications. Food Chem. 2023, 414, 135645. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Gómez-Cordovés, C.; Bartolomé, B.; Vieira, W.; Virador, V.M. Effects of Wine Phenolics and Sorghum Tannins on Tyrosinase Activity and Growth of Melanoma Cells. J. Agric. Food Chem. 2001, 49, 1620–1624. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins Medical/Pharmacological and Related Applications: A Critical Review. Sustain. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; Prieto, M.A. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins’ Biological Activities and Their Potential for Valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Panda, P.K.; Sadeghi, K.; Lee, S.; Chung, C.; Park, Y.; Park, J.; Seo, J. Facile Thermal and Hydrolytic Conversion of Tannic Acid: Enhancement of Antimicrobial Activity and Biocompatibility for Biomedical Applications. Mater. Chem. Phys. 2022, 285, 126141. [Google Scholar] [CrossRef]
- Wang, R.; Yin, R.; Zhou, W.; Xu, D.; Li, S. Shikonin and Its Derivatives: A Patent Review. Expert. Opin. Ther. Pat. 2012, 22, 977–997. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, V.P.; Assimopoulou, A.N.; Ballis, A.C. Alkannins and Shikonins: A New Class of Wound Healing Agents. Curr. Med. Chem. 2008, 15, 3248–3267. [Google Scholar] [CrossRef]
- Malik, S.; Bhushan, S.; Sharma, M.; Ahuja, P.S. Biotechnological Approaches to the Production of Shikonins: A Critical Review with Recent Updates. Crit. Rev. Biotechnol. 2016, 36, 327–340. [Google Scholar] [CrossRef]
- Sasaki, K.; Abe, H.; Yoshizaki, F. In Vitro Antifungal Activity of Naphthoquinone Derivatives. Biol. Pharm. Bull. 2002, 25, 669–670. [Google Scholar] [CrossRef]
- Oh, J.-S.; Lee, S.-J.; Choung, S.-Y. Lithospermum Erythrorhizon Alleviates Atopic Dermatitis-like Skin Lesions by Restoring Immune Balance and Skin Barrier Function in 2.4-Dinitrochlorobenzene-Induced NC/Nga Mice. Nutrients 2021, 13, 3209. [Google Scholar] [CrossRef]
- Song, Y.; Ding, Q.; Hao, Y.; Cui, B.; Ding, C.; Gao, F. Pharmacological Effects of Shikonin and Its Potential in Skin Repair: A Review. Molecules 2023, 28, 7950. [Google Scholar] [CrossRef]
- Figat, R.; Zgadzaj, A.; Geschke, S.; Sieczka, P.; Pietrosiuk, A.; Sommer, S.; Skrzypczak, A. Cytotoxicity and Antigenotoxicity Evaluation of Acetylshikonin and Shikonin. Drug Chem. Toxicol. 2021, 44, 140–147. [Google Scholar] [CrossRef]
- Tepe, M.; Abadan, E.; Sağlam, M.; Süzerer, V.; Balcik, P.; Atilla, D.; Erciyas Baykal, E.; Çiftçi, Y.; Yagci, T. In Vitro Mass Production, Chemical Modification, and Cytotoxicity of Shikonin Derivatives on Breast Cancer Cells. Ind. Crops Prod. 2023, 192, 116087. [Google Scholar] [CrossRef]
- Lee, S.H.; Cho, Y.-C.; Lim, J.S. Costunolide, a Sesquiterpene Lactone, Suppresses Skin Cancer via Induction of Apoptosis and Blockage of Cell Proliferation. Int. J. Mol. Sci. 2021, 22, 2075. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.P.; Silveira, E.R.; Lemos, T.L.G.; Viana, F.A.; Braz-Filho, R.; Pessoa, O.D.L. Characterization of Two Minor Saponins from Cordia Piauhiensis by 1H and 13C NMR Spectroscopy. Magn. Reson. Chem. 2005, 43, 494–496. [Google Scholar] [CrossRef] [PubMed]
- Bucheli, T.D.; Strobel, B.W.; Hansen, H.C.B. Personal Care Products Are Only One of Many Exposure Routes of Natural Toxic Substances to Humans and the Environment. Cosmetics 2018, 5, 10. [Google Scholar] [CrossRef]
- Vanitha, A.; Renganayagi, R.; Mohammed, R.; Mohammed, S. Pharmacie Globale International Journal of Comprehensive Pharmacy Pharmacognostic Studies on Trichodesma indicum Linn. (Boraginaceae) an Ethnobotanically Important Herb from Tropics. Pharm. Glob. 2015, 6, 1–5. [Google Scholar]
- Smułek, W.; Rojewska, M.; Pacholak, A.; Machrowicz, O.; Prochaska, K.; Kaczorek, E. Co-Interaction of Nitrofurantoin and Saponins Surfactants with Biomembrane Leads to an Increase in Antibiotic’s Antibacterial Activity. J. Mol. Liq. 2022, 364, 120070. [Google Scholar] [CrossRef]
- Schreiner, T.B.; Dias, M.M.; Barreiro, M.F.; Pinho, S.P. Saponins as Natural Emulsifiers for Nanoemulsions. J. Agric. Food Chem. 2022, 70, 6573–6590. [Google Scholar] [CrossRef]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Alan Andersen, F. Final Report of the Safety Assessment of Allantoin and Its Related Complexes. Int. J. Toxicol. 2010, 29, 84S–97S. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Dresler, S. Assessment of Allantoin Concentrations in Comfrey Root Available on the Polish Market. Acta Agrobot. 2023, 76, 172247. [Google Scholar] [CrossRef]
- Shestopalov, A.V.; Shkurat, T.P.; Mikashinovich, Z.I.; Kryzhanovskaya, I.O.; Bogacheva, M.A.; Lomteva, S.V.; Prokof’ev, V.N.; Gus’kov, E.P. Biological Functions of Allantoin. Biol. Bull. Russ. Acad. Sci. 2006, 33, 437–440. [Google Scholar] [CrossRef]
- Eghbaljoo, H.; Sani, I.K.; Sani, M.A.; Rahati, S.; Mansouri, E.; Molaee-Aghaee, E.; Fatourehchi, N.; Kadi, A.; Arab, A.; Sarabandi, K.; et al. Advances in Plant Gum Polysaccharides; Sources, Techno-Functional Properties, and Applications in the Food Industry—A Review. Int. J. Biol. Macromol. 2022, 222, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Burkhill, H.M. Useful Plants of West Africa. R. Bot. Gard. 1985, 1, 130–132. [Google Scholar]
- Sofowora, A. Recent Trends in Research into African Medicinal Plants. J. Ethnopharmacol. 1993, 38, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Damianakos, H.; Jeziorek, M.; Sykłowska-Baranek, K.; Buchwald, W.; Pietrosiuk, A.; Chinou, I. Pyrrolizidine Alkaloids from Cynoglossum Columnae Ten. (Boraginaceae). Phytochem. Lett. 2016, 15, 234–237. [Google Scholar] [CrossRef]
- Roeder, E.; Bourauel, T.; Neuberger, V. Symviridine, a New Pyrrolizidine Alkaloid from Symphytum Species. Phytochemistry 1992, 31, 4041–4042. [Google Scholar] [CrossRef]
- Roeder, E. Medicinal Plants in Europe Containing Pyrrolizidine Alkaloids. Pharmazie 1995, 50, 83–98. [Google Scholar]
- Couet, C.E.; Crews, C.; Hanley, A.B. Analysis, Separation, and Bioassay of Pyrrolizidine Alkaloids from Comfrey (Symphytum officinale). Nat. Toxins 1996, 4, 163–167. [Google Scholar] [CrossRef]
- Ulubelen, A.; Ocal, F. Alkaloids and Other Compounds of Symphytum Tuberosum. Phytochemistry 1977, 16, 409–502. [Google Scholar] [CrossRef]
- Pawar, R.S.; Grundel, E.; Mazzola, E.; White, K.D.; Krynitsky, A.J.; Rader, J.I. Chiral Stationary Phases for Separation of Intermedine and Lycopsamine Enantiomers from Symphytum Uplandicum. J. Sep. Sci. 2010, 33, 200–205. [Google Scholar] [CrossRef]
- Farsam, H.; Yassa, N.; Sarkhail, P.; Shafiee, A. New Pyrrolizidine Alkaloids from Heliotropium crassifolium. Planta Med. 2000, 66, 389–391. [Google Scholar] [CrossRef]
- Barbakadze, V.; Gogilashvili, L.; Amiranashvili, L.; Merlani, M.; Mulkijanyan, K. International Science Index Biologically Active Caffeic Acid-Derived Biopolymer. Int. J. Innov. 2014, 8, 803–806. [Google Scholar]
- Mei, N.; Guo, L.; Fu, P.P.; Fuscoe, J.C.; Luan, Y.; Chen, T. Metabolism, Genotoxicity, Annd Carcinogenicity of Comfrey. J. Toxicol. Environ. Health B 2010, 13, 509–526. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, Y.; Suga, M. Structure and Function of a Silicic Acid Channel Lsi1. Front. Plant Sci. 2022, 13, 982068. [Google Scholar] [CrossRef]
- Mustafa, A.; Ensikat, H.-J.; Weigend, M. Mineralized Trichomes in Boraginales: Complex Microscale Heterogeneity and Simple Phylogenetic Patterns. Ann. Bot. 2018, 121, 741–751. [Google Scholar] [CrossRef]
- Morais, R.P.; Hochheim, S.; de Oliveira, C.C.; Riegel-Vidotti, I.C.; Marino, C.E.B. Skin Interaction, Permeation, and Toxicity of Silica Nanoparticles: Challenges and Recent Therapeutic and Cosmetic Advances. Int. J. Pharm. 2022, 614, 121439. [Google Scholar] [CrossRef]
- Jaroszewska, B. Kosmetologia; Wydawnictwo Atena: Warszawa, Poland, 2001. [Google Scholar]
- Correia, P.; Araújo, P.; Ribeiro, C.; Oliveira, H.; Pereira, A.R.; Mateus, N.; de Freitas, V.; Brás, N.F.; Gameiro, P.; Coelho, P.; et al. Anthocyanin-Related Pigments: Natural Allies for Skin Health Maintenance and Protection. Antioxidants 2021, 10, 1038. [Google Scholar] [CrossRef]
- Krasteva, G.; Georgiev, V.; Pavlov, A. Recent Applications of Plant Cell Culture Technology in Cosmetics and Foods. Eng. Life Sci. 2021, 21, 68–76. [Google Scholar] [CrossRef]
- Yue, W.; Ming, Q.-L.; Lin, B.; Rahman, K.; Zheng, C.-J.; Han, T.; Qin, L.-P. Medicinal Plant Cell Suspension Cultures: Pharmaceutical Applications and High-Yielding Strategies for the Desired Secondary Metabolites. Crit. Rev. Biotechnol. 2016, 36, 215–232. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In Vitro Plant Tissue Culture: Means for Production of Biological Active Compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yano, M.; Kaminade, K.; Sugiyama, A.; Sato, M.; Toyooka, K.; Aoyama, T.; Sato, F.; Yazaki, K. Characterization of Shikonin Derivative Secretion in Lithospermum erythrorhizon Hairy Roots as a Model of Lipid-Soluble Metabolite Secretion from Plants. Front. Plant Sci. 2016, 7, 1066. [Google Scholar] [CrossRef]
- Pietrosiuk, A.; Sykłowska-Baranek, K.; Wiedenfeld, H.; Wolinowska, R.; Furmanowa, M.; Jaroszyk, E. The Shikonin Derivatives and Pyrrolizidine Alkaloids in Hairy Root Cultures of Lithospermum canescens (Michx.) Lehm. Plant Cell Rep. 2006, 25, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-Y.; Zhao, H.; Bao, J.-X.; Wen, Z.-L.; Fang, R.-J.; Fazal, A.; Yang, M.-K.; Liu, B.; Yin, T.-M.; Pang, Y.-J.; et al. Establishment of the Hairy Root Culture of Echium plantagineum L. and Its Shikonin Production. 3 Biotech. 2020, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Zare, K.; Khosrowshahli, M.; Nazemiyeh, H.; Movafeghi, A.; Azar, A.M.; Omidi, Y. Callus Culture of Echium italicum L. towards Production of a Shikonin Derivative. Nat. Prod. Res. 2011, 25, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Gara, R.K.; Bhardwaj, P.K.; Kaachra, A.; Malik, S.; Kumar, R.; Sharma, M.; Ahuja, P.S.; Kumar, S. Expression of 3-Hydroxy-3-Methylglutaryl-CoA Reductase, p-Hydroxybenzoate-m-Geranyltransferase and Genes of Phenylpropanoid Pathway Exhibits Positive Correlation with Shikonins Content in Arnebia [Arnebia euchroma (Royle) Johnston]. BMC Mol. Biol. 2010, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.-L.; Zhang, W.-J.; Liu, S.-H.; Wang, H.; Sun, D.-Y.; Xu, G.-H.; Shi, M.-W.; Liu, Z.; Zhang, M.-S.; Zhang, H.-M.; et al. Expression Analysis of Light-Regulated Genes Isolated from a Full-Length-Enriched cDNA Library of Onosma paniculatum Cell Cultures. J. Plant Physiol. 2008, 165, 1474–1482. [Google Scholar] [CrossRef]
- Wierzchowski, K.; Kawka, M.; Wrzecionek, M.; Urbanek, J.; Pietrosiuk, A.; Sykłowska-Baranek, K.; Gadomska-Gajadhur, A.; Pilarek, M. Stress-Induced Intensification of Deoxyshikonin Production in Rindera graeca Hairy Root Cultures with Ester-Based Scaffolds. Plants 2022, 11, 3462. [Google Scholar] [CrossRef]
Chemical | Species/Genera | Effect on the Skin | References |
---|---|---|---|
Allantoin | Buglossoides purpurocaerulea, Cerinthe minor, Cynoglossum creticum, Echium italicum, E. russicum, E. vulgare, Lithospermum latifolium, L. officinale, Lindelofia anchusoides, Martensia maritima, Omphalodes verna, Pulmonaria mollis, P. obscura, Symphytum cordatum, S. officinale | increase skin softness, strengthen the skin, accelerate wound healing | [4,20,51,60,61] |
Anthocyanins | Anchusa arvensis, Echium plantagineum, E. amoenum, Nonea capsica | antioxidant effect, protection against UV radiation | [62,63,64,65,66,67,68,69] |
Essential oils | Auxemma glazioviana, Anchusa italica, Cordia species, Echium amoenum, Myosotis arvensis, M. palustris, Paracaryum bingoelianum, Symphytum asperum, S. kurdicum, | influence the scent of the cosmetic, may act as a preservative, have anti-acne, antibacterial, and antioxidant properties | [2,62,70,71,72,73,74,75,76,77,78] |
GLA | Anchusa spp., Borago officinalis, Echium spp., Lithospermum latifolium, Mertensia spp., Pulmonaria officinalis, Symphytum officinale, Trachystemon orientalis | improve hydrolipid barrier of skin, support the treatment of eczema, psoriasis, and acne | [12,15,21,49,79,80,81,82] |
Mucilages | Borago officinalis, Cordia dichotoma, Echium amoenum, Symphytum officinale L. | soften and elasticize the skin, have a moisturizing effect, dilate pores before cosmetic treatments, have antimicrobial properties | [83,84,85,86,87,88,89] |
Rosmarinic acid | Anchusa azurea, A. undulata, Borago officinalis, Buglossoides purpurocaerulea, Cerinthe major, Echium italicum, Ehretia obtusifolia, Heliotropium amplexicaule, Lindelofia longiflora, Lithospermum sp., Mertensia maritima, Nonnea lutea, Pulmonaria mollis, Symphytum sp., Trachystemon orientalis | antioxidant properties, support the fight against free radicals | [4,90,91,92,93,94] |
Saponins | Althaea officinalis, Echium italicum, Symphytum officinale | foaming agents in body wash products and shampoos | [2,11,95] |
Shikonin (red pigment) | Arnebia euchroma, A. guttata, Borago spp., Echium italicum, E. russicum, E. vulgare, Lithospermum erythrorhizon, Onosma hookeri, O. paniculatum, | reduce free radicals, moisturize, strengthen the skin barrier, important in the production of red lipsticks | [4,24,96] |
Tannins | Anchusa L., Pulmonaria L., Symphytum L. | antioxidant and antiaging effects, alleviate symptoms of atopic dermatitis, support wound healing | [75,97,98] |
Species | INCI Name | Description | Functions |
---|---|---|---|
Anchusa arvensis | Anchusa arvensis extract | Anchusa arvensis extract is the extract of the whole plant. | Skin conditioning |
Arnebia | Arnebia euchroma root extract | Arnebia euchroma root extract is the extract of the roots. | Antimicrobial |
Borago officinalis L. | Borage seed oil aminopropanediol amides | Borage seed oil aminopropanediol amides is the product obtained by the reaction of Borago officinalis seed oil and aminopropanediol. | Skin conditioning |
Borage seed oil peg-8 esters | Borage seed oil PEG-8 esters are the product obtained by the transesterification of Borago officinalis L., seed oil, and PEG-8. | Skin conditioning, skin conditioning—emollient, surfactant—cleansing, surfactant—emulsifying | |
Borage seed oil polyglyceryl-4 esters | Borage seed oil polyglyceryl-4 esters are the product obtained by the transesterification of Borago officinalis seed oil and polyglycerin-4. | Opacifying, solvent, surfactant—cleansing, surfactant—emulsifying | |
Saccharomyces/Borago officinalis seed oil/glycerin ferment filtrate | Saccharomyces/Borago officinalis seed oil/glycerin ferment filtrate is a filtrate of the product obtained by the fermentation of Borago officinalis seed oil and glycerin by the microorganism, saccharomyces. | Skin conditioning—emollient | |
Saccharomyces/Alchemilla vulgaris/Achillea millefolium/Borago officinalis/Eucalyptus globulus/Helichrysum arenarium ferment extract filtrate | Borago officinalis ferment extract filtrate is a filtrate of the extract of the product obtained by the fermentation of the whole plants, borago officinalis, by the microorganism, saccharomyces. | Antioxidant, skin conditioning | |
Rhizopus/Borago officinalis seed oil ferment filtrate | Rhizopus/Borago officinalis seed oil ferment filtrate is a filtrate of the product obtained by the fermentation of borago officinalis, Boraginaceae, seed oil, by the microorganism rhizopus. | Skin conditioning | |
Potassium borageate | Potassium borageate is the potassium salt of the fatty acids derived from Borago officinalis seed oil. | Cleansing, surfactant—cleansing | |
Peg-9 borageate | Poly(oxy-1,2-ethanediyl), .alpha.-hydro-.omega.-hydroxy-, esters with borage-oil (Borago officinalis L. seed) fatty acids (9 mol EO average molar ratio). | Surfactant—emulsifying | |
Hydrolyzed borage seed oil extract | Hydrolyzed borage seed oil extract is the hydrolysate of the extract of Borago officinalis seed oil derived by acid, enzyme, or other method of hydrolysis. | Antioxidant | |
Hydrolyzed borage seed oil | Hydrolyzed borage seed oil is the hydrolysate of Borago officinalis seed oil derived by acid, enzyme, or other method of hydrolysis. | Hair conditioning, skin conditioning | |
Dimethiconol borageate | Reaction product of the fatty acids derived from Borago officinalis seed oil and poly[oxy(dimethylsilylene), alpha.-hydro, .omega.-hydroxy. | Skin conditioning, skin conditioning—emollient | |
Borago officinalis leaf water | Borago officinalis leaf water is the aqueous solution of the steam distillates obtained from the whole plants. | Anti-sebum, antioxidant, skin conditioning, skin protecting | |
Borago officinalis seed oil | Borago officinalis seed oil is the fixed oil obtained from the seeds. | Skin conditioning, skin conditioning—emollient | |
Borago officinalis seed extract | Borago Officinalis seed extract is an extract of the seeds of Borago officinalis L. | Skin conditioning | |
Borago officinalis leaf extract | Borago officinalis leaf extract is the extract of the leaves. | Skin conditioning | |
Borago officinalis extract | Borago officinalis extract is an extract of the herb. | Skin conditioning, skin conditioning—emollient | |
Borago officinalis ethyl ester | Borago officinalis ethyl ester is the ethyl ester of the fatty acids derived from the oil of the seeds. | Skin conditioning | |
Borage seed oil/hydrogenated borage seed oil esters | Borage seed oil/hydrogenated borage seed oil esters are the product obtained by the transesterification of Borago. | Skin conditioning—emollient, skin protecting | |
Borage seed oil polyglyceryl-6 esters | Borage seed oil polyglyceryl-6 esters are the product obtained by the transesterification of Borago officinalis seed oil and polyglyceryl-6. | Skin conditioning, skin conditioning—emollient, surfactant—cleansing, surfactant—emulsifying | |
Buglossoides Arvensis L. I.M.Johnst. | Buglossoides arvensis seed oil | Buglossoides arvensis seed oil is the oil expressed from the seeds. | Skin conditioning, skin conditioning—emollient |
Cordia | Cordia salicifolia extract | Cordia salicifolia extract is the extract of the whole plant. | Skin conditioning |
Cordia obliqua leaf extract | Cordia obliqua leaf extract is an extract of the leaves. | Skin conditioning | |
Cordia curassavica leaf oil | Cordia curassavica leaf oil is the volatile oil obtained from the leaves. | Fragrance | |
Echium L. | Echium plantagineum seed oil | Echium plantagineum seed oil is the fixed oil obtained from the seeds. | Skin conditioning, solvent |
Echium lycopsis root extract | Echium lycopsis root extract is an extract of the roots. | Skin conditioning | |
Echium lycopsis fruit oil | Echium lycopsis fruit oil is the oil expressed from the fruit. | Skin conditioning | |
Lappula | Lappula squarrosa seed oil | Lappula squarrosa seed oil is the oil expressed from the seeds of Lappula squarrosa. | Skin conditioning, skin protecting |
Lithospermum erythrorhizon | Lithospermum erythrorhizon root | Lithospermum Erythrorhizon root is the powdered root of Lithospermum erythrorhizon. | Skin conditioning |
Lithospermum erythrorhizon root oil ferment filtrate | Lithospermum erythrorhizon root oil ferment filtrate is a filtrate of the product obtained by the fermentation of Lithospermum erythrorhizon root oil by the microorganism saccharomyces. | Skin conditioning | |
Lithospermum erythrorhizon root ferment filtrate extract | Lithospermum erythrorhizon root ferment extract filtrate is a filtrate of the extract of product obtained by the fermentation by the microorganism, Pseudozyma epicola. | Skin conditioning, skin conditioning—emollient, emulsion stabilizing, hair conditioning, humectant, skin conditioning, skin protecting | |
Lithospermum root extract serum succinate albumin | Lithospermum root extract serum albumin succinate is the product obtained by the reaction of Lithospermum erythrorhizon root extract with succinylated serum albumin. | Skin conditioning | |
Lithospermum officinale L. | Lithospermum officinale extract | Lithospermum officinale extract is an extract of the whole plant of the gromwell. | Fragrance, skin protecting |
Lithospermum officinale root extract | Lithospermum officinale root extract is an extract of the roots of the gromwell. | Skin conditioning | |
Lithospermum officinale seed oil | Lithospermum officinale seed oil is the oil expressed from the seeds of the gromwell. | Skin conditioning | |
Mertensis Maritima | Mertensia maritima extract | Mertensia maritima extract is the extract of the whole plant. | Skin conditioning |
Pulmonaria officinalis L. | Pulmonaria officinalis extract | Pulmonaria officinalis extract is an extract of the whole plant of the lungwort. | Astringent, skin conditioning, skin conditioning—emollient |
Symphytum officinale L. | Symphytum officinale root extract | Symphytum officinale root extract is the extract of the roots of the comfrey. | Anti-seborrheic, skin conditioning, soothing |
Symphytum officinale root cell extract | Symphytum officinale root cell extract is the extract of a culture of the root cells of the comfrey. | Skin conditioning | |
Symphytum officinale rhizome/root extract | Symphytum officinale rhizome/Root extract is the extract of the rhizomes and roots of Symphytum officinale. | Skin conditioning | |
Symphytum officinale leaf powder | Symphytum officinale leaf powder is a powder of finely ground leaves from the comfrey. | Abrasive | |
Symphytum officinale leaf extract | Symphytum officinale leaf extract is an extract of the leaves of the comfrey. | Skin conditioning | |
Symphytum officinale extract | Symphytum officinale extract is the extract of the whole plant. | Skin conditioning—miscellaneous | |
Symphytum officinale callus culture lysate | Symphytum officinale callus culture lysate is a lysate of a suspension of the cultured callus cells. | Skin conditioning | |
Symphytum officinale callus culture extract | Symphytum officinale callus culture extract is the extract of a culture of the callus. | Skin conditioning | |
Trichodesma zeylanicum | Trichodesma zeylanicum oil | Trichodesma zeylanicum oil is the fixed oil obtained from the plant. | Skin conditioning, skin conditioning—emollient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrzanowska, E.; Denisow, B.; Ekiert, H.; Pietrzyk, Ł. Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients—A Review. Molecules 2024, 29, 5088. https://doi.org/10.3390/molecules29215088
Chrzanowska E, Denisow B, Ekiert H, Pietrzyk Ł. Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients—A Review. Molecules. 2024; 29(21):5088. https://doi.org/10.3390/molecules29215088
Chicago/Turabian StyleChrzanowska, Ewelina, Bożena Denisow, Halina Ekiert, and Łukasz Pietrzyk. 2024. "Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients—A Review" Molecules 29, no. 21: 5088. https://doi.org/10.3390/molecules29215088
APA StyleChrzanowska, E., Denisow, B., Ekiert, H., & Pietrzyk, Ł. (2024). Metabolites Obtained from Boraginaceae Plants as Potential Cosmetic Ingredients—A Review. Molecules, 29(21), 5088. https://doi.org/10.3390/molecules29215088