Fabrication of Rapidly Soluble Zn2+-Releasing Phosphate-Based Glass and Its Incorporation into Dental Resin
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Rapidly Soluble Zn2+-Releasing Glass (RG)
2.2. Solubility of RG
2.3. Ion-Releasing Property of RG
2.4. Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) of Zn2+ Against Oral Bacteria
2.5. Antibacterial Activity of RG Against Oral Bacteria
2.6. Inhibition of Bacteria in Dentinal Tubules by Dental Resin Incorporating RG
3. Discussion
4. Materials and Methods
4.1. Fabrication of RG
4.2. Characterization of RG
4.3. Evaluation of Solubility of RG
4.4. Evaluation of Ion-Releasing Property of RG
4.5. Bacteria Used
4.6. Measurements of MICs and MBCs of Zn2+ Against Oral Bacteria
4.7. Evaluation of Antibacterial Activity of RG Against Oral Bacteria
4.8. Fabrication of Dental Resin Incorporating RG
4.9. Evaluation of Inhibition of Bacteria in Dentinal Tubules by Dental Resin Incorporating RG
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weintraub, J.A. The Oral Health in America report: A public health research perspective. Prev. Chronic Dis. 2022, 19, E58. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Ekstrand, K.R.; ICDAS Foundation. International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)–methods for staging of the caries process and enabling dentists to manage caries. Community Dent. Oral Epidemiol. 2013, 41, e41–e52. [Google Scholar] [CrossRef] [PubMed]
- Maltz, M.; Henz, S.L.; de Oliveira, E.F.; Jardim, J.J. Conventional caries removal and sealed caries in permanent teeth: A microbiological evaluation. J. Dent. 2012, 40, 776–782. [Google Scholar] [CrossRef]
- Lim, Z.E.; Duncan, H.F.; Moorthy, A.; McReynolds, D. Minimally invasive selective caries removal: A clinical guide. Br. Dent. J. 2023, 234, 233–240. [Google Scholar] [CrossRef]
- Schwendicke, F.; Tu, Y.K.; Hsu, L.Y.; Göstemeyer, G. Antibacterial effects of cavity lining: A systematic review and network meta-analysis. J. Dent. 2015, 43, 1298–1307. [Google Scholar] [CrossRef]
- Kunert, M.; Lukomska-Szymanska, M. Bio-inductive materials in direct and indirect pulp capping—A review article. Materials 2020, 13, 1204. [Google Scholar] [CrossRef]
- Forsten, L.; Söderling, E. The alkaline and antibacterial effect of seven Ca(OH)2 liners in vitro. Acta Odontol. Scand. 1984, 42, 93–98. [Google Scholar] [CrossRef]
- Lado, E.A.; Pappas, J.; Tyler, K.; Stanley, H.R.; Walker, C. In vitro antimicrobial activity of six pulp-capping agents. Oral Surg. Oral Med. Oral Pathol. 1986, 61, 197–200. [Google Scholar] [CrossRef]
- Portenier, I.; Haapasalo, H.; Rye, A.; Waltimo, T.; Ørstavik, D.; Haapasalo, M. Inactivation of root canal medicaments by dentine, hydroxylapatite and bovine serum albumin. Int. Endod. J. 2001, 34, 184–188. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Dummer, P.M. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef]
- Boyd, D.; Li, H.; Tanner, D.A.; Towler, M.R.; Wall, J.G. The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements. J. Mater. Sci. Mater. Med. 2006, 17, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Tejeda, L.; Prado, C.; Cabal, B.; Sanz, J.; Torrecillas, R.; Moya, J.S. Antibacterial and antifungal activity of ZnO containing glasses. PLoS ONE 2015, 10, e0132709. [Google Scholar] [CrossRef] [PubMed]
- Raja, F.N.S.; Worthington, T.; Isaacs, M.A.; Rana, K.S.; Martin, R.A. The antimicrobial efficacy of zinc doped phosphate-based glass for treating catheter associated urinary tract infections. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109868. [Google Scholar] [CrossRef] [PubMed]
- Cummins, D. Zinc citrate/triclosan: A new anti-plaque system for the control of plaque and the prevention of gingivitis: Short-term clinical and mode of action studies. J. Clin. Periodontol. 1991, 18, 455–461. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Pearce, E.I.F.; Sissons, C.H. Inhibitory effect of ZnCl2 on glycolysis in human oral microbes. Arch. Oral Biol. 2002, 47, 117–129. [Google Scholar] [CrossRef]
- Sheng, J.; Nguyen, P.T.M.; Marquis, R.E. Multi-target antimicrobial actions of zinc against oral anaerobes. Arch. Oral Biol. 2005, 50, 747–757. [Google Scholar] [CrossRef]
- Phan, T.N.; Buckner, T.; Sheng, J.; Baldeck, J.D.; Marquis, R.E. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 2004, 19, 31–38. [Google Scholar] [CrossRef]
- Koo, H.; Sheng, J.; Nguyen, P.T. Marquis Re. Cooperative inhibition by fluoride and zinc of glucosyl transferase production and polysaccharide synthesis by mutans streptococci in suspension cultures and biofilms. FEMS Microbiol. Lett. 2006, 254, 134–140. [Google Scholar] [CrossRef]
- Deng, F.; Sakai, H.; Kitagawa, H.; Kohno, T.; Thongthai, P.; Liu, Y.; Kitagawa, R.; Abe, G.L.; Sasaki, J.I.; Imazato, S. Fabrication of pH-responsive Zn2+-releasing glass particles for smart antibacterial restoratives. Molecules 2022, 27, 7202. [Google Scholar] [CrossRef]
- Knowles, J.C. Phosphate based glasses for biomedical applications. J. Mater. Chem. 2003, 13, 2395–2401. [Google Scholar] [CrossRef]
- Bunker, B.C.; Arnold, G.W.; Wilder, J.A. Phosphate glass dissolution in aqueous solutions. J. Non-Cryst. Solids 1984, 64, 291–316. [Google Scholar] [CrossRef]
- Severenkov, I.A.; Ustyugova, E.V.; Alekseeva, L.A.; Zaichuk, T.V.; Spiridonov, Y.A. Glass formation and crystallization in strontium-aluminum-silicate glass: Influence of modifying additives on melting and crystallization. Glass Ceram. 2021, 78, 259–263. [Google Scholar] [CrossRef]
- Refka, O.; Krimi, S.; Videau, J.; Khattech, I.; El Jazouli, A.; Jemal, M. Structural and thermochemical study of Na2O−ZnO−P2O5 glasses. J. Non-Cryst. Solids 2014, 390, 5–12. [Google Scholar] [CrossRef]
- Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J.C. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5−CaO−Na2O glass system. Biomaterials 2004, 25, 491–499. [Google Scholar] [CrossRef]
- Pyare, R.; Lai, L.J.; Joshi, V.C.; Singh, V.K. Leachability of molybdenum from ternary phosphate glasses. J. Am. Ceram. Soc. 1996, 79, 1329–1334. [Google Scholar] [CrossRef]
- Liu, G.; Wu, C.; Abrams, W.R.; Li, Y. Structural and functional characteristics of the microbiome in deep-dentin caries. J. Dent. Res. 2020, 99, 713–720. [Google Scholar] [CrossRef]
- Kianoush, N.; Adler, C.J.; Nguyen, K.A.T.; Browne, G.V.; Simonian, M.; Hunter, N. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS ONE 2014, 9, e92940. [Google Scholar] [CrossRef]
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of dental caries in primary and permanent teeth in children and young adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef]
- Lima, K.C.; Coelho, L.T.; Pinheiro, I.V.; Rôças, I.N.; Siqueira, J.F., Jr. Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis. Caries Res. 2011, 45, 21–30. [Google Scholar] [CrossRef]
- Hoshino, E. Predominant obligate anaerobes in human carious dentin. J. Dent. Res. 1985, 64, 1195–1198. [Google Scholar] [CrossRef]
- Martin, F.E.; Nadkarni, M.A.; Jacques, N.A.; Hunter, N. Quantitative microbiological study of human carious dentine by culture and real-time PCR: Association of anaerobes with histopathological changes in chronic pulpitis. J. Clin. Microbiol. 2002, 40, 1698–1704. [Google Scholar] [CrossRef]
- Watanabe, T.; Hara, Y.; Yoshimi, Y.; Fujita, Y.; Yokoe, M.; Noguchi, Y. Clinical characteristics of bloodstream infection by Parvimonas micra: Retrospective case series and literature review. BMC Infect. Dis. 2020, 20, 578. [Google Scholar] [CrossRef]
- Kuzmanović Radman, I.K.; Djeri, A.; Arbutina, A.; Milašin, J. Microbiological findings in deep caries lesions. Serb. Dent. J. 2016, 63, 7–14. [Google Scholar] [CrossRef]
- Blancas, B.; Lanzagorta, M.L.; Jiménez-Garcia, L.F.; Lara, R.; Molinari, J.L.; Fernández, A.M. Study of the ultrastructure of Enterococcus faecalis and Streptococcus mutans incubated with salivary antimicrobial peptides. Clin. Exp. Dent. Res. 2021, 7, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.; Hartke, A.; Huycke, M. The Physiology and Metabolism of Enterococci. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Morey, J.R.; Kehl-Fie, T.E. Bioinformatic mapping of opine-like zincophore biosynthesis in bacteria. mSystems 2020, 5, e00554-20. [Google Scholar] [CrossRef] [PubMed]
- Abrantes, M.C.; Kok, J.; Silva Lopes, M.D.F. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress. Microbiology 2014, 160, 2755–2762. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef]
- Hirose, N.; Kitagawa, R.; Kitagawa, H.; Maezono, H.; Mine, A.; Hayashi, M.; Haapasalo, M.; Imazato, S. Development of a cavity disinfectant containing antibacterial monomer MDPB. J. Dent. Res. 2016, 95, 1487–1493. [Google Scholar] [CrossRef]
- Kitagawa, H.; Kitagawa, R.; Tsuboi, R.; Hirose, N.; Thongthai, P.; Sakai, H.; Ueda, M.; Ono, S.; Sasaki, J.I.; Ooya, T.; et al. Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects. Dent. Mater. 2021, 37, 1248–1259. [Google Scholar] [CrossRef]
- Al-Nazhan, S.; Al-Sulaiman, A.; Al-Rasheed, F.; Alnajjar, F.; Al-Abdulwahab, B.; Al-Badah, A. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study. Restor. Dent. Endod. 2014, 39, 258–264. [Google Scholar] [CrossRef]
- Zegadło, K.; Gieroń, M.; Żarnowiec, P.; Durlik-Popińska, K.; Kręcisz, B.; Kaca, W.; Czerwonka, G. Bacterial motility and its role in skin and wound infections. Int. J. Mol. Sci. 2023, 24, 1707. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Minervini, F. Lactobacillus|Lactobacillus casei. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 432–438. [Google Scholar]
- Zhou, X.; Li, Y.; Peng, X.; Ren, B.; Li, J.; Xu, X.; He, J.; Cheng, L. Chapter 3. Supragingival Microbes. In Atlas of Oral Microbiology: From Healthy Microflora to Disease; Springer: Singapore, 2020; pp. 81–143. [Google Scholar]
- Lenzi, T.L.; Guglielmi, C.D.A.B.; Arana-Chavez, V.E.; Raggio, D.P. Tubule density and diameter in coronal dentin from primary and permanent human teeth. Microsc. Microanal. 2013, 19, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M.; Jenkinson, H.F. Invasion of dentinal tubules by oral bacteria. Crit. Rev. Oral Biol. Med. 2002, 13, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 2014, 102, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Stalons, D.R.; Thornsberry, C. Broth-dilution method for determining the antibiotic susceptibility of anaerobic bacteria. Antimicrob. Agents Chemother. 1975, 7, 15–21. [Google Scholar] [CrossRef]
Species | MIC (ppm) | MBC (ppm) |
---|---|---|
Lactobacillus casei ATCC4646 | 500 | 2000 |
Actinomyces naeslundii ATCC19246 | 62.5 | 125 |
Enterococcus faecalis SS497 | 1000 | 4000 |
Fusobacterium nucleatum 1436 | 125 | 500 |
Parvimonas micra GIFU7745 | 125 | 250 |
* Streptococcus mutans NCTC10449 | 125 | 250 |
Species | Broth | Agar |
---|---|---|
Lactobacillus casei ATCC4646 | Lactobacilli Inoculum Broth | Lactobacilli Inoculum Broth plates supplemented with 1.5% Bacto agar |
Actinomyces naeslundii ATCC19246 | Brain Heart Infusion Broth | Brain Heart Infusion agar |
Enterococcus faecalis SS497 | Brain Heart Infusion Broth | Brain Heart Infusion agar |
Fusobacterium nucleatum 1436 | Todd Hewitt Broth containing 0.1% L-cysteine | Todd Hewitt Broth agar containing 0.1% L-cysteine |
Parvimonas micra GIFU7745 | Brain Heart Infusion Broth | Brain Heart Infusion agar |
Streptococcus mutans NCTC10449 | Brain Heart Infusion Broth | Brain Heart Infusion agar |
Components | Function | wt% |
---|---|---|
Triethylene glycol dimethacrylate (TEGDMA) | Monomer | 89.0 |
2-hydroxyethyl methacrylate (HEMA) | Monomer | 10.0 |
Camphorquinone (CQ) | Initiator | 0.3 |
Ethyl p-dimethylaminobenzoate (EPA) | Reducing agent | 0.6 |
2,6-di-tert-butyl-p-benzoyl (BHT) | Inhibitor | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, F.; Kitagawa, H.; Kohno, T.; Wu, T.; Funayama, N.; Thongthai, P.; Li, H.; Abe, G.L.; Kitagawa, R.; Sasaki, J.-I.; et al. Fabrication of Rapidly Soluble Zn2+-Releasing Phosphate-Based Glass and Its Incorporation into Dental Resin. Molecules 2024, 29, 5098. https://doi.org/10.3390/molecules29215098
Deng F, Kitagawa H, Kohno T, Wu T, Funayama N, Thongthai P, Li H, Abe GL, Kitagawa R, Sasaki J-I, et al. Fabrication of Rapidly Soluble Zn2+-Releasing Phosphate-Based Glass and Its Incorporation into Dental Resin. Molecules. 2024; 29(21):5098. https://doi.org/10.3390/molecules29215098
Chicago/Turabian StyleDeng, Fan, Haruaki Kitagawa, Tomoki Kohno, Tingyi Wu, Naoya Funayama, Pasiree Thongthai, Hefei Li, Gabriela L. Abe, Ranna Kitagawa, Jun-Ichi Sasaki, and et al. 2024. "Fabrication of Rapidly Soluble Zn2+-Releasing Phosphate-Based Glass and Its Incorporation into Dental Resin" Molecules 29, no. 21: 5098. https://doi.org/10.3390/molecules29215098
APA StyleDeng, F., Kitagawa, H., Kohno, T., Wu, T., Funayama, N., Thongthai, P., Li, H., Abe, G. L., Kitagawa, R., Sasaki, J. -I., & Imazato, S. (2024). Fabrication of Rapidly Soluble Zn2+-Releasing Phosphate-Based Glass and Its Incorporation into Dental Resin. Molecules, 29(21), 5098. https://doi.org/10.3390/molecules29215098