The Molecular Design of a Macrocycle Descaling Agent Based on Azacrown and the Mechanism of Barium Sulfate Scale Removal
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussion
3.1. Surface Energy Calculation
3.2. Adsorption Energy of Different Functional Groups on the Crystal Surface of Barium Sulfate 001
3.3. Adsorption Energy of Azacrown Ethers
3.4. Design of Linking Functional Groups
3.5. Comparison Between New Macrocycle Descalers and Commonly Used Chelating Agents
3.6. Comparison of Their Mechanisms
3.7. Molecular Dynamics
4. Conclusions
- (1)
- By calculating the surface energy of different crystal facets of barium sulfate, we found that the 001 and 210 facets of barium sulfate have the lowest surface energy, indicating that these facets are the most structurally stable.
- (2)
- After designing a variety of functional groups, azacrown ethers, and linking groups, we selected a macrocycle descaling agent and compared it with DTPA. This study’s results show that this new macrocycle descaling agent is safer in terms of its biological toxicity, and its adsorption energy for barium ions is significantly enhanced, reaching −9.8510 ev.
- (3)
- The high adsorption capacity of the macrocycle descaling agent is mainly due to its strong electrostatic interaction. This electrostatic force is mainly due to the charge attraction between the lone pairs of electrons on the oxygen atoms and metal ions. During the coordination of the macrocycle with barium ions, electrostatic forces play a central role in molecular recognition and complex formation. This is further confirmed by the charge transfer data: the oxygen atoms in the macrocycle transfer more charge to the barium ions, while the nitrogen atoms in DTPA have a slightly higher charge transfer capability due to the influence of van der Waals forces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Freitas Dam, R.S.; Dos Santos, M.C.; Salgado, W.L.; da Cruz, B.L.; Schirru, R.; Salgado, C.M. Prediction of fluids volume fraction and barium sulfate scale in a multiphase system using gamma radiation and deep neural network. Appl. Radiat. Isot. 2023, 201, 111021. [Google Scholar] [CrossRef]
- Murtaza, M.; Rasm, M.Y.; Alarifi, S.A.; Kamal, M.S.; Mahmoud, M.; Al-Ajmi, M. An Efficient Single Step Approach for Barium Sulfate (BaSO4) Scale Removal at High Temperature. Arab. J. Sci. Eng. 2023, 48, 16879–16888. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, N.; Zhao, L.; Wang, C.; Wu, L.; Liu, P.; Ji, H. A chelating agent system for the removal of barium sulfate scale. J. Pet. Explor. Prod. Technol. 2020, 10, 3069–3079. [Google Scholar] [CrossRef]
- Zheng, W.; Fan, T.; Tan, X.; Xu, W.; Zhang, X. Investigation of barium sulfate scale inhibitor to improve the squeeze performance in South China Sea Oilfield. Pet. Sci. Technol. 2021, 40, 166–180. [Google Scholar] [CrossRef]
- Corrêa, L.F.; Hao, J.; Neerup, R.; Almeida, S.; Shi, M.; Thomsen, K.; Fosbøl, P.L. Review of barium sulphate solubility measurements. Geothermics 2022, 104, 102465. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Elkatatny, S. Removal of Barite-Scale and Barite-Weighted Water- or Oil-Based-Drilling-Fluid Residue in a Single Stage. SPE Drill. Complet. 2018, 34, 16–26. [Google Scholar] [CrossRef]
- Kowacz, M.; Putnis, C.V.; Putnis, A. The Control of Solution Composition on Ligand-Promoted Dissolution: DTPA−Barite Interactions. Cryst. Growth Des. 2009, 9, 5266–5272. [Google Scholar] [CrossRef]
- Hassan, A.; Mahmoud, M.; Bageri, B.S.; Aljawad, M.S.; Kamal, M.S.; Barri, A.A.; Hussein, I.A. Applications of Chelating Agents in the Upstream Oil and Gas Industry: A Review. Energy Fuels 2020, 34, 15593–15613. [Google Scholar] [CrossRef]
- Fan, Y.; Jia, D.; Qin, J.; Huang, Y. Rigidified naphtho-aza-crown ethers: Synthesis and ion selectivity on heavy metal ions. J. Incl. Phenom. Macrocycl. Chem. 2020, 98, 205–212. [Google Scholar] [CrossRef]
- Basok, S.S.; Schepetkin, I.A.; Khlebnikov, A.I.; Lutsyuk, A.F.; Kirichenko, T.I.; Kirpotina, L.N.; Pavlovsky, V.I.; Leonov, K.A.; Vishenkova, D.A.; Quinn, M.T. Synthesis, Biological Evaluation, and Molecular Modeling of Aza-Crown Ethers. Molecules 2021, 26, 2225. [Google Scholar] [CrossRef]
- Turanov, A.N.; Karandashev, V.K.; Baulin, V.E. Extractive properties of phosphoryl-substituted aza- and diazacrown ethers towards rare-earth metal ions. Solvent Extr. Ion Exch. 2001, 19, 597–618. [Google Scholar] [CrossRef]
- Gramain, P.; Frère, Y. Water-soluble poly(diazacrown ethers): Evidence for a polymer-sandwich complex with barium. Polymer 1980, 21, 921–924. [Google Scholar] [CrossRef]
- Bayrakci, M.; Ertul, Ş.; Yilmaz, M. Synthesis of new water-soluble phosphonate calixazacrowns and their use as drug solubilizing agents. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 293–303. [Google Scholar] [CrossRef]
- Boubekeur-Lecaque, L.; Souffrin, C.; Gontard, G.; Boubekeur, K.; Amatore, C. Water soluble diaza crown ether derivative: Synthesis and barium complexation studies. Polyhedron 2014, 68, 191–198. [Google Scholar] [CrossRef]
- Mosyagin, N.S.; Zaitsevskii, A.V.; Titov, A.V. Generalized relativistic effective core potentials for superheavy elements. Int. J. Quantum Chem. 2020, 120, e26076. [Google Scholar] [CrossRef]
- Bennett, M.C.; Melton, C.A.; Annaberdiyev, A.; Wang, G.; Shulenburger, L.; Mitas, L. A new generation of effective core potentials for correlated calculations. J. Chem. Phys. 2017, 147, 224106. [Google Scholar] [CrossRef]
- Patra, A.; Peng, H.; Sun, J.; Perdew, J.P. Rethinking CO adsorption on transition-metal surfaces: Effect of density-driven self-interaction errors. Phys. Rev. B 2019, 100, 035442. [Google Scholar] [CrossRef]
- Siad, A.B.; Baira, M.; Dahou, F.Z.; Bettir, K.; Monir, M.E.A. Insight into structural, elastic, optoelectronic, magnetic, and thermoelectric properties of the double perovskite compound Pb2FeTaO6: First principle study. J. Solid State Chem. 2021, 302, 122362. [Google Scholar] [CrossRef]
- Yi, Y.S.; Han, Y.; Lee, S.K.; Hur, S.D. Atomistic View of Mercury Cycling in Polar Snowpacks: Probing the Role of Hg2+ Adsorption Using Ab Initio Calculations. Minerals 2019, 9, 459. [Google Scholar] [CrossRef]
- Jones, F.; Richmond, W.R.; Rohl, A.L. Molecular Modeling of Phosphonate Molecules onto Barium Sulfate Terraced Surfaces. J. Phys. Chem. B 2006, 110, 7414–7424. [Google Scholar] [CrossRef]
- Sosa, R.D.; Geng, X.; Agarwal, A.; Palmer, J.C.; Conrad, J.C.; Reynolds, M.A.; Rimer, J.D. Acidic Polysaccharides as Green Alternatives for Barite Scale Dissolution. ACS Appl. Mater. Interfaces 2020, 12, 55434–55443. [Google Scholar] [CrossRef] [PubMed]
- Stack, A.G. Molecular Dynamics Simulations of Solvation and Kink Site Formation at the {001} Barite−Water Interface. J. Phys. Chem. C 2009, 113, 2104–2110. [Google Scholar] [CrossRef]
- Ataman, E.; Andersson, M.P.; Ceccato, M.; Bovet, N.; Stipp, S.L.S. Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules. J. Phys. Chem. C 2016, 120, 16586–16596. [Google Scholar] [CrossRef]
- Ataman, E.; Andersson, M.P.; Ceccato, M.; Bovet, N.; Stipp, S.L.S. Functional Group Adsorption on Calcite: II. Nitrogen and Sulfur Containing Organic Molecules. J. Phys. Chem. C 2016, 120, 16597–16607. [Google Scholar] [CrossRef]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2018, 35, 1067–1069. [Google Scholar] [CrossRef]
- Yang, H.; Sun, L.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. ADMETopt: A Web Server for ADMET Optimization in Drug Design via Scaffold Hopping. J. Chem. Inf. Model. 2018, 58, 2051–2056. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Jalab, R.; Saad, M.A.; Hussein, I.A.; Onawole, A.T. Calcite Scale Inhibition Using Environmental-Friendly Amino Acid Inhibitors: DFT Investigation. ACS Omega 2021, 6, 32120–32132. [Google Scholar] [CrossRef]
- Mato-Iglesias, M.; Roca-Sabio, A.; Palinkas, Z.; Esteban-Gomez, D.; Platas-Iglesias, C.; Toth, E.; de Blas, A.; Rodriguez-Blas, T. Lanthanide complexes based on a 1,7-diaza-12-crown-4 platform containing picolinate pendants: A new structural entry for the design of magnetic resonance imaging contrast agents. Inorg. Chem. 2008, 47, 7840–7851. [Google Scholar] [CrossRef]
- Roca-Sabio, A.; Mato-Iglesias, M.; Esteban-Gomez, D.; Toth, E.; Blas, A.D.; Platas-Iglesias, C.; Rodriguez-Blas, T. Macrocyclic Receptor Exhibiting Unprecedented Selectivity for Light Lanthanides. J. Am. Chem. Soc. 2009, 131, 3331–3341. [Google Scholar] [CrossRef]
Crystal | 001 | 100 | 210 | 120 | 010 | 011 | 012 | 201 | 212 |
Surface energy (J·m−2) | 0.0309 | 39.1026 | 0.0327 | 5.7746 | 0.0403 | 0.0984 | 0.0636 | 8.3453 | 5.5016 |
Functional Groups | Characteristic |
---|---|
COOH− | The hydrophilic group exhibits remarkable water solubility. The lone pairs of electrons on the oxygen atom allow for the formation of multidentate chelate rings with metal ions, which significantly increases ion solubility in water and enhances the capacity for scale removal. |
OH− | The hydroxyl group (OH) is a hydrophilic moiety consisting of a negatively charged oxygen atom and a positively charged hydrogen atom. Consequently, molecules bearing hydroxyl groups typically exhibit high solubility in water. |
NH2− | The amino group (NH2) is a hydrophilic functional group with lone pairs of electrons. The nitrogen atom within the amino group possesses an unshared electron pair, allowing it to form hydrogen bonds with water molecules, thereby conferring excellent water solubility. Furthermore, the nitrogen atom can establish coordination bonds with metal ions, making it widely applicable in metal ion capture and molecular interactions. |
CN− | Exhibiting electrophilicity and chemical stability, it forms stable complexes with metal ions, making it highly effective for metal ion extraction. |
SO3H− | The sulfonic acid group (SO3H) is a highly polar moiety with exceptional water solubility, readily dissolving in polar solvents. It features two π bonds and three negatively charged oxygen atoms, which impart a repulsive effect on cations. Additionally, it exhibits notable resistance to heat and salts. |
SH− | The thiol group (SH) is hydrophilic and capable of forming stable complexes with metal ions, making it highly effective for the adsorption and removal of heavy metal ions. |
PO3− | The phosphate group (PO3) is a hydrophilic moiety with lone electron pairs, capable of forming stable chelates with metal ions, thereby inhibiting the formation of scale in water systems. Compared to conventional chemical scale inhibitors, it offers superior biodegradability and reduced toxicity. |
Number | Adsorption Energy/ev | HOMO/ev | LUMO/ev | △E/ev |
---|---|---|---|---|
1 | −8.3002 | −5.3762 | 1.0159 | −6.3921 |
2 | −8.6259 | −4.5514 | 1.0949 | −5.6463 |
3 | −8.5235 | −4.3468 | 1.1655 | −5.5124 |
4 | −8.5142 | −4.4664 | 1.0106 | −5.4771 |
5 | −8.5264 | −4.2272 | 0.9971 | −5.2243 |
6 | −8.0783 | −4.5303 | 1.0469 | −5.5772 |
7 | −8.2592 | −4.6000 | 0.7375 | −5.3375 |
8 | −8.7164 | −4.4747 | 0.8184 | −5.2931 |
9 | −8.8077 | −4.5940 | 0.8439 | −5.4379 |
10 | −8.4440 | −4.3927 | 1.1233 | −5.5161 |
11 | −8.2868 | −4.3060 | 1.0813 | −5.3873 |
12 | −8.5840 | −4.4030 | 0.9157 | −5.3187 |
13 | −8.5390 | −4.5462 | 0.8724 | −5.4186 |
Compound | Linking Functional Groups | Adsorption/ev |
---|---|---|
2 | a | −8.4474 |
2 | b | −9.7774 |
2 | c | −9.1616 |
2 | d | −9.8510 |
Name | ΔE | Skin Corrosion | Eye Corrosion | Neurotoxicity | pKa | Water Solubility logS (ESOL) |
---|---|---|---|---|---|---|
2d | −1.8564 | 0.04 | 0.02 | −2.55 | 4.86 | −0.57 (Very soluble) |
DOTA | 3.0939 | 0.28 | 0.85 (toxic) | −1.95 | 6.24 | 4.85 (Highly soluble) |
CDTA | 3.2647 | 0.32 | 0.27 | −1.83 | 6.47 | 1.54 (Highly soluble) |
DTPA | 3.1177 | 0.24 | 0.42 | −1.91 | 7.23 | 4.15 (Highly soluble) |
EGTA | 3.7456 | 0.33 | 0.49 | −1.91 | 5.68 | 2.82 (Highly soluble) |
EDTA | 3.4851 | 0.44 | 0.68 | −1.78 | 5.41 | 2.78 (Highly soluble) |
Mechanisms | DTPA | Macrocycle | Difference |
---|---|---|---|
Adsorption/ev | −5.6998 | −9.8510 | −4.1512 |
O charge number transferred | −0.36 | −0.39 | −0.03 |
N charge number transferred | −0.29 | −0.22 | 0.07 |
van der Waals/Kcal·mol−1 | 20.02 | 14.65 | −5.37 |
Electrostatic/Kcal·mol−1 | −85.20 | −143.37 | −58.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Liu, D.; Shi, M.; Wang, J.; Zhao, H.; Dong, Y. The Molecular Design of a Macrocycle Descaling Agent Based on Azacrown and the Mechanism of Barium Sulfate Scale Removal. Molecules 2024, 29, 5167. https://doi.org/10.3390/molecules29215167
Wu D, Liu D, Shi M, Wang J, Zhao H, Dong Y. The Molecular Design of a Macrocycle Descaling Agent Based on Azacrown and the Mechanism of Barium Sulfate Scale Removal. Molecules. 2024; 29(21):5167. https://doi.org/10.3390/molecules29215167
Chicago/Turabian StyleWu, Da, Dexin Liu, Minghua Shi, Jiaqiang Wang, Han Zhao, and Yeliang Dong. 2024. "The Molecular Design of a Macrocycle Descaling Agent Based on Azacrown and the Mechanism of Barium Sulfate Scale Removal" Molecules 29, no. 21: 5167. https://doi.org/10.3390/molecules29215167
APA StyleWu, D., Liu, D., Shi, M., Wang, J., Zhao, H., & Dong, Y. (2024). The Molecular Design of a Macrocycle Descaling Agent Based on Azacrown and the Mechanism of Barium Sulfate Scale Removal. Molecules, 29(21), 5167. https://doi.org/10.3390/molecules29215167