Synthesis of bis-Chalcones Based on Green Chemistry Strategies and Their Cytotoxicity Toward Human MeWo and A375 Melanoma Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of bis-Chalcone Derivatives Under MW and US Conditions
2.2. Biological Studies
2.2.1. The Anticancer Activity of bis-Chalcone Derivatives on Human MeWo and A375 Melanoma Cell Lines
The Cytotoxic Activity of bis-Chalcone Derivatives on the Viability of the Human MeWo Cell Line
The Cytotoxic Activity of bis-Chalcone Derivatives on the Viability of A375 Cell Line
3. Materials and Methods
3.1. Solvents and Chemicals
3.2. Instrumental Analysis
3.3. Microwave- and Microwave–Ultrasound-Assisted Synthesis
3.4. General Procedures of bis-Chalcone Synthesis
3.4.1. Classic Method
3.4.2. Microwave Method
3.4.3. Microwave–Ultrasound Method
3.5. The Effect of the bis-Chalcone Derivatives on Human MeWo and A375 Melanoma Cell Lines
3.5.1. Cell Culture and Application of the Tested Compounds
3.5.2. Evaluation of the Cell Metabolic Activity of Cells Treated with bis-Chalcone Derivatives with the MTT Assay
3.5.3. Evaluation of the Cell Numbers After Exposure to bis-Chalcone Derivatives with the Sulforhodamine B (SRB) Assay
3.5.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, T.; Lungu, C.N. Anticancer Activity of Natural and Synthetic Chalcones. Int. J. Mol. Sci. 2021, 22, 11306. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M.; Cohen, M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin. Drug Discov. 2021, 16, 1319–1347. [Google Scholar] [CrossRef] [PubMed]
- Homet, B.; Ribas, A. New Drug Targets in Metastatic Melanoma. J. Pathol. 2014, 232, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, K.; Zhu, X.; Zhang, S.; Cherepanoff, S.; Conway, R.M.; Madigan, M.C.; Lim, L.-A.; Zhu, L.; Murray, M.; et al. The Application of Natural Compounds in Uveal Melanoma Drug Discovery. J. Pharm. Pharmacol. 2022, 74, 660–680. [Google Scholar] [CrossRef]
- Bednarczyk-Cwynar, B.; Leśków, A.; Szczuka, I.; Zaprutko, L.; Diakowska, D. The Effect of Oleanolic Acid and Its Four New Semisynthetic Derivatives on Human MeWo and A375 Melanoma Cell Lines. Pharmaceuticals 2023, 16, 746. [Google Scholar] [CrossRef]
- Hseu, Y.-C.; Chiang, Y.-C.; Vudhya Gowrisankar, Y.; Lin, K.-Y.; Huang, S.-T.; Shrestha, S.; Chang, G.-R.; Yang, H.-L. The In Vitro and In Vivo Anticancer Properties of Chalcone Flavokawain B through Induction of ROS-Mediated Apoptotic and Autophagic Cell Death in Human Melanoma Cells. Cancers 2020, 12, 2936. [Google Scholar] [CrossRef]
- Seitz, T.; Hackl, C.; Freese, K.; Dietrich, P.; Mahli, A.; Thasler, R.M.; Thasler, W.E.; Lang, S.A.; Bosserhoff, A.K.; Hellerbrand, C. Xanthohumol, a Prenylated Chalcone Derived from Hops, Inhibits Growth and Metastasis of Melanoma Cells. Cancers 2021, 13, 511. [Google Scholar] [CrossRef]
- Berning, L.; Scharf, L.; Aplak, E.; Stucki, D.; Von Montfort, C.; Reichert, A.S.; Stahl, W.; Brenneisen, P. In Vitro Selective Cytotoxicity of the Dietary Chalcone Cardamonin (CD) on Melanoma Compared to Healthy Cells Is Mediated by Apoptosis. PLoS ONE 2019, 14, e0222267. [Google Scholar] [CrossRef]
- Nasir Abbas Bukhari, S.; Jasamai, M.; Jantan, I. Synthesis and Biological Evaluation of Chalcone Derivatives (Mini Review). Mini-Rev. Med. Chem. 2012, 12, 1394–1403. [Google Scholar] [CrossRef]
- Mezgebe, K.; Melaku, Y.; Mulugeta, E. Synthesis and Pharmacological Activities of Chalcone and Its Derivatives Bearing N -Heterocyclic Scaffolds: A Review. ACS Omega 2023, 8, 19194–19211. [Google Scholar] [CrossRef] [PubMed]
- Michalkova, R.; Mirossay, L.; Kello, M.; Mojzisova, G.; Baloghova, J.; Podracka, A.; Mojzis, J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int. J. Mol. Sci. 2023, 24, 10354. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhao, S.; Long, J.; Su, J.; Wu, L.; Tao, J.; Zhou, J.; Zhang, J.; Chen, X.; Peng, C. A Novel Chalcone Derivative Has Antitumor Activity in Melanoma by Inducing DNA Damage through the Upregulation of ROS Products. Cancer Cell Int. 2020, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021, 11, 894. [Google Scholar] [CrossRef]
- Anwar, C.; Prasetyo, Y.D.; Matsjeh, S.; Haryadi, W.; Sholikhah, E.N.; Nendrowati, N. Synthesis of Chalcone Derivatives and Their in Vitro Anticancer Test Against Breast (T47D) and Colon (WiDr) Cancer Cell Line. Indones. J. Chem. 2018, 18, 102. [Google Scholar] [CrossRef]
- Sheikh, K.A.; Gupta, A.; Umar, M.; Ali, R.; Shaquiquzzaman, M.; Akhter, M.; Khan, M.A.; Kaleem, M.; Ambast, P.K.; Charan, S.; et al. Advances in Chalcone Derivatives: Unravelling Their Anticancer Potential through Structure-Activity Studies. J. Mol. Struct. 2024, 1299, 137154. [Google Scholar] [CrossRef]
- Leite, F.F.; De Sousa, N.F.; De Oliveira, B.H.M.; Duarte, G.D.; Ferreira, M.D.L.; Scotti, M.T.; Filho, J.M.B.; Rodrigues, L.C.; De Moura, R.O.; Mendonça-Junior, F.J.B.; et al. Anticancer Activity of Chalcones and Its Derivatives: Review and In Silico Studies. Molecules 2023, 28, 4009. [Google Scholar] [CrossRef]
- Gao, F.; Huang, G.; Xiao, J. Chalcone Hybrids as Potential Anticancer Agents: Current Development, Mechanism of Action, and Structure-activity Relationship. Med. Res. Rev. 2020, 40, 2049–2084. [Google Scholar] [CrossRef]
- Olender, D.; Sowa-Kasprzak, K.; Pawełczyk, A.; Skóra, B.; Zaprutko, L.; Szychowski, K.A. Curcuminoid Chalcones: Synthesis and Biological Activity against the Human Colon Carcinoma (Caco-2) Cell Line. Curr. Med. Chem. 2024, 31, 5397–5416. [Google Scholar] [CrossRef]
- Olender, D.; Józkowiak, M.; Piotrowska-Kempisty, H.; Sowa-Kasprzak, K.; Zaprutko, L.; Muszalska-Kolos, I.; Baranowska-Wójcik, E.; Szwajgier, D. Curcuminoid Chalcones: Synthesis, Stability, and New Neuroprotective and Sonosensitising Activities. Pharmaceuticals 2023, 16, 1331. [Google Scholar] [CrossRef]
- Pereira, R.; Silva, A.M.S.; Ribeiro, D.; Silva, V.L.M.; Fernandes, E. Bis-Chalcones: A Review of Synthetic Methodologies and Anti-Inflammatory Effects. Eur. J. Med. Chem. 2023, 252, 115280. [Google Scholar] [CrossRef] [PubMed]
- Liargkova, T.; Hadjipavlou-Litina, D.J.; Koukoulitsa, C.; Voulgari, E.; Avgoustakis, C. Simple Chalcones and Bis -Chalcones Ethers as Possible Pleiotropic Agents. J. Enzyme Inhib. Med. Chem. 2016, 31, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.F.; Sroor, F.M.; Elsayed, S.E.; Mahrous, K.F.; Mageed, L.; Hanafy, M.K.; Ibrahim, S.A.; Elwahy, A.H.M.; Abdelhamid, I.A. Synthesis and Anticancer Activities of Novel Bis-Chalcones Incorporatingthe 1,3-Diphenyl-1H-Pyrazole Moiety: In Silico and In Vitro Studies. Lett. Drug Des. Discov. 2022, 19, 1007–1021. [Google Scholar] [CrossRef]
- Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N.E.; Huang, P.; Khan, S.R. Anticancer Activities of Novel Chalcone and Bis-Chalcone Derivatives. Bioorg. Med. Chem. 2006, 14, 3491–3495. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Chakravarti, B.; Gupt, M.P.; Siddiqui, J.A.; Konwar, R.; Tripathi, R.P. Synthesis and Anti Breast Cancer Activity of Biphenyl Based Chalcones. Bioorg. Med. Chem. 2010, 18, 4711–4720. [Google Scholar] [CrossRef]
- Fathi, E.M.; Sroor, F.M.; Mahrous, K.F.; Mohamed, M.F.; Mahmoud, K.; Emara, M.; Elwahy, A.H.M.; Abdelhamid, I.A. Design, Synthesis, In Silico and In Vitro Anticancer Activity of Novel Bis-Furanyl-Chalcone Derivatives Linked through Alkyl Spacers. ChemistrySelect 2021, 6, 6202–6211. [Google Scholar] [CrossRef]
- Yang, J.; Mu, W.-W.; Liu, G.-Y. Synthesis and Evaluation of the Anticancer Activity of Bischalcone Analogs in Human Lung Carcinoma (A549) Cell Line. Eur. J. Pharmacol. 2020, 888, 173396. [Google Scholar] [CrossRef]
- Marotta, L.; Rossi, S.; Ibba, R.; Brogi, S.; Calderone, V.; Butini, S.; Campiani, G.; Gemma, S. The Green Chemistry of Chalcones: Valuable Sources of Privileged Core Structures for Drug Discovery. Front. Chem. 2022, 10, 988376. [Google Scholar] [CrossRef]
- Olender, D.; Kujawski, J.; Skóra, B.; Baranowska-Wójcik, E.; Sowa-Kasprzak, K.; Pawełczyk, A.; Zaprutko, L.; Szwajgier, D.; Szychowski, K.A. Bis-Chalcones Obtained via One-Pot Synthesis as the Anti-Neurodegenerative Agents and Their Effect on the HT-22 Cell Line. Heliyon 2024, 10, e37147. [Google Scholar] [CrossRef]
- Mulugeta, D. A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins. Sci. J. Chem. 2022, 10, 41. [Google Scholar] [CrossRef]
- Tiwari, S.; Talreja, S. Green Chemistry and Microwave Irradiation Technique: A Review. J. Pharm. Res. Int. 2022, 34, 74–79. [Google Scholar] [CrossRef]
Compound | Classic Method | MW Method 100/200 W | MW-US Method 100 W–100 W | ||||||
---|---|---|---|---|---|---|---|---|---|
Temp [°C] | Time [h] | Yield [%] | Temp [°C] | Time [min.] | Yield [%] | Temp [°C] | Time [min.] | Yield [%] | |
3a | r.t. * | 48 | 88 | 80–85 | 15/10 | 94/95 | 80–85 | 5 | 97 |
3b | 48 | 79 | 15/10 | 87/90 | 5 | 92 | |||
3c | 48 | 83 | 15/10 | 90/93 | 5 | 95 | |||
3d | 48 | 85 | 15/10 | 92/93 | 5 | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olender, D.; Pawełczyk, A.; Leśków, A.; Sowa-Kasprzak, K.; Zaprutko, L.; Diakowska, D. Synthesis of bis-Chalcones Based on Green Chemistry Strategies and Their Cytotoxicity Toward Human MeWo and A375 Melanoma Cell Lines. Molecules 2024, 29, 5171. https://doi.org/10.3390/molecules29215171
Olender D, Pawełczyk A, Leśków A, Sowa-Kasprzak K, Zaprutko L, Diakowska D. Synthesis of bis-Chalcones Based on Green Chemistry Strategies and Their Cytotoxicity Toward Human MeWo and A375 Melanoma Cell Lines. Molecules. 2024; 29(21):5171. https://doi.org/10.3390/molecules29215171
Chicago/Turabian StyleOlender, Dorota, Anna Pawełczyk, Anna Leśków, Katarzyna Sowa-Kasprzak, Lucjusz Zaprutko, and Dorota Diakowska. 2024. "Synthesis of bis-Chalcones Based on Green Chemistry Strategies and Their Cytotoxicity Toward Human MeWo and A375 Melanoma Cell Lines" Molecules 29, no. 21: 5171. https://doi.org/10.3390/molecules29215171
APA StyleOlender, D., Pawełczyk, A., Leśków, A., Sowa-Kasprzak, K., Zaprutko, L., & Diakowska, D. (2024). Synthesis of bis-Chalcones Based on Green Chemistry Strategies and Their Cytotoxicity Toward Human MeWo and A375 Melanoma Cell Lines. Molecules, 29(21), 5171. https://doi.org/10.3390/molecules29215171