Progress in MXenes and Their Composites as Electrode Materials for Electrochemical Sensing and Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Synthesis Method for MXenes
2.1. In Situ HF Etching Method
2.2. Direct HF Etching Method
2.3. Hydrothermal Method
2.4. Exfoliation Method
2.5. Electrochemical Etching Method
3. Progress in MXene-Based Electrode Materials for Phenolic Compound Sensing
3.1. Bisphenol A Sensor
3.2. 4-Nitrophenols Sensors
3.3. Catechol/Hydroquinone Sensors
Material | Etching Agent or Method | Layered Structure | Sensing Analyte | LOD (µM) | Linear Range (µM) | Real Sample Analysis | Sensing Technique | References |
---|---|---|---|---|---|---|---|---|
10%Pt@Ti3C2Tx/GCE | LiF/HCl | Multi-layered | BPA | 0.032 | 0.05 to 5.0 | Fresh milk | DPV | [87] |
Gr/MXene/GCE | HF | Multi-layered | BPA | 0.004 | 0.01 to 0.18 | Food package, drinking cup, and feeding bottle | Amperometry | [88] |
Gr/MXene/GCE | HF | Multi-layered | BPA | 0.35 | 1 to 10 | DPV | [88] | |
V2O5@Ti3C2Tx | HF | Multi-layered | BPA | 0.087 | 0.0041 to 31.2 | - | DPV | [89] |
Pt@SWCNTs-Ti3C2-rGO/SPCE | LiF/HCl | Multi-layered | BPA | 0.0028 | 0.006 to 9.8 | Thermal paper | DPV | [90] |
Ti3C2Tx | HF | Multi-layered | 4-NP | 0.042 | 0.5 to 25 | Tap water | DPV | [91] |
D-Ti3C2Tx/GR | LiF/HCl | Multi-layered | 4-NP | 0.16 | 1 to 175 | Sea water and Tap water | DPV | [92] |
Ti3C2Tx | NaF/HCl | Multi-layered | 4-NP | 0.11 | 0.5 to 25 | Waste water | DPV | [93] |
Mxene-AgBiS2/GCE | HF | Multi-layered | 4-NP | 0.0025 | 10 to 78 | Tap water | DPV | [94] |
Lac/Au/MXene/GCE | HF | Multi-layered | CC | 0.05 | 0.05 to 0.15 | - | CV | [95] |
Ti3C2-MWCNT | LiF/HCl | Multi-layered | CC | 0.0039 | 2 to 150 | Waste water | DPV | [96] |
Ti3C2-MWCNT | LiF/HCl | Multi-layered | HQ | 0.0066 | 2 to 150 | Waste water | DPV | [96] |
Alk-Ti3C2/N-PC | HF | Multi-layered | HQ | 0.0048 | 0.5 to 150 | Industrial waste water | DPV | [98] |
Alk-Ti3C2/N-PC | HF | Multi-layered | CC | 0.0031 | 0.5 to 150 | Industrial waste water | DPV | [98] |
FeCu-MOF-919/Ti3C2Tx/GCE | LiF/HCl | - | RS | 0.08 | 0.5 to 152.5 | Tap water | DPV | [99] |
MIP/pTHi/MXene/Fe@Ti-MOF-NH2/GCE | HF | Multi-layered | CC | 0.54 | 1 to 4000 | Tap water and human urine | SWV | [100] |
4. Progress in DSSCs
4.1. Pristine MXenes as CE
4.2. MXene-Based Composite Materials as CE Materials
Material | Etching Agent or Method | Layered Structure | Jsc (mA/cm2) | Voc (V) | F.F. | PCE (%) | References |
---|---|---|---|---|---|---|---|
Ti3C2 | HF | Multi-layered | 15.28 | 0.77 | 0.69 | 8.12 | [105] |
Ti3C2 | HF | Multi-layered | - | - | - | 7.78 | [106] |
Ti3C2 | Leaching method | Multi-layered | 17.10 | 0.75 | 0.73 | 8.68 | [107] |
Ti3C2 | HF | Multi-layered | 13.75 | 0.74 | 0.71 | 7.15 | [108] |
Ti3C2 | HF/HCl | Multi-layered | 13.31 | 0.71 | 0.64 | 6.06 | [108] |
Ti3C2 | LiF/HCl | Multi-layered | 13.38 | 0.73 | 0.65 | 6.38 | [108] |
Ti3C2 | NH4HF2 | Multi-layered | 11.81 | 0.72 | 0.71 | 6.05 | [108] |
TiN@Ni-MXene | Impregnation method | Multi-layered | 15.91 | 0.76 | 0.66 | 8.08 | [109] |
CoMoP2@Mxene-3 | HF | Multi-layered | 15.17 | 0.73 | 0.63 | 7.08 | [110] |
CoMoP2@Mxene@CNTs-3 | HF | Multi-layered | 25.43 | 0.70 | 0.59 | 10.64 | [110] |
MoP/MoNiP2@Ti3C2–80% | HF | Multi-layered | 23.0 | 0.72 | 0.62 | 10.01 | [111] |
Fe2P2O7/Ni2P@Mxene-80 % | HF | Multi-layered | 17.1 | 0.76 | 0.71 | 9.29 | [112] |
ZM30 | LiF/HCl | Multi-layered | 17.53 | 0.72 | 0.68 | 8.61 | [113] |
C/T-1.0 wt% | LiF/HCl | Multi-layered | 13.57 | 0.71 | 0.60 | 5.83 | [114] |
M−MoS2 | HF | Multi-layered | 11.35 | 0.64 | 0.71 | 5.21 | [115] |
PEDOT@ Ti3C2Tx | HF | Multi-layered | 15.40 | 0.69 | 0.67 | 7.12 | [116] |
Ti3C2Tx-Pth | HF | Multi-layered | 15.54 | 0.67 | 0.56 | 5.83 | [117] |
5. Conclusions
5.1. Environmental Implications
5.2. Challenges, Limitations, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124. [Google Scholar] [CrossRef] [PubMed]
- Cygan, T.; Wozniak, J.; Petrus, M.; Lachowski, A.; Pawlak, W.; Adamczyk-Cieślak, B.; Jastrzębska, A.; Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; et al. Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phase. Materials 2021, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, S.; Liang, W.; Luo, S.; He, Z.; Ge, Y.; Wang, H.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev. 2018, 12, 170029. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Aslam, M.K.; AlGarni, T.S.; Javed, M.S.; Shah, S.S.A.; Hussain, S.; Xu, M. 2D MXene materials for sodium ion batteries: A review on energy storage. J. Energy Storage 2021, 37, 102478. [Google Scholar] [CrossRef]
- Bian, R.; Lin, R.; Wang, G.; Lu, G.; Zhi, W.; Xiang, S.; Wang, T.; Clegg, P.S.; Cai, D.; Huang, W. 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale 2018, 10, 3621–3625. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Thakur, D.; Noh, J.-S. Design of Functional Ti3C2Tx MXene for Gas Sensors and Energy Harvesting: A Review. Chemosensors 2023, 11, 477. [Google Scholar] [CrossRef]
- Jia, J.; Zhu, Y.; Das, P.; Ma, J.; Wang, S.; Zhu, G.; Wu, Z.-S. Advancing MXene-based integrated microsystems with micro-supercapacitors and/or sensors: Rational design, key progress, and challenging perspectives. J. Mater. 2023, 9, 1242–1262. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Q.; Ma, J.; Das, P.; Zhang, L.; Liu, H.; Wang, S.; Li, H.; Wu, Z.-S. Three-dimensional (3D)-printed MXene high-voltage aqueous micro-supercapacitors with ultrahigh areal energy density and low-temperature tolerance. Carbon Energy 2024, 6, e481. [Google Scholar] [CrossRef]
- Gautam, R.; Marriwala, N.; Devi, R. A review: Study of Mxene and graphene together. Meas. Sens. 2023, 25, 100592. [Google Scholar] [CrossRef]
- Pandey, M.; Deshmukh, K.; Raman, A.; Asok, A.; Appukuttan, S.; Suman, G.R. Prospects of MXene and graphene for energy storage and conversion. Renew. Sustain. Energy Rev. 2024, 189, 114030. [Google Scholar] [CrossRef]
- Alhajri, F.; Fadlallah, M.M.; Alkhaldi, A.; Maarouf, A.A. Hybrid MXene-Graphene/Hexagonal Boron Nitride Structures: Electronic and Molecular Adsorption Properties. Nanomaterials 2022, 12, 2739. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Kiran, N.U.; Mane, P.; Chakraborty, B.; Besra, L.; Chatterjee, S.; Chatterjee, S. Hydrophobic MXene with enhanced electrical conductivity. Surf. Interfaces 2023, 39, 102969. [Google Scholar] [CrossRef]
- Bukhari, H.; Iqbal, A.M.; Awan, S.U.; Hussain, D.; Shah, S.A.; Rizwan, S. Intercalation of C60 into MXene Multilayers: A Promising Approach for Enhancing the Electrochemical Properties of Electrode Materials for High-Performance Energy Storage Applications. ACS Omega 2024, 9, 227–238. [Google Scholar] [CrossRef]
- Rajapakse, M.; Karki, B.; Abu, U.O.; Pishgar, S.; Musa, M.R.K.; Riyadh, S.S.; Yu, M.; Sumanasekera, G.; Jasinski, J.B. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. NPJ 2D Mater. Appl. 2021, 5, 30. [Google Scholar] [CrossRef]
- Zhang, C.J.; Pinilla, S.; McEvoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.-H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [Google Scholar] [CrossRef]
- Adomaviciute-Grabusove, S.; Popov, A.; Ramanavicius, S.; Sablinskas, V.; Shevchuk, K.; Gogotsi, O.; Baginskiy, I.; Gogotsi, Y.; Ramanavicius, A. Monitoring Ti3C2Tx MXene Degradation Pathways Using Raman Spectroscopy. ACS Nano 2024, 18, 13184–13195. [Google Scholar] [CrossRef]
- Huo, J.; Peng, C. Depletion of natural resources and environmental quality: Prospects of energy use, energy imports, and economic growth hindrances. Resour. Policy 2023, 86, 104049. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Nagaj, R.; Žuromskaitė-Nagaj, B.; Grebski, W.W. The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis. Energies 2024, 17, 947. [Google Scholar] [CrossRef]
- Albukhari, S.M.; Abdel Salam, M.; Aldawsari, A.M.M. Removal of Malachite Green Dye from Water Using MXene (Ti3C2) Nanosheets. Sustainability 2022, 14, 5996. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, K. The Preparation of High-Performance and Stable MXene Nanofiltration Membranes with MXene Embedded in the Organic Phase. Membranes 2022, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, S.; Zhang, H. Polycation-Intercalated MXene Membrane with Enhanced Permselective and Anti-Microbial Properties. Nanomaterials 2023, 13, 2885. [Google Scholar] [CrossRef]
- Saafie, N.; Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review. Chemistry 2022, 4, 1576–1608. [Google Scholar] [CrossRef]
- Gomaa, I.; Hosny, N.M.; Elhaes, H.; Ezzat, H.A.; Elmahgary, M.G.; Ibrahim, M.A. Two-Dimensional MXene as a Promising Adsorbent for Trihalomethanes Removal: A Density-Functional Theory Study. Nanomaterials 2024, 14, 454. [Google Scholar] [CrossRef]
- Naji, M.A.; Salimi-Kenari, H.; Alsalhy, Q.F.; Al-Juboori, R.A.; Huynh, N.; Rashid, K.T.; Salih, I.K. Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater. Membranes 2023, 13, 357. [Google Scholar] [CrossRef]
- Ly, N.H.; Son, S.J.; Kim, H.H.; Joo, S.-W. Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. Appl. Sci. 2021, 11, 10519. [Google Scholar] [CrossRef]
- Ncube, P.; Krause, R.W.; Mamba, B.B. Fluorescent Sensing of Chlorophenols in Water Using an Azo Dye Modified β-Cyclodextrin Polymer. Sensors 2011, 11, 4598–4608. [Google Scholar] [CrossRef]
- Luis-Sunga, M.; Carinelli, S.; García, G.; González-Mora, J.L.; Salazar-Carballo, P.A. Electrochemical Detection of Bisphenol A Based on Gold Nanoparticles/Multi-Walled Carbon Nanotubes: Applications on Glassy Carbon and Screen Printed Electrodes. Sensors 2024, 24, 2570. [Google Scholar] [CrossRef]
- Garkani Nejad, F.; Beitollahi, H.; Sheikhshoaie, I. Graphene Oxide–PAMAM Nanocomposite and Ionic Liquid Modified Carbon Paste Electrode: An Efficient Electrochemical Sensor for Simultaneous Determination of Catechol and Resorcinol. Diagnostics 2023, 13, 632. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Alam, M.M.; Ahmed, J.; Asiri, A.M.; Jalalah, M.; Alruwais, R.S.; Rahman, M.M.; Harraz, F.A. Sensitive Electrochemical Detection of 4-Nitrophenol with PEDOT:PSS Modified Pt NPs-Embedded PPy-CB@ZnO Nanocomposites. Biosensors 2022, 12, 990. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, S.P.; de Oliveira Cândido, T.C.; Pereira, A.C.; da Silva, D.N. Electrochemical Determination of Catechol Using a Disposable Printed Electrode with Conductive Ink Based on Graphite and Carbon Black. Analytica 2024, 5, 250–262. [Google Scholar] [CrossRef]
- Alrashidi, A.; El-Sherif, A.M.; Ahmed, J.; Faisal, M.; Alsaiari, M.; Algethami, J.S.; Moustafa, M.I.; Abahussain, A.A.M.; Harraz, F.A. A Sensitive Hydroquinone Amperometric Sensor Based on a Novel Palladium Nanoparticle/Porous Silicon/Polypyrrole-Carbon Black Nanocomposite. Biosensors 2023, 13, 178. [Google Scholar] [CrossRef]
- Hashim, H.S.; Fen, Y.W.; Omar, N.A.S.; Fauzi, N.I.M. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021, 9, 291. [Google Scholar] [CrossRef]
- Alahmad, W.; Cetinkaya, A.; Kaya, S.I.; Varanusupakul, P.; Ozkan, S.A. Electrochemical paper-based analytical devices for environmental analysis: Current trends and perspectives. Trends Environ. Anal. Chem. 2023, 40, e00220. [Google Scholar] [CrossRef]
- Meredith, N.A.; Quinn, C.; Cate, D.M.; Reilly, T.H.; Volckens, J.; Henry, C.S. Paper-based analytical devices for environmental analysis. Analyst 2016, 141, 1874–1887. [Google Scholar] [CrossRef]
- Kung, C.-T.; Hou, C.-Y.; Wang, Y.-N.; Fu, L.-M. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sens. Actuators B Chem. 2019, 301, 126855. [Google Scholar] [CrossRef]
- Shetty, S.S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.B.; Kumari, N.S.; Madhyastha, H. Environmental pollutants and their effects on human health. Heliyon 2023, 9, e19496. [Google Scholar] [CrossRef]
- Kummari, S.; Panicker, L.R.; Bommi, J.R.; Karingula, S.; Kumar, V.S.; Mahato, K.; Goud, K.Y. Trends in paper-based sensing devices for clinical and environmental monitoring. Biosens 2023, 13, 420. [Google Scholar] [CrossRef]
- Montero, L.; Herrero, M.; Ibánez, E.; Cifuentes, A. Profiling of phenolic compounds from different apple varieties using comprehensive two-dimensional liquid chromatography. J. Chromatogr. A 2013, 1313, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Fukuji, T.S.; Tonin, F.G.; Tavares, M.F. Optimization of a method for determination of phenolic acids in exotic fruits by capillary electrophoresis. J. Pharm. Biomed. Anal. 2010, 51, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Kula, M.; Głód, D.; Krauze-Baranowska, M. Two-dimensional liquid chromatography (LC) of phenolic compounds from the shoots of Rubus idaeus ‘Glen Ample’ cultivar variety. J. Pharm. Biomed. Anal. 2016, 121, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Liberatore, L.; Procida, G.; d’Alessandro, N.; Cichelli, A. Solid-phase extraction and gas chromatographic analysis of phenolic compounds in virgin olive oil. Food Chem. 2001, 73, 119–124. [Google Scholar] [CrossRef]
- Lee, H.B.; Peart, T.E.; Svoboda, M.L. Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. J. Chromatogr. A 2005, 1094, 122–129. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, J.; Ko, S.H. Electrochemical biosensors for point-of-care testing. Bio-Des. Manuf. 2024, 7, 548–565. [Google Scholar] [CrossRef]
- Sankhla, L.; Kushwaha, H.S. Development of an opto-electrochemical sensor for the detection of malathion using manganese metal–organic framework (Mn-MOF). J. Mater. Sci. Mater. Eng. 2024, 19, 11. [Google Scholar] [CrossRef]
- Shi, Z.; Xia, L.; Li, G. Recent Progress of Electrochemical Sensors in Food Analysis. Chemosensors 2023, 11, 478. [Google Scholar] [CrossRef]
- Mishrif, A.; Khan, A. Non-Industrial Solar Energy Use, Barriers, and Readiness: Case Study of Oman. Energies 2024, 17, 3917. [Google Scholar] [CrossRef]
- Machín, A.; Márquez, F. Advancements in Photovoltaic Cell Materials: Silicon, Organic, and Perovskite Solar Cells. Materials 2024, 17, 1165. [Google Scholar] [CrossRef]
- Ahmad, K.; Khan, M.Q.; Alsulmi, A.; Kim, H. Numerical Simulation and Experimental Study of Methyl Ammonium Bismuth Iodide Absorber Layer Based Lead Free Perovskite Solar Cells. Chem. Eur. J. 2023, 29, e202300513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, C.; Cai, Z.; Wang, L.; Zhu, L.; Huang, H.; Zhang, G.; You, P.; Xie, C.; Wang, Y.; et al. All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer. Polymers 2023, 15, 3462. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Bai, Y.; Wang, S. Organic Solar Cells: From Fundamental to Application. Energies 2023, 16, 2262. [Google Scholar] [CrossRef]
- Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings 2022, 12, 1089. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, D.-H.; So, J.-H.; Koo, H.-J. Toward Eco-Friendly Dye-Sensitized Solar Cells (DSSCs): Natural Dyes and Aqueous Electrolytes. Energies 2022, 15, 219. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Huang, Y.-J.; Yeh, M.-H.; Fan, M.-S.; Lin, C.-T.; Chang, C.-C.; Ramamurthy, V.; Ho, K.-C. Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells. Nanomaterials 2022, 12, 4036. [Google Scholar] [CrossRef]
- Nurazizah, E.S.; Aprilia, A.; Risdiana, R.; Safriani, L. Different Roles between PEDOT:PSS as Counter Electrode and PEDOT:Carrageenan as Electrolyte in Dye-Sensitized Solar Cell Applications: A Systematic Literature Review. Polymers 2023, 15, 2725. [Google Scholar] [CrossRef]
- Lin, C.-F.; Hsieh, T.-H.; Chou, Y.-C.; Chen, P.-H.; Chen, C.-W.; Wu, C.-H. Cobalt and Carbon Complex as Counter Electrodes in Dye-Sensitized Solar Cells. Photonics 2021, 8, 166. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Yuan, X.; Zeng, G.; Zhou, J.; Wang, X.; Chew, J.W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-Art progresses and challenges. Adv. Mater. 2018, 30, e1704561. [Google Scholar] [CrossRef]
- Sinha, A.; Dhanjai; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. Trac-Trends Anal. Chem. 2018, 105, 424–435. [Google Scholar] [CrossRef]
- Alhamada, T.F.; Azmah Hanim, M.A.; Jung, D.W.; Nuraini, A.A.; Hasan, W.Z.W. A Brief Review of the Role of 2D Mxene Nanosheets toward Solar Cells Efficiency Improvement. Nanomaterials 2021, 11, 2732. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, P.A.; Pandey, R.P.; Jabbar, K.A.; Ponraj, J.; Mahmoud, K.A. Sensitive electrochemical detection of l-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode. Anal. Methods 2019, 11, 3851–3856. [Google Scholar] [CrossRef]
- Xie, X.; Xue, Y.; Li, L.; Chen, S.; Nie, Y.; Ding, W.; Wei, Z. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 2014, 6, 11035–11040. [Google Scholar] [CrossRef] [PubMed]
- Alwarappan, S.; Nesakumar, N.; Sun, D.; Hu, T.Y.; Li, C.Z. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 2022, 205, 113943. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Xing, Y.; Xiong, P.; Tang, H.; Li, C.; Chen, S.; Zeng, R.; Han, K.; Shi, G. Three- dimensional porous Ti3C2Tx MXene-graphene hybrid films for glucose biosensing. ACS Appl. Nano Mater. 2019, 2, 6537–6545. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Q.; Wang, F.; Liu, Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosome. Biosens. Bioelectron. 2019, 124, 184–190. [Google Scholar] [CrossRef]
- Meng, W.; Liu, X.; Song, H.; Xie, Y.; Shi, X.; Dargusch, M.; Chen, Z.-G.; Tang, Z.; Lu, S. Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today 2021, 40, 101273. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Wu, Z.-S. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024, 27, 108906. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Q.; Song, S.; Pan, Y.; Xue, H.; Li, J. Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances. Polymers 2024, 16, 1337. [Google Scholar] [CrossRef]
- Nahirniak, S.; Ray, A.; Saruhan, B. Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries 2023, 9, 126. [Google Scholar] [CrossRef]
- Kang, H.; Han, L.; Chen, S.; Xie, S.; Li, M.; Fang, Q.; He, S. Research Progress on Two-Dimensional Layered MXene/Elastomer Nanocomposites. Polymers 2022, 14, 4094. [Google Scholar] [CrossRef] [PubMed]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed]
- Malaki, M.; Maleki, A.; Varma, R.S. MXenes and ultrasonication. J. Mater. Chem. A 2019, 7, 10843–10857. [Google Scholar] [CrossRef]
- Tahir, M.; Sherryna, A.; Mansoor, R.; Khan, A.A.; Tasleem, S.; Tahir, B. Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review. ACS Appl. Nano Mater. 2022, 5, 18–54. [Google Scholar] [CrossRef]
- Hai, Y.; Jiang, S.; Zhou, C.; Sun, P.; Huang, Y.; Niu, S. Fire-safe unsaturated polyester resin nanocomposites based on MAX and MXene: A comparative investigation of their properties and mechanism of fire retardancy. Dalton Trans. 2020, 49, 5803–5814. [Google Scholar] [CrossRef]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B. Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef]
- Peng, C.; Wei, P.; Chen, X.; Zhang, Y.; Zhu, F.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram. Int. 2018, 44, 18886–18893. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Maleski, K.; Mochalin, V.N.; Gogotsi, Y. Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chem. Mater. 2017, 29, 1632–1640. [Google Scholar] [CrossRef]
- Mashtalir, O.; Lukatskaya, M.R.; Kolesnikov, A.I.; Raymundo-Pinero, E.; Naguib, M.; Barsoum, M.W.; Gogotsi, Y. The Effect of Hydrazine Intercalation on the Structure and Capacitance of 2D Titanium Carbide (MXene). Nanoscale 2016, 8, 9128–9133. [Google Scholar] [CrossRef]
- Yazdanparast, S.; Soltanmohammad, S.; Fash-White, A.; Tucker, G.J.; Brennecka, G.L. Synthesis and Surface Chemistry of 2D TiVC Solid-Solution MXenes. ACS Appl. Mater. Interfaces 2020, 12, 20129–20137. [Google Scholar] [CrossRef] [PubMed]
- Mondal, K.; Ghosh, P. Exfoliation of Ti2C and Ti3C2 Mxenes from bulk trigonal phases of titanium carbide: A theoretical prediction. Solid State Commun. 2019, 299, 113657. [Google Scholar] [CrossRef]
- Chia, H.L.; Mayorga-Martinez, C.C.; Antonatos, N.; Sofer, Z.; Gonzalez-Julian, J.J.; Webster, R.D.; Pumera, M. MXene Titanium Carbide-based Biosensor: Strong Dependence of Exfoliation Method on Performance. Anal. Chem. 2020, 92, 2452–2459. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.; Feng, X. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew. Chem. 2018, 130, 15717–15721. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; et al. In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Adv. Energy Mat. 2020, 10, 2001791. [Google Scholar] [CrossRef]
- Nguyen, D.-T.; Ting, H.-A.; Su, Y.-H.; Hofmann, M.; Hsieh, Y.-P. Additive-Enhanced Exfoliation for High-Yield 2D Materials Production. Nanomaterials 2021, 11, 601. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Pandey, R.P.; Jabbar, K.A.; Mahmoud, K.A. Platinum nanoparticles/Ti3C2Tx MXene composite for the effectual electrochemical sensing of bisphenol A in aqueous media. J. Electroanal. Chem. 2021, 880, 114934. [Google Scholar] [CrossRef]
- Rajendran, J.; Kannan, T.S.; Dhanasekaran, L.S.; Murugan, P.; Atchudan, R.; Alothaman, Z.A.; Ouladsmane, M.; Sundramoorthy, A.K. Preparation of 2D graphene/MXene nanocomposite for the electrochemical determination of hazardous bisphenol A in plastic products. Chemosphere 2022, 287, 132106. [Google Scholar] [CrossRef]
- Thukkaram, M.P.; Chakravorty, A.; Mini, A.A.; Ramesh, K.; Grace, A.N.; Raghavan, V. Titanium carbide MXene and V2O5 composite-based electrochemical sensor for detection of bisphenol A. Microchem. J. 2023, 193, 109004. [Google Scholar] [CrossRef]
- Qu, G.; Zhang, Y.; Zhou, J.; Tang, H.; Ji, W.; Yan, Z.; Pan, K.; Ning, P. Simultaneous electrochemical detection of dimethyl bisphenol A and bisphenol A using a novel Pt@SWCNTs-MXene-rGO modified screen-printed sensor. Chemosphere 2023, 337, 139315. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Muthumalai, K.; Nagaraja, T.; Rajendrakumar, R.T.; Das, S.R. Chemically exfoliated titanium carbide MXene for highly sensitive electrochemical sensors for detection of 4-nitrophenols in drinking water. ACS Omega 2022, 7, 42644–42654. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Yang, S.; Bai, X.; Shan, J. Self-assembled Ti3C2Tx MXene/graphene composite for the electrochemical reduction and detection of p-nitrophenol. Microchem. J. 2022, 179, 107473. [Google Scholar] [CrossRef]
- Lei, L.; Li, C.; Huang, W.; Wu, K. Simultaneous detection of 4-chlorophenol and 4-nitrophenol using a Ti3C2Tx MXene based electrochemical sensor. Analyst 2021, 146, 7593–7600. [Google Scholar] [CrossRef] [PubMed]
- Gopi, P.K.; Sanjayan, C.G.; Akhil, S.; Ravikumar, C.H.; Thitamadee, S.; Kongpatanakul, S.; Balakrishna, R.G.; Surareungchai, W. Silver bismuth sulphide (AgBiS2)-MXene composite as high-performance electrochemical sensing platform for sensitive detection of pollutant 4-nitrophenol. Electrochim. Acta. 2024, 498, 144616. [Google Scholar] [CrossRef]
- Chandran, M.; Aswathy, E.; Sharma, I.; Vinoba, M.; Kottappara, R.; Bhagyalakshmi, M. Laccase immobilized on Au confined MXene based electrode for electrochemical detection of catechol. Mater. Today Proc. 2021, 46, 3136–3143. [Google Scholar] [CrossRef]
- Huang, R.; Chen, S.; Yu, J.; Jiang, X. Self-assembled Ti3C2/MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. Ecotoxicol. Environ. Saf. 2019, 184, 109619. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Vilian, A.T.E.; Ghoreishian, S.M.; Umapathi, R.; Hwang, S.-K.; Oh, C.W.; Huh, Y.S.; Han, Y.-K. Hybridized 1D-2D MnMoO4 nanocomposites as high performing electrochemical sensing platform for the sensitive detection of dehydrobenzene isomers in wastewater samples. J. Hazard. Mater. 2022, 421, 126775. [Google Scholar] [CrossRef]
- Huang, R.; Liao, D.; Chen, S.; Yu, J.; Jiang, X. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sens. Actuators 2020, 320, 128386. [Google Scholar] [CrossRef]
- Zhang, L.; Han, Y.; Sun, M.; Li, F.; Li, S.; Gui, T. Facile design of FeCu metal-organic frameworks anchored on layer Ti3C2Tx MXene for high-performance electrochemical sensing of resorcinol. Talanta 2024, 275, 126100. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, K.; Ma, H.; Duan, R.; Sun, M.; Zou, P.; Yin, J.; Wang, X.; Wang, Y.; Wu, C.; et al. Bimetallic MOF synergy molecularly imprinted ratiometric electrochemical sensor based on MXene decorated with polythionine for ultra-sensitive sensing of catechol. Anal. Chim. Acta 2023, 1251, 340983. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Shan, J.; Zhou, H.; Li, M. Electrochemical sensor for determination of bisphenol A based on MOF-reduced graphene oxide composites coupled with cetyltrimethylammonium bromide signal amplification. Ionics 2020, 26, 3135–3146. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Li, Y.; Wang, Y.; Deng, K.; Xie, Y.; Zhao, P.; Fei, J. Electrochemical sensing platform using reduced graphene oxide and Sn MOF-derived hollow cubic composites for sensitive detection of catechol in environmental water samples. Talanta 2024, 279, 126602. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.A.; Shin, J.H. A novel and highly sensitive electrochemical monitoring platform for 4-nitrophenol on MnO2 nanoparticles modified graphene surface. RSC Adv. 2015, 5, 88996–89002. [Google Scholar] [CrossRef]
- Arpitha, S.B.; Swamy, B.E.K.; Shashikumara, J.K. An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol. Inorg. Chem. Commun. 2023, 152, 110656. [Google Scholar] [CrossRef]
- Ma, J.Y.; Sun, M.; Zhu, Y.A.; Zhou, H.; Wu, K.; Xiao, J.; Wu, M. Highly Effective 2D Layer Structured Titanium Carbide Electrode for Dye-Sensitized and Perovskite Solar Cells. ChemElectroChem 2020, 7, 1149–1154. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, X.; Sun, M.; Ma, J.; Wu, M. Highly effective 2D layered carbides counter electrode for iodide redox couple regeneration in dye-sensitized solar cells. Electrochim. Acta 2021, 392, 138983. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Pandey, A.K.; Rahim, N.A.; Aslfattahi, N.; Mishra, Y.K.; Rashid, B.; Saidur, R. 2-D Mxene flakes as potential replacement for both TCO and Pt layers for Dye-Sensitized Solar cell. Ceram. Int. 2021, 47, 27942–27947. [Google Scholar] [CrossRef]
- Nie, F.; Zhao, H.; Liu, S.; Li, Y.; Zhang, H.; Wu, M.; Wu, K. Laminated 2D-Ti3C2-MXenes as high-performance counter electrode for triiodide reduction in dye-sensitized solar cells. Diam. Relat. Mater. 2024, 141, 110586. [Google Scholar] [CrossRef]
- Di, Y.; Qin, T. Efficient wide-spectrum dye-sensitized solar cell by plasmonic TiN@Ni-MXene as electrocatalyst. Ceram. Int. 2022, 48, 12635–12640. [Google Scholar] [CrossRef]
- He, Y.; Shen, Z.; Yue, G.; Gao, Y.; Huo, J.; Dong, C.; Mao, Y.; Tan, F. A dye-sensitized solar cells with enhanced efficiency based on a “pillared effect” of CoMoP2 @Mxene@CNTs composite counter electrode. J. Alloys Compd. 2022, 922, 166279. [Google Scholar] [CrossRef]
- He, Y.; Yue, G.; Huo, J.; Dong, C.; Xie, G.; Tan, F. A dye-sensitized solar cells with an efficiency of 10.01% based on the MoP/MoNiP2@Ti3C2 composite counter electrode. Mater. Today Sustain. 2023, 22, 100329. [Google Scholar] [CrossRef]
- Li, K.; He, Y.; Yue, G.; Gao, Y.; Dong, C.; Tan, F. Construction of magnetic Fe2P2O7/Ni2P@Mxene composite counter electrode for efficient dye-sensitized solar cells. Vacuum 2024, 222, 112982. [Google Scholar] [CrossRef]
- AL-Zoubi, O.H.; Eti, M.; Rodriguez-Benites, C.; Alhadrawi, M.; Kunamneni, R.; Fouly, A.; Awwad, E.M.; Kumar, A.; Kareem, A.H. Fabrication of innovative ZnCo2O4/Ti3C2Tx MXene nanocomposite counter electrode to replace Pt in dye-sensitized solar cells and improve solar cell performance. Mater. Sci. Semicond. Process. 2024, 181, 108663. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Li, A.; Wang, H.-H.; Wang, X.-F. Dye-sensitized solar cells based on highly catalytic CNTs/Ti3C2Tx MXenes composite counter electrode. RSC Adv. 2023, 13, 34808–34816. [Google Scholar] [CrossRef]
- Gasso, S.; Mahajan, A. MXene based 2D-2D heterostructures for Counter Electrode in third generation Dye Sensitized Solar Cells. Chem. Phys. Lett. 2022, 808, 140144. [Google Scholar] [CrossRef]
- Nagalingam, S.P.; Grace, A.N. Poly(3,4-ethylenedioxythiophene) decorated MXene as an alternative counter electrode for dye-sensitized solar cells. Mater. Today Chem. 2022, 26, 101113. [Google Scholar] [CrossRef]
- Nagalingam, S.P.; Pandiaraj, S.; Alzahrani, K.E.; Alodhayb, A.N.; Grace, A.N. Fabrication of a free-standing Ti3C2Tx-PTh counter electrode via interfacial polymerization for dye-sensitized solar cells. RSC Adv. 2024, 14, 24000–24009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suganthi, S.; Ahmad, K.; Oh, T.H. Progress in MXenes and Their Composites as Electrode Materials for Electrochemical Sensing and Dye-Sensitized Solar Cells. Molecules 2024, 29, 5233. https://doi.org/10.3390/molecules29225233
Suganthi S, Ahmad K, Oh TH. Progress in MXenes and Their Composites as Electrode Materials for Electrochemical Sensing and Dye-Sensitized Solar Cells. Molecules. 2024; 29(22):5233. https://doi.org/10.3390/molecules29225233
Chicago/Turabian StyleSuganthi, Sanjeevamuthu, Khursheed Ahmad, and Tae Hwan Oh. 2024. "Progress in MXenes and Their Composites as Electrode Materials for Electrochemical Sensing and Dye-Sensitized Solar Cells" Molecules 29, no. 22: 5233. https://doi.org/10.3390/molecules29225233
APA StyleSuganthi, S., Ahmad, K., & Oh, T. H. (2024). Progress in MXenes and Their Composites as Electrode Materials for Electrochemical Sensing and Dye-Sensitized Solar Cells. Molecules, 29(22), 5233. https://doi.org/10.3390/molecules29225233