Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. DNA Barcoding of Ceratonia siliqua L. Leaves
2.2. NMR and MS Study of Carob Leaf Acetone Extract
2.3. Biological Evaluation of Carob Leaf Acetone Extract
3. Materials and Methods
3.1. Plant Collection and Characterization
3.2. Plant Extraction
3.3. NMR Experiments
3.4. Chromatography (Photodiode Array/Mass Spectrometry) Experiments
3.5. Antibacterial Properties
3.6. Inhibitory Potential on Diabetes-Related Enzymes
3.7. In Silico Screening Antimicrobial Potency of Phytoconstituents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tzatzani, T.-T.; Ouzounidou, G. Carob as an agrifood chain product of cultural, agricultural and economic importance in the Mediterranean Region. J. Innov. Econ. Manag. 2023, 42, 127–147. [Google Scholar] [CrossRef]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Functional Components of Carob Fruit: Linking the Chemical and Biological Space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, W.; Elaouni, N.; Abousalim, A.; Akissi, Z.L.E.; Legssyer, A.; Ziyyat, A.; Sahpaz, S. Exploring carob (Ceratonia siliqua L.): A Comprehensive assessment of its characteristics, ethnomedicinal uses, phytochemical aspects, and pharmacological activities. Plants 2023, 12, 3303. [Google Scholar] [CrossRef]
- Aboura, I.; Nani, A.; Belarbi, M.; Murtaza, B.; Fluckiger, A.; Dumont, A.; Benammar, C.; Tounsi, M.S.; Ghiringhelli, F.; Rialland, M.; et al. Protective effects of polyphenol-rich Infusions from carob (Ceratonia siliqua) Leaves and Cladodes of Opuntia Ficus-Indica against Inflammation Associated with Diet-Induced Obesity and DSS-Induced Colitis in Swiss Mice. Biomed. Pharmacother. 2017, 96, 1022–1035. [Google Scholar] [CrossRef] [PubMed]
- Aissani, N.; Coroneo, V.; Fattouch, S.; Caboni, P. Inhibitory effect of Carob (Ceratonia siliqua) leaves methanolic extract on Listeria monocytogenes. J. Agric. Food Chem. 2012, 60, 9954–9958. [Google Scholar] [CrossRef] [PubMed]
- Custódio, L.; Patarra, J.; Alberício, F.; Neng, N.R.; Nogueira, J.M.F.; Romano, A. In vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, α-amylase and α-glucosidase. Nat. Prod. Res. 2015, 29, 2155–2159. [Google Scholar] [CrossRef]
- Ghanemi, F.Z.; Belarbi, M.; Fluckiger, A.; Nani, A.; Dumont, A.; de Rosny, C.; Aboura, I.; Khan, A.S.; Murtaza, B.; Benammar, C.; et al. Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells. J. Funct. Foods 2017, 33, 112–121. [Google Scholar] [CrossRef]
- El Sayed, N.S.; Abidar, S.; Nhiri, M.; Hritcu, L.; Ibrahim, W.W. Aqueous extract of Ceratonia siliqua L. leaves elicits antioxidant, anti-inflammatory, and AChE inhibiting effects in mmyloid-Β42-induced cognitive deficit mice: Role of A7-NAChR in modulating Jak2/PI3K/Akt/GSK-3β/β-catenin cascade. Phytother. Res. 2023, 37, 2437–2453. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laaraj, S.; et al. Exploring the multi-faceted potential of carob (Ceratonia siliqua var. Rahma) leaves from Morocco: A comprehensive analysis of polyphenols profile, antimicrobial activity, cytotoxicity against breast cancer cell lines, and genotoxicity. Pharmaceuticals 2023, 16, 840. [Google Scholar] [CrossRef]
- Geng, Y.; Xie, Y.; Li, W.; Mou, Y.; Chen, F.; Xiao, J.; Liao, X.; Hu, X.; Ji, J.; Ma, L. Toward the bioactive potential of myricitrin in food production: State-of-the-art green extraction and trends in biosynthesis. Crit. Rev. Food Sci. Nutr. 2023, 64, 10668–10694. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Abduvakhidov, A.; Caputo, P.; Crupi, P.; Muraglia, M.; Rossi, C.O.; Clodoveo, M.L.; Aiello, F.; Restuccia, D. Kefir enriched with carob (Ceratonia siliqua L.) leaves extract as a new ingredient during a gluten-free bread-making process. Fermentation 2022, 8, 305. [Google Scholar] [CrossRef]
- Cegledi, E.; Dobroslavić, E.; Zorić, Z.; Repajić, M.; Elez Garofulić, I. Antioxidant activity of carob tree (Ceratonia siliqua L.) leaf extracts obtained by advanced extraction techniques. Processes 2024, 12, 658. [Google Scholar] [CrossRef]
- Deans, B.J.; Skierka, B.E.; Karagiannakis, B.W.; Vuong, D.; Lacey, E.; Smith, J.A.; Bissember, A.C. Siliquapyranone: A tannic acid tetrahydropyran-2-one isolated from the leaves of carob (Ceratonia siliqua) by pressurised hot water extraction. Aust. J. Chem. 2018, 71, 702–707. [Google Scholar] [CrossRef]
- Eldahshan, O.A. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr. Res. J. Biol. Sci. 2011, 3, 52–55. [Google Scholar]
- Novoa-Carballal, R.; Fernandez-Megia, E.; Jimenez, C.; Riguera, R. NMR methods for unravelling the spectra of complex mixtures. Nat. Prod. Rep. 2011, 28, 78–98. [Google Scholar] [CrossRef]
- Pauli, G.F.; Gödecke, T.; Jaki, B.U.; Lankin, D.C. Quantitative 1H NMR. Development and potential of an analytical method: An Update. J. Nat. Prod. 2012, 75, 834–851. [Google Scholar] [CrossRef]
- Charisiadis, P.; Kontogianni, V.G.; Tsiafoulis, C.G.; Tzakos, A.G.; Siskos, M.; Gerothanassis, I.P. 1H-NMR as a structural and analytical tool of intra- and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules 2014, 19, 13643–13682. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Marti, G.; Thomas, A.; Bertrand, S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 2015, 1382, 136–164. [Google Scholar] [CrossRef]
- Tsintides, T.; Christodoulou, G.S.; Delipetrou, P.; Georghiou, K. The Red Book of the Flora of Cyprus; Cyprus Forest Association: Lefkosia, Cyprus, 2007. [Google Scholar]
- Charisiadis, P.; Kontogianni, V.G.; Tsiafoulis, C.G.; Tzakos, A.G.; Gerothanassis, I.P. Determination of polyphenolic phytochemicals using highly deshielded –OH 1H-NMR Signals. Phytochem. Anal. 2017, 28, 159–170. [Google Scholar] [CrossRef]
- Fontana, C.; Widmalm, G. Primary Structure of glycans by NMR spectroscopy. Chem. Rev. 2023, 123, 1040–1102. [Google Scholar] [CrossRef]
- Uhrínova, S.; Uhrían, D.; Liptaj, T.; Bella, J.; Hirsch, J. Measurement of one-bond proton-carbon coupling constants of saccharides. Magn. Reson. Chem. 1991, 29, 912–922. [Google Scholar] [CrossRef]
- Motlhatlego, K.E.; Abdalla, M.A.; Leonard, C.M.; Eloff, J.N.; McGaw, L.J. Inhibitory Effect of Newtonia extracts and myricetin-3-o-rhamnoside (myricitrin) on bacterial biofilm formation. BMC Complement. Med. Ther. 2020, 20, 358. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Cantrell, C.L.; Hale, A.L.; Duke, S.O. Phytotoxic activity of flavonoids from Dicranostyles ampla. Nat. Prod. Commun. 2010, 5, 1233–1237. [Google Scholar] [CrossRef]
- Blunder, M.; Orthaber, A.; Bauer, R.; Bucar, F.; Kunert, O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of aensitive NMR and HPLC wxperiments. Food Chem. 2017, 218, 600–609. [Google Scholar] [CrossRef]
- Wu, C.; He, L.; Zhang, Y.; You, C.; Li, X.; Jiang, P.; Wang, F. Separation of flavonoids with significant biological activity from Acacia mearnsii leaves. RSC Adv. 2023, 13, 9119–9127. [Google Scholar] [CrossRef]
- Yan, X.; Murphy, B.T.; Hammond, G.B.; Vinson, J.A.; Neto, C.C. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem. 2002, 50, 5844–5849. [Google Scholar] [CrossRef]
- Scharbert, S.; Holzmann, N.; Hofmann, T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 2004, 52, 3498–3508. [Google Scholar] [CrossRef]
- Christou, A.; Parisis, N.A.; Venianakis, T.; Barbouti, A.; Tzakos, A.G.; Gerothanassis, I.P.; Goulas, V. Ultrasound-assisted extraction of taro leaf antioxidants using natural deep eutectic solvents: An eco-friendly strategy for the valorization of crop residues. Antioxidants 2023, 12, 1801. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; El-Kersh, D.M.; Ehrlich, A.; Choucry, M.A.; El-Seedi, H.; Frolov, A.; Wessjohann, L.A. Variation in Ceratonia siliqua pod metabolome in context of its different geographical origin, ripening stage and roasting process. Food Chem. 2019, 283, 675–687. [Google Scholar] [CrossRef]
- De Luca, M.; Tuberoso, C.I.G.; Pons, R.; García, M.T.; Morán, M.d.C.; Martelli, G.; Vassallo, A.; Caddeo, C. Ceratonia siliqua L. pod extract: From phytochemical characterization to liposomal formulation and evaluation of behaviour in cells. Antioxidants 2023, 12, 1209. [Google Scholar] [CrossRef]
- Ghorbaninejad, Z.; Eghbali, A.; Ghorbaninejad, M.; Ayyari, M.; Zuchowski, J.; Kowalczyk, M.; Baharvand, H.; Shahverdi, A.; Eftekhari-Yazdi, P.; Esfandiari, F. Carob extract induces spermatogenesis in an infertile mouse model via upregulation of Prm1, Plzf, Bcl-6b, Dazl, Ngn3, Stra8, and Smc1b. J. Ethnopharmacol. 2023, 301, 115760. [Google Scholar] [CrossRef] [PubMed]
- Kashtoh, H.; Baek, K.H. NewiInsights into the latest advancement in α-amylase inhibitors of plant origin with anti-diabetic effects. Plants 2023, 12, 2944. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef] [PubMed]
- Feunaing, R.T.; Tamfu, A.N.; Gbaweng, A.J.Y.; Kucukaydin, S.; Tchamgoue, J.; Lannang, A.M.; Lenta, B.N.; Kouam, S.F.; Duru, M.E.; Anouar, E.H.; et al. In vitro and molecular docking evaluation of the anticholinesterase and antidiabetic effects of compounds from Terminalia macroptera Guill. & Perr. (Combretaceae). Molecules 2024, 29, 2456. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Grosso, C.; Valentão, P.; Andrade, P.B. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: A stronger alternative to acarbose? J. Pharm. Biomed. Anal. 2016, 118, 322–327. [Google Scholar] [CrossRef]
- Cardullo, N.; Muccilli, V.; Saletti, R.; Giovando, S.; Tringali, C. A mass apectrometry and 1H NMR study of hypoglycemic and antioxidant principles from a Castanea sativa tannin employed in oenology. Food Chem. 2018, 268, 585–593. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Kashegari, A.T.; Shalabi, A.A.; Darwish, K.M.; El-Halawany, A.M.; Algandaby, M.M.; Ibrahim, S.R.M.; Mohamed, G.A.; Abdel-Naim, A.B.; Koshak, A.E.; et al. Phenolics from Chrozophora oblongifolia aerial parts as inhibitors of α-glucosidases and advanced glycation end products: In-vitro assessment, molecular docking and dynamics studies. Biology 2022, 11, 762. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Tassou, C.C.; Drosinos, E.H.; Nychas, G.-J.E. Weak antimicrobial effect of carob (Ceratonia siliqua) extract against food-related bacteria in culture media and model food systems. World J. Microb. Biot. 1997, 13, 479–481. [Google Scholar] [CrossRef]
- Pistelli, L.; Bertoli, A.; Noccioli, C.; Mendez, J.; Musmanno, R.A.; di Maggio, T.; Coratza, G. Antimicrobial activity of Inga fendleriana extracts and isolated flavonoids. Nat. Prod. Commun. 2009, 4, 1679–1683. [Google Scholar] [CrossRef]
- Oliveira, L.P.S.; Lima, L.R.; Silva, L.B.; Cruz, J.N.; Ramos, R.S.; Lima, L.S.; Cardoso, F.M.N.; Silva, A.V.; Rodrigues, D.P.; Rodrigues, G.S.; et al. Hierarchical virtual screening of potential new antibiotics from polyoxygenated dibenzofurans against Staphylococcus aureus strains. Pharmaceuticals 2023, 16, 1430. [Google Scholar] [CrossRef] [PubMed]
- Olchowik-Grabarek, E.; Sekowski, S.; Bitiucki, M.; Dobrzynska, I.; Shlyonsky, V.; Ionov, M.; Burzynski, P.; Roszkowska, A.; Swiecicka, I.; Abdulladjanova, N.; et al. Inhibition of interaction between Staphylococcus aureus α-hemolysin and erythrocytes membrane by hydrolysable tannins: Structure-related activity study. Sci. Rep. 2020, 10, 11168. [Google Scholar] [CrossRef] [PubMed]
- Kress, W.J.; Erickson, D.L. A Two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding TrnH-PsbA spacer region. PLoS ONE 2007, 2, e508. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, Z.; Zhong, P.; Shen, Z.; Yang, G.; Ma, L. Screening of universal DNA barcodes for identifying grass species of Gramineae. Front. Plant Sci. 2022, 13, 998863. [Google Scholar] [CrossRef]
- Christou, A.; Stavrou, C.; Michael, C.; Botsaris, G.; Goulas, V. New Insights into the potential inhibitory effects of native plants from Cyprus on pathogenic bacteria and diabetes-related enzymes. Microbiol. Res. 2024, 15, 926–942. [Google Scholar] [CrossRef]
- Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Dmitriev, A.V.; Pogodin, P.V.; Dubovskaya, V.I.; Ivanov, S.M.; Tarasova, O.A.; et al. Computational platform Way2Drug: From the prediction of biological activity to drug repurposing. Russ. Chem. Bull. 2017, 66, 1832–1841. [Google Scholar] [CrossRef]
CH1″ | CH2″ | CH3″ | CH4″ | CH5″ | CH36″ | |
---|---|---|---|---|---|---|
δ(1H) | 5.23 | 4.00 | 3.58 | 3.18 | 3.37 | 0.87 |
δ(13C) | 103.82 | 71.93 | 72.29 | 73.18 | 72.72 | 19.38 |
Component Name | Formula | Neutral Mass (Da) | Observed Mass (Da) | Mass Error (mDa) | Mass Response | Mass Fragments | UV λ-Max | Reference | |
---|---|---|---|---|---|---|---|---|---|
1 | Siliquapyranone | C26H28O16 | 596.13773 | 595.13050 | 0.0 | 2,683,020 | 169.01484 (100.00), 595.13052 (70.50), 443.11924 (59.54), 125.02533 (33.09) | 275 | [13,31] |
2 | Myricetin-3-O-α-l-rhamnopyranoside | C21H20O12 | 464.09548 | 463.08850 | 0.3 | 2,548,008 | 316.02282 (100.00), 317.02851 (45.59), 151.00440 (7.57) | 353, 254 | [13,30] |
3 | Myricetin-3-O-galactopyranoside | C21H20O13 | 480.09039 | 479.08290 | −0.2 | 1,432,146 | 316.02261 (100.00), 317.02766 (32.19), 447.05651 (4.97), 151.00420 (4.35) | 356, 258 | [13,30] |
4 | Trigalloylglucose isomer 1 | C27H24O18 | 636.09626 | 635.08980 | 0.8 | 1,165,685 | 169.01498 (100.00), 465.06770 (97.45), 313.05699 (80.55), 295.04649 (11.07) | 278 | [30,31,32] |
5 | Tetragalloylglucose isomer 1 | C34H28O22 | 788.10722 | 787.10000 | 0.0 | 1,071,599 | 465.06758 (100.00), 169.01396 (77.28), 617.07876 (28.32), 313.05685 (25.76) | 277 | [30,31,32] |
6 | Gallic acid 4-O-glucoside | C13H16O10 | 332.07435 | 331.06710 | 0.0 | 996,079 | 169.01451 (100.00), 123.00836 (91.62) | 267 | [30,31,32] |
7 | Quercetin-3-O-alpha-l-rhamnopyranoside | C21H20O11 | 448.10056 | 447.09370 | 0.4 | 899,055 | 300.02766 (100.00), 151.00305 (10.01), 283.02804 (2.19) | 347, 254 | [1] |
8 | Digalloylglucose isomer 1 | C20H20O14 | 484.08531 | 483.07830 | 0.2 | 879,802 | 169.01491 (100.00), 331.06726 (20.67), 313.05687 (17.75) | 276 | [2,3,4] |
9 | Digalloylglucose isomer 2 | C20H20O14 | 484.08531 | 483.07820 | 0.2 | 574,116 | 169.01485 (100.00), 313.05660 (16.70), 331.06715 (16.29) | 274 | [2,3,4] |
10 | Galloylparasorboside | C19H24O12 | 444.12678 | 443.11950 | 0.0 | 322,674 | 169.01479 (100.00), 331.06722 (14.44), 313.05674 (11.38) | 276 | [13] |
11 | Gallic acid | C7H6O5 | 170.02152 | 169.01490 | 0.6 | 311,378 | 125.02507 (100), 151.00437 (8.23) | 270 | [30,31,32] |
12 | Myricetin Pentoside | C20H18O12 | 450.07983 | 449.07250 | −0.1 | 220,353 | 316.02268 (100.00), 317.02781 (28.09), 151.00425 (5.15) | 355, 265 | [30,31,32] |
13 | Epigallocatechin 3-O-gallate | C22H18O11 | 458.08491 | 457.07740 | −0.2 | 197,557 | 169.01485 (100.00), 125.02513 (45.07), 305.06664 (4.95) | 276 | [13,30,31,32] |
14 | Trigalloylglucose isomer 2 | C27H24O18 | 636.09626 | 635.08940 | 0.4 | 134,091 | 465.06737 (100.00), 313.05660 (86.80), 483.07794 (43.64), 295.04602 (20.42) | 276 | [13,30,31,32] |
15 | Kaempferol/Luteolin Deohexoside | C21H20O10 | 432.10565 | 431.09830 | −0.1 | 108,222 | 285.04055 (100.00), 284.03313 (58.55), 255.03055 (26.10) | 345, 264 | [30,32] |
16 | Digalloylglucose isomer 2 | C20H20O14 | 484.08531 | 483.07790 | −0.1 | 95,247 | 169.01468 (100.00), 313.05665 (33.31), 331.06693 (12.68) | 274 | [30,31,32] |
17 | Trigalloylglucose isomer 3 | C27H24O18 | 636.09626 | 635.08940 | 0.4 | 80,731 | 465.06782 (100.00), 295.04619 (13.38) | 275 | [13,30,31,32] |
18 | Tetragalloylglucose isomer 2 | C34H28O22 | 788.10722 | 787.09950 | −0.4 | 59,869 | 617.07982 (100.00), 465.06764 (70.43), 313.05634 (37.56), 295.04610 (25.85) | 278 | [30,31] |
Bacterium | MIC | MBC |
---|---|---|
Bacillus cereus ATCC 6089 | 150 | 250 |
Listeria monocytogenes ATCC 23074 (serotype 4b) | 250 | 500 |
Staphylococcus aureus ATCC 6538 | 50 | 150 |
Compound | Confidence Score |
---|---|
Gallic acid 4-O-glucoside | 0.7582 |
Galloyl-hydroxybenzoate-dihexoside | 0.6588 |
Siliquapyranone (digalloyl-parasorboside) | 0.6137 |
Myricetin-3-O-galactopyranoside | 0.4524 |
Quercitrin (Quercetin-3-O-alpha-l-rhamnopyranoside) | 0.4470 |
Myricitrin (Myricetin-3-O-α-l-rhamnopyranoside) | 0.4447 |
Trigalloyl-hexose | 0.4121 |
Digalloyl-hexose | 0.3680 |
Tetragalloyl-hexose | 0.269 |
Gallic acid | 0.2158 |
Myricetin pentoside | 0.1841 |
Epigallocatechin 3-O-gallate | 0.0268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venianakis, T.; Parisis, N.; Christou, A.; Goulas, V.; Nikoloudakis, N.; Botsaris, G.; Goričan, T.; Grdadolnik, S.G.; Tzakos, A.G.; Gerothanassis, I.P. Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques. Molecules 2024, 29, 5273. https://doi.org/10.3390/molecules29225273
Venianakis T, Parisis N, Christou A, Goulas V, Nikoloudakis N, Botsaris G, Goričan T, Grdadolnik SG, Tzakos AG, Gerothanassis IP. Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques. Molecules. 2024; 29(22):5273. https://doi.org/10.3390/molecules29225273
Chicago/Turabian StyleVenianakis, Themistoklis, Nikolaos Parisis, Atalanti Christou, Vlasios Goulas, Nikolaos Nikoloudakis, George Botsaris, Tjaša Goričan, Simona Golič Grdadolnik, Andreas G. Tzakos, and Ioannis P. Gerothanassis. 2024. "Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques" Molecules 29, no. 22: 5273. https://doi.org/10.3390/molecules29225273
APA StyleVenianakis, T., Parisis, N., Christou, A., Goulas, V., Nikoloudakis, N., Botsaris, G., Goričan, T., Grdadolnik, S. G., Tzakos, A. G., & Gerothanassis, I. P. (2024). Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques. Molecules, 29(22), 5273. https://doi.org/10.3390/molecules29225273