Solubility of Sulfamerazine in Acetonitrile + Ethanol Cosolvent Mixtures: Thermodynamics and Modeling
Abstract
:1. Introduction
2. Results
Experimental Solubility of Sulfamerazine () in Acetonitrile (1) + Ethanol (2) Cosolvent Mixtures at 9 Temperatures (278.15–318.15 K)
3. Thermodynamic Functions
a | b | b | ||||
---|---|---|---|---|---|---|
(kJ·mol−1) | (kJ·mol−1) | (J·mol−1·K−1 | (kJ·mol−1) | |||
0.00 | 19.83 ± 0.13 | 31.15 ± 0.21 | 38.0 ± 0.4 | 11.32 ± 0.11 | 0.733 | 0.267 |
0.05 | 19.6 ± 0.3 | 31.2 ± 0.29 | 39.0 ± 0.8 | 11.61 ± 0.23 | 0.729 | 0.271 |
0.10 | 19.3 ± 0.4 | 30.79 ± 0.3 | 38.5 ± 0.8 | 11.45 ± 0.25 | 0.729 | 0.271 |
0.15 | 19.09 ± 0.27 | 30.44 ± 0.31 | 38.1 ± 0.7 | 11.35 ± 0.2 | 0.728 | 0.272 |
0.20 | 18.85 ± 0.32 | 30.35 ± 0.28 | 38.7 ± 0.8 | 11.5 ± 0.22 | 0.725 | 0.275 |
0.25 | 18.58 ± 0.33 | 29.95 ± 0.31 | 38.2 ± 0.8 | 11.37 ± 0.23 | 0.725 | 0.275 |
0.30 | 18.35 ± 0.33 | 30.0 ± 0.4 | 39.1 ± 0.9 | 11.62 ± 0.27 | 0.721 | 0.279 |
0.35 | 18.08 ± 0.28 | 29.3 ± 0.4 | 37.6 ± 0.8 | 11.19 ± 0.23 | 0.723 | 0.277 |
0.40 | 17.84 ± 0.26 | 28.9 ± 0.5 | 37.3 ± 0.8 | 11.1 ± 0.25 | 0.723 | 0.277 |
0.45 | 17.58 ± 0.29 | 28.9 ± 0.4 | 38.0 ± 0.9 | 11.3 ± 0.26 | 0.719 | 0.281 |
0.50 | 17.35 ± 0.2 | 28.6 ± 0.5 | 37.7 ± 0.8 | 11.23 ± 0.25 | 0.718 | 0.282 |
0.55 | 17.09 ± 0.27 | 28.6 ± 0.5 | 38.6 ± 0.9 | 11.49 ± 0.28 | 0.713 | 0.287 |
0.60 | 16.84 ± 0.28 | 28.3 ± 0.6 | 38.4 ± 1.0 | 11.43 ± 0.3 | 0.712 | 0.288 |
0.65 | 16.58 ± 0.26 | 27.8 ± 0.7 | 37.7 ± 1.1 | 11.22 ± 0.32 | 0.713 | 0.287 |
0.70 | 16.34 ± 0.26 | 27.7 ± 0.7 | 38.1 ± 1.1 | 11.34 ± 0.34 | 0.709 | 0.291 |
0.75 | 16.09 ± 0.25 | 27.7 ± 0.8 | 39.0 ± 1.2 | 11.6 ± 0.4 | 0.705 | 0.295 |
0.80 | 15.83 ± 0.24 | 27.4 ± 0.8 | 38.8 ± 1.2 | 11.5 ± 0.4 | 0.703 | 0.297 |
0.85 | 15.58 ± 0.23 | 26.9 ± 0.8 | 38.0 ± 1.3 | 11.3 ± 0.4 | 0.704 | 0.296 |
0.90 | 15.33 ± 0.26 | 26.7 ± 0.9 | 38.1 ± 1.4 | 11.3 ± 0.4 | 0.702 | 0.298 |
0.95 | 15.07 ± 0.21 | 26.7 ± 1.0 | 39.1 ± 1.5 | 11.6 ± 0.5 | 0.697 | 0.303 |
1.00 | 14.8 ± 0.45 | 26.2 ± 0.9 | 38.1 ± 1.4 | 11.3 ± 0.4 | 0.698 | 0.302 |
3.1. Thermodynamic Functions of Mixing
- Drug fusion process: In a hypothetical process, the drug changes phase, transforming into a super-cooled liquid. Technically, this process requires energy supply, which is why it is unfavorable for the solution process.
- Cavity formation: Although the solvent does not present a phase change, the solvent molecules must disintegrate, forming a cavity to house the solute molecule; this process also requires energy investment (endothermic process) and is therefore unfavorable for the solution process [42].
- Mixing process: Once the drug is in a liquid state and the cavity has been formed in the solvent, the solute molecule is housed in the solvent cavity, forming the solution. This process is exothermic, which favors the solution process.
3.2. Enthalpy–Entropy Compensation (EEC) Analysis
3.3. Computational Validation
4. Materials and Methods
4.1. Reagents
4.2. Solubility Determination
- Saturation of the solvent: In an amber-colored bottle, 5.0 mL of solvent is added; then, SMR is added with vigorous stirring until a saturated solution is obtained (this process is verified by measuring the concentration of the drug until a constant concentration is obtained).
- Thermodynamic equilibrium: To ensure solvent saturation, the samples remain for 36 h at constant temperature (at each of the study temperatures) in a recirculation bath (Medingen K-22/T100; Medingen, Germany) to ensure thermodynamic equilibrium. In all cases, a sufficient amount of SMR is added to generate an equilibrium between the saturated solution and a quantity of undissolved solid drug (usually remaining at the bottom of the flask).
- Filtration: To ensure that no undissolved solids are taken up at the time of quantification, the samples are filtered through 0.45 μm membranes (Swinnex-13; Millipore Corp., Burlington, MA, USA).
- Quantification: The method used is UV–Vis spectrometry; thus, the wavelength of maximum absorbance of SMR (268 nm ()) is determined and a calibration curve is designed in the range of compliance with the Lambert–Beer law (UV–Vis EMC-11 UV spectrophotometer; Duisburg, Germany).
- Evaluation of the solid phase: To evaluate possible polymorphic changes or decomposition of SMR, the solid phases in equilibrium with the saturated solutions are analyzed by DSC.
4.3. Calorimetric Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, L.; Hughes, H.B.; Badger, E.A.; Schmidt, I.G. The toxicity of sulfamerazine and sulfamethazine. J. Pharmacol. Exp. Ther. 1944, 81, 17–42. [Google Scholar]
- Donald, G.A.; Oliver, C.S.; Chester, S.K. A clinical evaluation of sulfamerazine. N. Engl. J. Med. 1944, 230, 369–379. [Google Scholar] [CrossRef]
- Christensen, S.B. Drugs that changed society: History and current status of the early antibiotics: Salvarsan, sulfonamides, and β-lactams. Molecules 2021, 26, 6057. [Google Scholar] [CrossRef] [PubMed]
- Sköld, O. Sulfonamide resistance: Mechanisms and trends. Drug Resist. Updat. 2000, 3, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.R. LaTeX Code of the Chemical Structure of Some Drugs; Mendeley Data, Version 1; Universidad Cooperativa de Colombia: Arauca, Colombia, 2024. [Google Scholar] [CrossRef]
- dos Santos, P.E.; do Amaral, M.S.; Fernando Mazon Cardoso, T.; Kassab, N.M. Development and validation of method for the simultaneous determination of sulfamethazine, trimethoprim and doxycycline in veterinary formulation using high performance liquid chromatography. Biomed. Chromatogr. 2024, 38, e5781. [Google Scholar] [CrossRef]
- NORMAN Network. Emerging Substances. 2023. Available online: https://www.norman-network.com/nds/susdat/susdatSearchShow.php (accessed on 23 August 2024).
- Sinko, P.J. Martin’s Physical Pharmacy and Pharmaceutical Sciences, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Yalkowsky, S.H. Solubility and Solubilization in Aqueous Media; American Chemical Society: Washington, DC, USA, 1999. [Google Scholar]
- Yaws, C.L.; Narasimhan, P.K.; Lou, H.H.; Pike, R.W. Solubility of Chemicals in Water. In Water Encyclopedia; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 555–559. [Google Scholar] [CrossRef]
- Rubio, D.I.C.; Camacho Feria, D.M.; Delgado, D.R. Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. Rev. Logos Cienc. Tecnol. 2017, 9, 43–62. [Google Scholar] [CrossRef]
- Liu, X.; Abraham, M.H.; Acree, W.E. Abraham model descriptors for melatonin; prediction of Solution, biological and thermodynamic properties. J. Solut. Chem. 2022, 51, 992–999. [Google Scholar] [CrossRef]
- Rubino, J.T.; Yalkowsky, S.H. Cosolvency and cosolvent polarity. Pharm. Res. 1987, 4, 220–230. [Google Scholar] [CrossRef]
- Rubino, J.T. Cosolvents and Cosolvency. In Encyclopedia of Pharmaceutical Science and Technology; CRC Press: Boca Raton, FL, USA, 2013; pp. 711–722. [Google Scholar] [CrossRef]
- Marcus, Y. The Properties of Solvents, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Gumułka, P.; Żandarek, J.; Dąbrowska, M.; Starek, M. UPLC technique in pharmacy—An important tool of the modern analyst. Processes 2022, 10, 2498. [Google Scholar] [CrossRef]
- Lennernas, H. Ethanol-drug absorption interaction: Potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations. Mol. Pharm. 2009, 6, 1429–1440. [Google Scholar] [CrossRef]
- Delgado, D.R.; Ortiz, C.P.; Martínez, F.; Jouyban, A. Equilibrium solubility of sulfadiazine in (acetonitrile + ethanol) mixtures: Determination, correlation, dissolution thermodynamics, and preferential solvation. Int. J. Thermophys. 2024, 45, 129. [Google Scholar] [CrossRef]
- Trujillo-Trujillo, C.F.; Angarita-Reina, F.; Herrera, M.; Ortiz, C.P.; Cardenas-Torres, R.E.; Martinez, F.; Delgado, D.R. Thermodynamic analysis of the solubility of sulfadiazine in (acetonitrile 1-propanol) cosolvent mixtures from 278.15 K to 318.15 K. Liquids 2023, 3, 7–18. [Google Scholar] [CrossRef]
- Delgado, D.R.; Bahamón-Hernandez, O.; Cerquera, N.E.; Ortiz, C.P.; Martínez, F.; Rahimpour, E.; Jouyban, A.; Acree, W.E. Solubility of sulfadiazine in (acetonitrile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq. 2021, 322, 114979. [Google Scholar] [CrossRef]
- Ortiz, C.P.; Cardenas-Torres, R.E.; Herrera, M.; Delgado, D.R. Numerical analysis of sulfamerazine solubility in acetonitrile + 1-Propanol cosolvent mixtures at different temperatures. Sustainability 2023, 15, 6596. [Google Scholar] [CrossRef]
- Cárdenas-Torres, R.E.; Ortiz, C.P.; Acree, W.E.; Jouyban, A.; Martínez, F.; Delgado, D.R. Thermodynamic study and preferential solvation of sulfamerazine in acetonitrile + methanol cosolvent mixtures at different temperatures. J. Mol. Liq. 2022, 349, 118172. [Google Scholar] [CrossRef]
- Ortiz, C.P.; Cardenas-Torres, R.E.; Martínez, F.; Delgado, D.R. Solubility of sulfamethazine in the binary mixture of acetonitrile + methanol from 278.15 to 318.15 K: Measurement, dissolution thermodynamics, preferential solvation, and correlation. Molecules 2021, 26, 7588. [Google Scholar] [CrossRef]
- Barton, A.F.M. Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Delgado, D.R.; Martínez, F. Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol+water mixtures. Fluid Ph. Equilib. 2013, 360, 88–96. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions: The Solubility of Gases, Liquids, and Solids; Van Nostrand Reinhold: New York, NY, USA, 1970. [Google Scholar]
- Hildebrand, J.H. Solubility. XII. Regular solutions. J. Am. Chem. Soc. 1929, 51, 66–80. [Google Scholar] [CrossRef]
- Taft, R.W.; Kamlet, M.J. The solvatochromic comparison method. 2. The α.-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 1976, 98, 2886–2894. [Google Scholar] [CrossRef]
- Blanco-Márquez, J.H.; Ortiz, C.P.; Cerquera, N.E.; Martínez, F.; Jouyban, A.; Delgado, D.R. Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures. J. Mol. Liq. 2019, 293, 111507. [Google Scholar] [CrossRef]
- Vargas-Santana, M.S.; Cruz-González, A.M.; Ortiz, C.P.; Delgado, D.R.; Martínez, F.; Ángeles Peña, M.; Acree, W.E.; Jouyban, A. Solubility of sulfamerazine in (ethylene glycol+water) mixtures: Measurement, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq. 2021, 337, 116330. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism in drug design and delivery. Prog. Clin. Biol. Res. 1989, 289, 203–215. [Google Scholar] [PubMed]
- Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: A practical perspective. Adv. Drug Deliv. Rev. 2004, 56, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Grunenberg, A.; Keil, B.; Henck, J.O. Polymorphism in binary mixtures, as exemplified by nimodipine. Int. J. Pharm. 1995, 118, 11–21. [Google Scholar] [CrossRef]
- Sunwoo, C.; Eisen, H. Solubility parameter of selected sulfonamides. J. Pharm. Sci. 1971, 60, 238–244. [Google Scholar] [CrossRef]
- Lee, M.J.; Seo, D.Y.; Wang, I.C.; Chun, N.H.; Lee, H.E.; Jeong, M.Y.; Kim, W.S.; Choi, G.J. Quantitative in-line monitoring of solvent-mediated polymorphic transformation of sulfamerazine by near-infrared spectroscopy. J. Pharm. Sci. 2012, 101, 1578–1586. [Google Scholar] [CrossRef]
- Martínez, F.; Gómez, A. Estimation of the solubility of sulfonamides in aqueous media from partition coefficients and entropies of fusion. Phys. Chem. Liq. 2002, 40, 411–420. [Google Scholar] [CrossRef]
- Khattab, F.I. Thermal analysis of pharmaceutical compounds. V. The use of differential scanning calorimetry in the analysis of certain pharmaceuticals. Thermochim. Acta 1983, 61, 253–268. [Google Scholar] [CrossRef]
- Delombaerde, D. Co-Amorphous Drug Formulations: Carbamazepine, Mefenamic Acid and Sulfamerazine. Master’s Thesis, Ghent University, Ghent, Belgium, 2021. [Google Scholar]
- Aloisio, C.; de Oliveira, A.G.; Longhi, M. Solubility and release modulation effect of sulfamerazine ternary complexes with cyclodextrins and meglumine. J. Pharm. Biomed. Anal. 2014, 100, 64–73. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.A. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J. Phys. Chem. 1976, 80, 2335–2341. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.A. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 1976, 80, 2341–2351. [Google Scholar] [CrossRef]
- Magsumov, T.; Sedov, I. Thermodynamics of cavity formation in different solvents: Enthalpy, entropy, and the solvophobic effects. J. Mol. Liq. 2021, 331, 115738. [Google Scholar] [CrossRef]
- Delgado, D.R. Diagram of Hypothetical Mixing Process (Solution Formation). Mendeley Data 2024, V1. Available online: https://data.mendeley.com/datasets/8z8f6gfws6/1 (accessed on 23 August 2024).
- Koley, S.; Ghosh, S. Study of microheterogeneity in acetonitrile–water binary mixtures by using polarity-resolved solvation dynamics. ChemPhysChem 2015, 16, 3518–3526. [Google Scholar] [CrossRef] [PubMed]
- Ryde, U. A fundamental view of enthalpy–entropy compensation. RSC Med. Chem. 2014, 5, 1324–1336. [Google Scholar] [CrossRef]
- Qian, H.; Hopfield, J.J. Entropy-enthalpy compensation: Perturbation and relaxation in thermodynamic systems. J. Chem. Phys. 1996, 105, 9292–9298. [Google Scholar] [CrossRef]
- Bustamante, P.; Romero, S.; Peña, A.; Escalera, B.; Reillo, A. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide, and nalidixic acid in dioxane–water. J. Pharm. Sci. 1998, 87, 1590–1596. [Google Scholar] [CrossRef]
- Chodera, J.D.; Mobley, D.L. Entropy-enthalpy compensation: Role and ramifications in biomolecular ligand recognition and design. Annu. Rev. Biophys. 2013, 42, 121–142. [Google Scholar] [CrossRef]
- Fathi-Azarbayjani, A.; Abbasi, M.; Vaez-Gharamaleki, J.; Jouyban, A. Measurement and correlation of deferiprone solubility: Investigation of solubility parameter and application of van’t Hoff equation and Jouyban–Acree model. J. Mol. Liq. 2016, 215, 339–344. [Google Scholar] [CrossRef]
- Romero Nieto, A.M.; Cerquera, N.E.; Delgado, D.R. Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution. Rev. Colomb. Cienc. Químico-Farm. 2019, 48, 332–347. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Wu, M. Estimation of the ideal solubility (crystal-liquid fugacity ratio) of organic compounds. J. Pharm. Sci. 2010, 99, 1100–1106. [Google Scholar] [CrossRef]
- Cuellar-Carmona, Y.L.; Cerquera, N.E.; Cardenas-Torres, R.E.; Ortiz, C.P.O.; Martínez, F.; Delgado, D.R.D. Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models. Braz. J. Chem. Eng. 2024. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K. Advances in Analytical Chemistry and Instrumentation; Interscience Publishers, Inc.: New York, NY, USA, 1965. [Google Scholar]
- Dittert, L.W.; Higuchi, T.; Reese, D.R. Phase solubility technique in studying the formation of complex salts of triamterene. J. Pharm. Sci. 1964, 53, 1325–1328. [Google Scholar] [CrossRef] [PubMed]
- Mader, W.J.; Higuchi, T. Phase solubility analysis. CRC Crit. Rev. Anal. Chem. 1970, 1, 193–215. [Google Scholar] [CrossRef]
- Caviedes-Rubio, D.I.; Ortiz, C.P.; Martinez, F.; Delgado, D.R. Thermodynamic assessment of triclocarban dissolution process in N-Methyl-2-pyrrolidone + water cosolvent mixtures. Molecules 2023, 28, 7216. [Google Scholar] [CrossRef]
Temperature (K) c | |||||
---|---|---|---|---|---|
278.15 | 283.15 | 288.15 | 293.15 | 298.15 | |
0.00 | 1.360 ± 0.024 | 1.767 ± 0.015 | 2.2 ± 0.03 | 2.74 ± 0.06 d | 3.41 ± 0.10 d |
0.05 | 1.505 ± 0.024 | 1.94 ± 0.05 | 2.412 ± 0.026 | 3.01 ± 0.07 | 3.831 ± 0.032 |
0.10 | 1.69 ± 0.04 | 2.14 ± 0.06 | 2.66 ± 0.07 | 3.4 ± 0.05 | 4.19 ± 0.04 |
0.15 | 1.92 ± 0.016 | 2.386 ± 0.022 | 2.974 ± 0.021 | 3.69 ± 0.05 | 4.54 ± 0.06 |
0.20 | 2.13 ± 0.03 | 2.634 ± 0.023 | 3.30 ± 0.08 | 4.07 ± 0.09 | 4.93 ± 0.06 |
0.25 | 2.386 ± 0.008 | 2.99 ± 0.04 | 3.66 ± 0.09 | 4.6 ± 0.08 | 5.48 ± 0.11 |
0.30 | 2.66 ± 0.04 | 3.30 ± 0.06 | 4.02 ± 0.06 | 5.00 ± 0.08 | 5.89 ± 0.04 |
0.35 | 3.04 ± 0.05 | 3.69 ± 0.07 | 4.56 ± 0.09 | 5.53 ± 0.04 | 6.68 ± 0.07 |
0.40 | 3.41 ± 0.04 | 4.145 ± 0.033 | 4.96 ± 0.10 | 6.20 ± 0.05 | 7.33 ± 0.15 |
0.45 | 3.78 ± 0.08 | 4.61 ± 0.09 | 5.56 ± 0.07 | 6.709 ± 0.022 | 8.06 ± 0.15 |
0.50 | 4.28 ± 0.05 | 5.08 ± 0.06 | 6.08 ± 0.06 | 7.38 ± 0.05 | 8.69 ± 0.13 |
0.55 | 4.69 ± 0.008 | 5.63 ± 0.13 | 6.92 ± 0.02 | 8.19 ± 0.2 | 9.71 ± 0.11 |
0.60 | 5.26 ± 0.04 | 6.32 ± 0.11 | 7.567 ± 0.027 | 9.14 ± 0.19 | 10.81 ± 0.15 |
0.65 | 6.03 ± 0.06 | 7.06 ± 0.09 | 8.45 ± 0.25 | 9.95 ± 0.04 | 11.87 ± 0.30 |
0.70 | 6.62 ± 0.07 | 7.93 ± 0.10 | 9.28 ± 0.26 | 11.06 ± 0.22 | 13.12 ± 0.16 |
0.75 | 7.45 ± 0.16 | 8.74 ± 0.14 | 10.132 ± 0.03 | 12.14 ± 0.08 | 14.13 ± 0.24 |
0.80 | 8.30 ± 0.13 | 9.84 ± 0.19 | 11.62 ± 0.13 | 13.16 ± 0.07 | 15.6 ± 0.4 |
0.85 | 9.30 ± 0.11 | 10.84 ± 0.16 | 12.91 ± 0.26 | 15.07 ± 0.12 | 17.07 ± 0.28 |
0.90 | 10.59 ± 0.04 | 12.1 ± 0.22 | 14.03 ± 0.33 | 16.46 ± 0.16 | 19.0 ± 0.5 |
0.95 | 11.84 ± 0.13 | 13.58 ± 0.29 | 15.43 ± 0.12 | 18.37 ± 0.23 | 20.6 ± 0.5 |
1.00 | 13.09 ± 0.10 e | 15.10 ± 0.07 e | 17.40 ± 0.09 e | 20.09 ± 0.18 e | 22.86 ± 0.27 e |
Temperature (K) c | |||||
303.15 | 308.15 | 313.15 | 318.15 | ||
0.00 | 4.09 ± 0.09 d | 4.95 ± 0.04 d | 6.36 ± 0.11 d | 7.49 ± 0.14 | |
0.05 | 4.45 ± 0.04 | 5.45 ± 0.06 | 7.06 ± 0.21 | 8.26 ± 0.17 | |
0.10 | 4.97 ± 0.1 | 5.92 ± 0.11 | 7.69 ± 0.14 | 9.08 ± 0.18 | |
0.15 | 5.38 ± 0.11 | 6.52 ± 0.07 | 8.49 ± 0.21 | 10.15 ± 0.19 | |
0.20 | 5.93 ± 0.06 | 7.38 ± 0.12 | 9.28 ± 0.25 | 11.11 ± 0.2 | |
0.25 | 6.61 ± 0.09 | 8.08 ± 0.22 | 10.23 ± 0.17 | 12.36 ± 0.31 | |
0.30 | 7.14 ± 0.13 | 8.81 ± 0.23 | 11.34 ± 0.31 | 13.9 ± 0.26 | |
0.35 | 8.00 ± 0.11 | 9.71 ± 0.09 | 12.4 ± 0.3 | 15.12 ± 0.26 | |
0.40 | 8.58 ± 0.10 | 10.62 ± 0.07 | 13.64 ± 0.22 | 16.9 ± 0.4 | |
0.45 | 9.67 ± 0.19 | 11.93 ± 0.18 | 15.0 ± 0.4 | 18.59 ± 0.29 | |
0.50 | 10.62 ± 0.03 | 12.9 ± 0.06 | 16.5 ± 0.4 | 20.5 ± 0.4 | |
0.55 | 11.57 ± 0.19 | 14.6 ± 0.4 | 18.17 ± 0.19 | 22.8 ± 0.7 | |
0.60 | 12.64 ± 0.27 | 15.8 ± 0.4 | 20.1 ± 0.3 | 25.3 ± 0.6 | |
0.65 | 13.92 ± 0.4 | 17.69 ± 0.2 | 21.7 ± 0.14 | 28.31 ± 0.35 | |
0.70 | 15.3 ± 0.27 | 19.05 ± 0.09 | 24.0 ± 0.5 | 31.5 ± 0.5 | |
0.75 | 16.7 ± 0.19 | 21.67 ± 0.31 | 27.0 ± 0.9 | 34.4 ± 0.7 | |
0.80 | 18.8 ± 0.24 | 23.87 ± 0.29 | 30.0 ± 0.5 | 37.8 ± 0.7 | |
0.85 | 20.56 ± 0.06 | 25.9 ± 0.4 | 32.2 ± 0.6 | 42.1 ± 1.2 | |
0.90 | 22.51 ± 0.32 | 28.6 ± 0.7 | 35.7 ± 0.8 | 46.7 ± 0.5 | |
0.95 | 24.88 ± 0.4 | 31.9 ± 0.4 | 39.5 ± 0.5 | 52.9 ± 0.4 | |
1.00 | 27.14 ± 0.14 e | 34.7 ± 0.5 e | 43.9 ± 0.32 e | 57.2 ± 0.9 e |
Sample | Enthalpy of Melting, | Melting Point (K) | Ref. |
---|---|---|---|
Original sample a | 41.5 ± 0.5 | 508.1 ± 0.5 | |
41.3 ± 0.5 | 508.5 ± 0.5 | Ortiz et al. [21] | |
31.6 | 515.2 | Sunwoo and Eisen [34] | |
24.75 | 509.3–510.3 | Lee et al. [35] | |
41.3 | 508.5 | Martínez and Gómez [36] | |
41.3 ± 1.0 | 508.5 | Delgado and Martínez [25] | |
508.9 | Blanco-Márquez et al. [29] | ||
506.4 | Khattab [37] | ||
508.95 | Delombaerde [38] | ||
510.66 | Aloisio et al. [39] | ||
508.5 | Cárdenas-Torres et al. [22] | ||
508.5 | Vargas-Santana et al. [30] | ||
EtOH | 41.6 ± 0.5 | 510.5 ± 0.5 | |
40.5 ± 0.5 | 509.2 ± 0.5 | ||
Acetonitrile | 41.2 ± 0.5 | 510.2 ± 0.5 | |
Acetonitrile | 40.9 ± 0.5 | 509.1 ± 0.5 | Ortiz et al. [21] |
b | ||||
---|---|---|---|---|
(kJ·mol−1) | (kJ·mol−1) | (J·mol−1·K−1) | (kJ·mol−1) | |
0.00 | 6.9 ± 0.14 | 7.00 ± 0.27 | 0.3 ± 0.5 | 0.01 ± 0.14 |
0.05 | 6.7 ± 0.3 | 7.1 ± 0.3 | 1.3 ± 0.8 | 0.40 ± 0.25 |
0.10 | 6.4 ± 0.4 | 6.6 ± 0.3 | 0.8 ± 0.9 | 0.23 ± 0.27 |
0.15 | 6.2 ± 0.3 | 6.3 ± 0.4 | 0.4 ± 0.7 | 0.13 ± 0.22 |
0.20 | 5.92 ± 0.33 | 6.21 ± 0.33 | 1.0 ± 0.8 | 0.28 ± 0.24 |
0.25 | 5.7 ± 0.3 | 5.8 ± 0.4 | 0.5 ± 0.8 | 0.15 ± 0.25 |
0.30 | 5.4 ± 0.3 | 5.8 ± 0.5 | 1.4 ± 1 | 0.40 ± 0.29 |
0.35 | 5.15 ± 0.29 | 5.1 ± 0.4 | −0.1 ± 0.8 | −0.03 ± 0.25 |
0.40 | 4.91 ± 0.26 | 4.8 ± 0.5 | −0.4 ± 0.9 | −0.12 ± 0.26 |
0.45 | 4.65 ± 0.30 | 4.7 ± 0.5 | 0.3 ± 0.9 | 0.08 ± 0.27 |
0.50 | 4.42 ± 0.21 | 4.4 ± 0.6 | 0.0 ± 0.9 | 0.01 ± 0.26 |
0.55 | 4.16 ± 0.28 | 4.4 ± 0.6 | 0.9 ± 1 | 0.27 ± 0.3 |
0.60 | 3.91 ± 0.28 | 4.1 ± 0.6 | 0.7 ± 1.1 | 0.21 ± 0.32 |
0.65 | 3.65 ± 0.26 | 3.6 ± 0.7 | 0.0 ± 1.1 | 0.00 ± 0.33 |
0.70 | 3.41 ± 0.26 | 3.5 ± 0.7 | 0.4 ± 1.2 | 0.1 ± 0.4 |
0.75 | 3.16 ± 0.26 | 3.6 ± 0.8 | 1.3 ± 1.3 | 0.4 ± 0.4 |
0.80 | 2.9 ± 0.24 | 3.2 ± 0.8 | 1.1 ± 1.3 | 0.3 ± 0.4 |
0.85 | 2.66 ± 0.24 | 2.7 ± 0.8 | 0.3 ± 1.3 | 0.1 ± 0.4 |
0.90 | 2.4 ± 0.27 | 2.5 ± 0.9 | 0.4 ± 1.4 | 0.1 ± 0.4 |
0.95 | 2.14 ± 0.22 | 2.5 ± 1.0 | 1.4 ± 1.5 | 0.4 ± 0.5 |
1.00 | 1.91 ± 0.05 | 2.0 ± 0.9 | 0.4 ± 1.4 | 0.1 ± 0.4 |
Chemical Name | CAS a | Purity in Mass Fraction | Analytic Technique b |
---|---|---|---|
Sulfamerazine c | 127-79-7 | >0.990 | HPLC |
Ethanol c | 64-17-5 | 0.998 | GC |
Acetonitrile d | 75-05-8 | 0.998 | GC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, C.P.; Caviedes-Rubio, D.I.; Martinez, F.; Delgado, D.R. Solubility of Sulfamerazine in Acetonitrile + Ethanol Cosolvent Mixtures: Thermodynamics and Modeling. Molecules 2024, 29, 5294. https://doi.org/10.3390/molecules29225294
Ortiz CP, Caviedes-Rubio DI, Martinez F, Delgado DR. Solubility of Sulfamerazine in Acetonitrile + Ethanol Cosolvent Mixtures: Thermodynamics and Modeling. Molecules. 2024; 29(22):5294. https://doi.org/10.3390/molecules29225294
Chicago/Turabian StyleOrtiz, Claudia Patricia, Diego Ivan Caviedes-Rubio, Fleming Martinez, and Daniel Ricardo Delgado. 2024. "Solubility of Sulfamerazine in Acetonitrile + Ethanol Cosolvent Mixtures: Thermodynamics and Modeling" Molecules 29, no. 22: 5294. https://doi.org/10.3390/molecules29225294
APA StyleOrtiz, C. P., Caviedes-Rubio, D. I., Martinez, F., & Delgado, D. R. (2024). Solubility of Sulfamerazine in Acetonitrile + Ethanol Cosolvent Mixtures: Thermodynamics and Modeling. Molecules, 29(22), 5294. https://doi.org/10.3390/molecules29225294