Engineering Ion Affinity of Zr-MOF Hybrid PDMS Membranes for the Selective Separation of Na+/Ca2+
Abstract
:1. Introduction
2. Results and Discussions
2.1. Zr-MOF@PDMS Membranes
2.2. Optimization of the Zr-MOF@PDMS Membrane
2.3. The Size-Sieving Effect
2.4. The Effect of Functional Groups on Zr-MOFs
2.5. The Stability of Zr-MOF-0.05@PDMS Membranes
2.6. Diffusion Experiment of Na+ and Ca2+
3. Experimental
3.1. Materials
3.2. Synthesis of Materials
3.2.1. Preparation of the Zr-MOF@PDMS Membrane
3.2.2. Characterization
3.2.3. Selective Ion Transport Properties
3.3. Ion Diffusion Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, H.; Liu, J.; Zhang, X.; Chen, L.; Zhang, Q.; Ma, L. Recent advances in membrane-based materials for desalination and gas separation. J. Clean. Prod. 2023, 387, 135845. [Google Scholar] [CrossRef]
- Osman, A.I.; Nasr, M.; Farghali, M.; Bakr, S.S.; Eltaweil, A.S.; Rashwan, A.K.; Abd El-Monaem, E.M. Machine learning for membrane design in energy production, gas separation, and water treatment: A review. Environ. Chem. Lett. 2024, 22, 505–560. [Google Scholar] [CrossRef]
- Raggam, S.; Mohammad, M.; Choo, Y.; Naidu, G.; Zargar, M.; Shon, H.K.; Razmjou, A. Advances in metal organic framework (MOF)–Based membranes and adsorbents for lithium-ion extraction. Sep. Purif. Technol. 2023, 307, 122628. [Google Scholar] [CrossRef]
- Mo, R.-J.; Chen, S.; Huang, L.-Q.; Ding, X.-L.; Rafique, S.; Xia, X.-H.; Li, Z.-Q. Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat. Commun. 2024, 15, 2145. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, Z.; Wang, D.; Li, Z.; Peng, X.; Liu, C.; Zheng, P. Metal organic frameworks modified proton exchange membranes for fuel cells. Front. Chem. 2020, 8, 694. [Google Scholar] [CrossRef]
- Abou-Elyazed, A.; Sun, Y.; El-Nahas, A.; Abdel-Azeim, S.; Sharara, T.; Yousif, A. Solvent-free synthesis and characterization of Ca2+-doped UiO-66 (Zr) as heterogeneous catalyst for esterification of oleic acid with methanol: A joint experimental and computational study. Mater. Today Sustain. 2022, 18, 100110. [Google Scholar] [CrossRef]
- Fang, M.; Montoro, C.; Semsarilar, M. Metal and covalent organic frameworks for membrane applications. Membranes 2020, 10, 107. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.; Hou, J.; Li, X.; Hu, X.; Hu, Y.; Easton, C.D.; Li, Q.; Sun, C.; Thornton, A.W. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 2020, 19, 767–774. [Google Scholar] [CrossRef]
- Farahani, S.K.; Hosseini, S.M. A highly promoted nanofiltration membrane by incorporating of aminated Zr-based MOF for efficient salts and dyes removal with excellent antifouling properties. Chem. Eng. Res. Des. 2022, 188, 764–778. [Google Scholar] [CrossRef]
- Cheng, Y.; Datta, S.J.; Zhou, S.; Jia, J.; Shekhah, O.; Eddaoudi, M. Advances in metal–organic framework-based membranes. Chem. Soc. Rev. 2022, 51, 8300–8350. [Google Scholar] [CrossRef]
- Askarieh, M.; Farshidi, H.; Rashidi, A.; Pourreza, A.; Alivand, M.S. Comparative evaluation of MIL-101 (Cr)/calcium alginate composite beads as potential adsorbents for removing water vapor from air. Sep. Purif. Technol. 2022, 291, 120830. [Google Scholar] [CrossRef]
- Ru, J.; Wang, X.; Wang, F.; Cui, X.; Du, X.; Lu, X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ecotoxicol. Environ. Saf. 2021, 208, 111577. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.-M.; Al-Hamadani, Y.A.; Son, A.; Park, C.M.; Jang, M.; Jang, A.; Kim, N.C.; Yoon, Y. Applications of metal-organic framework based membranes in water purification: A review. Sep. Purif. Technol. 2020, 247, 116947. [Google Scholar] [CrossRef]
- Gao, M.; Liu, G.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Wang, J.; Yang, X.; Xu, D. Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. TrAC Trends Anal. Chem. 2021, 137, 116226. [Google Scholar] [CrossRef]
- Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 2021, 800, 149662. [Google Scholar] [CrossRef]
- Abou-Elyazed, A.S.; Ye, G.; Sun, Y.; El-Nahas, A.M. A series of UiO-66 (Zr)-structured materials with defects as heterogeneous catalysts for biodiesel production. Ind. Eng. Chem. Res. 2019, 58, 21961–21971. [Google Scholar] [CrossRef]
- Abou-Elyazed, A.S.; Shaban, E.A.; Sun, Y.; El-Nahas, A.M.; Kashar, T.I. Solvent-free synthesis and characterization of bimetallic UiO-66 (Zr/Sn) heterogeneous catalyst for biodiesel production. Ind. Eng. Chem. Res. 2023, 62, 9211–9220. [Google Scholar] [CrossRef]
- Abou-Elyazed, A.S.; Sun, Y.; El-Nahas, A.M.; Yousif, A.M. A green approach for enhancing the hydrophobicity of UiO-66 (Zr) catalysts for biodiesel production at 298 K. RSC Adv. 2020, 10, 41283–41295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Mu, Y.; Zhang, W.; Zhao, S.; Wang, Y. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation. J. Membr. Sci. 2020, 596, 117724. [Google Scholar] [CrossRef]
- Li, Z.; He, G.; Zhang, B.; Cao, Y.; Wu, H.; Jiang, Z.; Tiantian, Z. Enhanced proton conductivity of Nafion hybrid membrane under different humidities by incorporating metal–organic frameworks with high phytic acid loading. ACS Appl. Mater. Interfaces 2014, 6, 9799–9807. [Google Scholar] [CrossRef]
- Li, S.; Han, W.; An, Q.F.; Yong, K.T.; Yin, M.J. Defect Engineering of MOF-Based Membrane for Gas Separation. Adv. Funct. Mater. 2023, 33, 2303447. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Chen, Q.-B.; Ji, Z.-Y.; Liu, J.; Zhao, Y.-Y.; Wang, S.-Z.; Yuan, J.-S. Development of recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations on the migration of lithium. J. Membr. Sci. 2018, 548, 408–420. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ye, G.; Qi, H.; Zhou, W.; Xu, W.; Sun, Y. Green and scalable synthesis of nitro-and amino-functionalized UiO-66 (Zr) and the effect of functional groups on the oxidative desulfurization performance. Inorg. Chem. Front. 2019, 6, 1267–1274. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Teppen, B.J.; Miller, D.M. Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Sci. Soc. Am. J. 2006, 70, 31–40. [Google Scholar] [CrossRef]
- S. Abou-Elyazed, A.; Li, S.; Mohamed, G.G.; Li, X.; Meng, J.; S. EL-Sanafery, S. Graphitic Carbon Nitride/MOFs Hybrid Composite as Highly Selective and Sensitive Electrodes for Calcium Ion Detection. Molecules 2023, 28, 8149. [Google Scholar] [CrossRef]
- Xu, R.; Kang, Y.; Zhang, W.; Zhang, X.; Pan, B. Oriented UiO-67 metal–organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 2022, 61, e202115443. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Epsztein, R.; Zhan, C.; Li, W.; Fortner, J.D.; Pham, T.A.; Kim, J.-H.; Elimelech, M. Intrapore energy barriers govern ion transport and selectivity of desalination membranes. Sci. Adv. 2020, 6, eabd9045. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, L.; Deng, T.; Wang, Y.; Xu, W.; Zhang, W. Anionic MOFs embedded in anion-exchange membranes for the separation of lithium/magnesium cations. ACS Sustain. Chem. Eng. 2023, 11, 12877–12887. [Google Scholar] [CrossRef]
- Xu, T.; Shehzad, M.A.; Wang, X.; Wu, B.; Ge, L.; Xu, T. Engineering leaf-like UiO-66-SO 3 H membranes for selective transport of cations. Nano-Micro Lett. 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Demir, N.K.; Wu, Z.; Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Liu, J.Z.; Freeman, B.D.; Hill, A.J.; Wang, H. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066. [Google Scholar] [CrossRef]
- Luo, H.; Agata, W.-A.S.; Geise, G.M. Connecting the ion separation factor to the sorption and diffusion selectivity of ion exchange membranes. Ind. Eng. Chem. Res. 2020, 59, 14189–14206. [Google Scholar] [CrossRef]
- Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B. Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. 2016, 128, 15344–15348. [Google Scholar] [CrossRef]
- Hayamizu, K. Direct relations between ion diffusion constants and ionic conductivity for lithium electrolyte solutions. Electrochim. Acta 2017, 254, 101–111. [Google Scholar] [CrossRef]
Membrane | Separation Method | Na+ Transport Rate (mol·m−2·h−1) | Selectivity (Na+/Ca2+) | Separation Factor (Na+/Ca2+) |
---|---|---|---|---|
PDMS | Diffusion dialysis | 1.4 × 10−4 | 4.03 | 4.02 |
UiO-66-0.05@PDMS | Diffusion dialysis | 1.87 × 10−4 | 5.59 | 5.59 |
UiO-66-NO2-0.05@PDMS | Diffusion dialysis | 1.17 × 10−4 | 2.80 | 2.79 |
UiO-66-NH2-0.05@PDMS | Diffusion dialysis | 2.33 × 10−4 | 11.2 | 11.18 |
Membrane | Target Ion | Separation Methods | Transport Rate (mol·m−2·h−1) | Selectivity | Ref. |
---|---|---|---|---|---|
HSO3-UiO-66@QPPO-20% | Li+Li+ | Diffusion dialysis | 6.750.238 | Li+/Na+: 36Li+/Na+: 5.92 | [32] |
UiO-66-SO3H | Na+ | Diffusion dialysis | 2.80 × 10−5 | Na+/Mg2+ > 140 | [33] |
UiO-66 | Ca2+ | Diffusion dialysis | 0.778 | Ca2+: 86.3% | [34] |
ZIF-8/GO/AAO | Na+ | electro dialysis | --- | Na+/K+: 1.60 | [35] |
UiO-66/PET | Na+ | electro dialysis | --- | Na+/K+: 1.29 | [35] |
UiO-66-NH2-0.05@PDMS | Na+ | Diffusion dialysis | 2.33 × 10−4 | Na+/Ca2+: 11.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Elyazed, A.S.; Li, X.; Meng, J. Engineering Ion Affinity of Zr-MOF Hybrid PDMS Membranes for the Selective Separation of Na+/Ca2+. Molecules 2024, 29, 5297. https://doi.org/10.3390/molecules29225297
Abou-Elyazed AS, Li X, Meng J. Engineering Ion Affinity of Zr-MOF Hybrid PDMS Membranes for the Selective Separation of Na+/Ca2+. Molecules. 2024; 29(22):5297. https://doi.org/10.3390/molecules29225297
Chicago/Turabian StyleAbou-Elyazed, Ahmed S., Xiaolin Li, and Jing Meng. 2024. "Engineering Ion Affinity of Zr-MOF Hybrid PDMS Membranes for the Selective Separation of Na+/Ca2+" Molecules 29, no. 22: 5297. https://doi.org/10.3390/molecules29225297
APA StyleAbou-Elyazed, A. S., Li, X., & Meng, J. (2024). Engineering Ion Affinity of Zr-MOF Hybrid PDMS Membranes for the Selective Separation of Na+/Ca2+. Molecules, 29(22), 5297. https://doi.org/10.3390/molecules29225297