Early Diagnosis of Tumorigenesis via Ratiometric Carbon Dots with Deep-Red Emissive Fluorescence Based on NAD+ Dependence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Solvents and NAD+ on Absorption and Excitation–Emission Spectra of CDs
2.2. Characterization and Cytotoxicity Analysis of CDs
2.3. Effects of NAD+ Concentration and Incubation Time on Intracellular Uptake
2.4. Migratory Capacity and Intracellular Uptake of CDs After Aerobic Glycolysis Inhibition
3. Methods and Methods
3.1. Materials
3.2. Instruments and Measurements
3.3. Preparation of CDs
3.4. NAD+ Detection by CDs In Vitro
3.5. Hemolytic Analysis of CDs
3.6. Cytotoxicity Assays of CDs
3.7. Cellular Uptake of CDs
3.8. Migration Assay
3.9. Effect of NAD+ on the Cellular Uptake of CDs During Glycolysis Inhibition
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pang, N.Z.; Hu, Q.R.; Zhou, Y.J.; Xiao, Y.; Li, W.L.; Ding, Y.J.; Chen, Y.N.; Ye, M.T.; Pei, L.; Li, Q.Y.; et al. Nicotinamide Adenine Dinucleotide Precursor Suppresses Hepatocellular Cancer Progression in Mice. Nutrients 2023, 15, 1447. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lin, D.; Pan, L.; Zhu, J.W.; Shen, J.J.; Yang, L.; Jiang, C.L. Portable Smartphone Platform Based on a Single Dual-Emissive Ratiometric Fluorescent Probe for Visual Detection of Isopropanol in Exhaled Breath. Anal. Chem. 2021, 93, 14506–14513. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.Z.; Yang, J.; Yang, X.R.; Mi, J.X.; Ye, T.W.; Li, G.W.; Xie, Y. Saikosaponin D potentiates the antineoplastic effects of doxorubicin in drug-resistant breast cancer through perturbing NQO1-mediated intracellular redox balance. Phytomedicine 2024, 133, 155945. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, A.A.; Mesa-Ciller, C.; Guajardo-Grence, A.; Alkan, H.F.; Soro-Arnáiz, I.; Vandekeere, A.; Campos, A.M.F.; Igelmann, S.; Fernández-Arroyo, L.; Rinaldi, G.; et al. HIF1α-dependent uncoupling of glycolysis suppresses tumor cell proliferation. Cell Rep. 2024, 43, 114103. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.A. MicroRNA-223: A key regulator of liver tumour microenvironment. Gut 2023, 72, 1811–1812. [Google Scholar] [CrossRef]
- Filliol, A.; Saito, Y.; Nair, A.; Dapito, D.H.; Yu, L.X.; Ravichandra, A.; Bhattacharjee, S.; Affo, S.; Fujiwara, N.; Su, H.; et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 2022, 610, 356–367. [Google Scholar] [CrossRef]
- Xiao, M.H.; Lin, Y.F.; Xie, P.P.; Chen, H.X.; Deng, J.W.; Zhang, W.; Zhao, N.; Xie, C.; Meng, Y.; Liu, X.G.; et al. Downregulation of a mitochondrial micropeptide, MPM, promotes hepatoma metastasis by enhancing mitochondrial complex I activity. Mol. Ther. 2022, 30, 714–725. [Google Scholar] [CrossRef]
- Batsios, G.; Taglang, C.; Tran, M.; Stevers, N.; Barger, C.; Gillespie, A.M.; Ronen, S.M.; Costello, J.F.; Viswanath, P. Deuterium Metabolic Imaging Reports on TERT Expression and Early Response to Therapy in Cancer. Clin. Cancer Res. 2022, 28, 3526–3536. [Google Scholar] [CrossRef]
- Zhang, Y.; Arachchige, D.L.; Olowolagba, A.; Luck, R.L.; Liu, H. Near-infrared fluorescent probe based on rhodamine derivative for detection of NADH in live cells. Methods 2022, 204, 22–28. [Google Scholar] [CrossRef]
- Ma, K.Q.; Yang, H.; Wu, X.K.; Huo, F.J.; Cheng, F.Q.; Yin, C.X. An Activatable NIR Fluorescent Probe for NAD(P)H and Its Application to the Real-Time Monitoring of p53 Abnormalities In Vivo. Angew. Chem. Int. Edit. 2023, 62, e202301518. [Google Scholar] [CrossRef]
- Wang, B.; Waterhouse, G.I.N.; Lu, S. Carbon dots: Mysterious past, vibrant present, and expansive future. Trends Chem. 2023, 5, 76–87. [Google Scholar] [CrossRef]
- Ai, W.M.; Bu, Y.C.; Huang, H.S.; Wang, J.J.; Ren, M.J.; Deng, Y.; Zhu, Y.C.; Wang, S.; Yu, Z.P.; Zhou, H.P. Bifunctional Single-Molecular Fluorescent Probe: Visual Detection of Mitochondrial SO2 and Membrane Potential. Anal. Chem. 2023, 95, 6287–6294. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.P.; Wang, W.B.; Wang, Y.F.; Tao, W.L.; Hou, T.X.; Cai, D.F.; Liu, L.K.; Liu, C.; Jiang, K.; Lin, J.Y.; et al. The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy. Molecules 2024, 29, 615. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Yang, S.W.; Liu, Z.Y.; Wang, G.; He, P.; Wei, W.; Yang, M.Y.; Deng, Y.; Gu, P.; Xie, X.M.; et al. Imaging Cellular Aerobic Glycolysis using Carbon Dots for Early Warning of Tumorigenesis. Adv. Mater. 2021, 33, 2005096. [Google Scholar] [CrossRef]
- Ma, Y.J.; Wu, L.L.; Ren, X.Y.; Zhang, Y.Q.; Lu, S.Y. Toward Kilogram-Scale Preparation of Full-Color Carbon Dots by Simply Stirring at Room Temperature in Air. Adv. Func. Mater. 2023, 33, 2305867. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zhu, H.M.; Peng, N.N.; Song, J.; Sun, R.J.; Wang, J.M.; Zhu, F.F.; Wang, Y.Z. Red emissive carbon dots-based probe for rapid identification and continuous tracking of Gram-positive bacteria in tumor cells. Mater. Lett. 2023, 341, 134233. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Tian, J.K.; Wang, G.C.; Luo, W.K.; Huang, Z.B.; Huang, Y.; Li, N.; Guo, M.M.; Fan, X.G. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma. J. Nanobiotechnol. 2022, 20, 78. [Google Scholar] [CrossRef]
- Shi, C.; Wei, X.Y. Microwave-Assisted Grafting of Coal onto Nitrogen-Doped Carbon Dots with a High Quantum Yield and Enhanced Photoluminescence Properties. Molecules 2024, 29, 1349. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Arachchige, D.L.; Waters, M.; Jaeger, S.; Mahmoud, M.; Olowolagba, A.M.; Tucker, D.R.; Geborkoff, M.R.; Werner, T.; Luck, R.L.; et al. Near-infrared absorption and emission probes with optimal connection bridges for live monitoring of NAD(P)H dynamics in living systems. Sens. Actuators B-Chem. 2024, 402, 135073. [Google Scholar] [CrossRef]
- Dai, F.; Zhang, S.X.; Zhou, B.; Duan, D.C.; Liu, J.R.; Zheng, Y.L.; Chen, H.; Zhang, X.Y.; Zhang, Y. Cellular and Intravital Imaging of NAD(P)H by a Red-Emitting Quinolinium-Based Fluorescent Probe that Features a Shift of Its Product from Mitochondria to the Nucleus. Anal. Chem. 2023, 95, 1335–1342. [Google Scholar]
- Wen, Y.; Zhang, S.D.; Yuan, W.; Feng, W.; Li, F.Y. Afterglow/Fluorescence Dual-Emissive Ratiometric Oxygen Probe for Tumor Hypoxia Imaging. Anal. Chem. 2023, 95, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Song, C.W.; Yang, Y.J.; Kim, H.R.; Reo, Y.J.; Ahn, K.H. Toward Ratiometric Detection of NAD(P)H Quinone Oxidoreductase-1: Benzocoumarin-Based Fluorescent Probes. Sens. Actuators B-Chem. 2021, 330, 129277. [Google Scholar] [CrossRef]
- Li, S.; Yu, L.; Xiong, L.; Xiao, Y.X. Ratiometric fluorescence and chromaticity dual-readout assay for β-glucuronidase activity based on luminescent lanthanide metal-organic framework. Sens. Actuators B-Chem. 2022, 355, 131282. [Google Scholar] [CrossRef]
- Yu, G.G.; Sun, Z.; Wu, Y.T.; Sai, N. Dual-QDs ratios fluorescent probe for sensitive and stable detection of insulin. Spectrochim. Acta A 2022, 268, 120641. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Y.; Yu, J.K.; Sui, L.Z.; Zhu, S.J.; Tang, Z.Y.; Yang, B.; Lu, S.Y. Rational Design of Multi-Color-Emissive Carbon Dots in a Single Reaction System by Hydrothermal. Adv. Sci. 2021, 8, 2001453. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Geng, X.; Shi, X.X.; Guo, Y.F.; Sun, Y.Q.; Qu, L.B.; Li, Z.H. A fluorescence-switchable carbon dot for the reversible turn-on sensing of molecular oxygen. J. Mater. Chem. C 2021, 9, 4300–4306. [Google Scholar] [CrossRef]
- Jiao, Y.; Meng, Y.T.; Lu, W.J.; Gao, Y.F.; Liu, Y.; Gong, X.J.; Shuang, S.M.; Dong, C. Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 2020, 219, 121170. [Google Scholar] [CrossRef]
- Gong, X.; Xu, Q.Q.; Li, J.R.; Ma, Y.; Li, X.Y.; Wu, W.Z.; Wang, H.X. Hydrophobic Mn-Doped Solid-State Red-Emitting Carbon Nanodots with AIE Effect and Their Hydrogel Composites for Color-Changing Anticounterfeiting. Small 2024, 20, 2304673. [Google Scholar] [CrossRef]
- Yang, H.Y.; Liu, Y.L.; Guo, Z.Y.; Lei, B.F.; Zhuang, J.L.; Zhang, X.J.; Liu, Z.M.; Hu, C.F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789. [Google Scholar] [CrossRef]
- Li, Q.Y.; Ma, L.Y.; Li, L.; Wang, S.L.; Li, X.; Zhang, C.; Zhang, Y.; Jiang, M.; Wang, H.; Huang, K.; et al. Array-based sensing of amyloidogenic proteins and discrimination of cancer by using different oxidants doped carbon nanodots as fluorescent probes. Chem. Eng. J. 2022, 430, 132696. [Google Scholar] [CrossRef]
- Xie, W.; Xu, A.; Yeung, E.S. Determination of NAD(+) and NADH in a Single Cell under Hydrogen Peroxide Stress by Capillary Electrophoresis. Anal. Chem. 2009, 81, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Keisuke, Y.; Keisuke, O.; Takashi, N. NAD metabolism: Implications in aging and longevity. Ageing Res. Rev. 2018, 47, 1–17. [Google Scholar]
- Lee, J.K.; Suh, H.N.; Yoon, S.H.; Lee, K.H.; Ahn, S.Y.; Kim, H.J.; Kim, S.H. Non-Destructive Monitoring via Electrochemical NADH Detection in Murine Cells. Biosensors 2022, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Casey, T.M.; Dufall, K.G.; Arthur, P.G. An improved capillary electrophoresis method for measuring tissue metabolites associated with cellular energy state. Eur. J. Biochem. 1999, 261, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Frolova, M.S.; Vekshin, N.L. Stabilization of NADH-dehydrogenase in Mitochondria by Guanosine Phosphates and Adenosine Phosphates. J. Fluoresc. 2014, 24, 1061–1066. [Google Scholar] [CrossRef]
- Liang, X.; Tang, S.L.; Song, Y.J.; Li, D.D.; Zhang, L.; Wang, S.H.; Duan, Y.C.; Du, H.L. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on migration and invasion of HTR-8/SVneo trophoblast cells. J. Reprod. Immunol. 2023, 159, 104123. [Google Scholar] [CrossRef]
- Cheng, J.J.; Zhang, R.; Xu, Z.R.; Ke, Y.L.; Sun, R.J.; Yang, H.C.; Zhang, X.H.; Zhen, X.C.; Zheng, L.T. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroniflamm. 2021, 18, 129. [Google Scholar] [CrossRef]
- Codenotti, S.; Zizioli, D.; Mignani, L.; Rezzola, S.; Tabellini, G.; Parolini, S.; Giacomini, A.; Asperti, M.; Poli, M.; Mandracchia, D.; et al. Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors. Cells 2022, 11, 2895. [Google Scholar] [CrossRef]
- Shi, X.L.; Zhang, W.; Gu, C.; Ren, H.G.; Wang, C.; Yin, N.R.; Wang, Z.M.; Yu, J.H.; Liu, F.J.; Zhang, H.W. NAD plus depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radic. Biol. Med. 2021, 162, 514–522. [Google Scholar] [CrossRef]
Strategy | LOD | Linear Range | Real Sample Type | Ref. |
---|---|---|---|---|
Capillary electrophoresis | 0.2 mmol/L | 0.1–2 mmol/L | Rat heart myoblasts | [31] |
Liquid chromatographic detection methods | 6 μmol/L | 5–100 μmol/L | Human astroglioma cells | [32] |
Electrochemical sensors | 22.3 μmol/L | 10–100 μmol/L | - | [33] |
UV | 0.1 μmol/L | 0–1 μmol/L | - | [34] |
Enzyme colorimetry | - | - | - | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Lou, W.; Sun, M.; Wei, X.; Yang, S.; Zhang, L.; Qu, L. Early Diagnosis of Tumorigenesis via Ratiometric Carbon Dots with Deep-Red Emissive Fluorescence Based on NAD+ Dependence. Molecules 2024, 29, 5308. https://doi.org/10.3390/molecules29225308
Cui L, Lou W, Sun M, Wei X, Yang S, Zhang L, Qu L. Early Diagnosis of Tumorigenesis via Ratiometric Carbon Dots with Deep-Red Emissive Fluorescence Based on NAD+ Dependence. Molecules. 2024; 29(22):5308. https://doi.org/10.3390/molecules29225308
Chicago/Turabian StyleCui, Lan, Weishuang Lou, Mengyao Sun, Xin Wei, Shuoye Yang, Lu Zhang, and Lingbo Qu. 2024. "Early Diagnosis of Tumorigenesis via Ratiometric Carbon Dots with Deep-Red Emissive Fluorescence Based on NAD+ Dependence" Molecules 29, no. 22: 5308. https://doi.org/10.3390/molecules29225308
APA StyleCui, L., Lou, W., Sun, M., Wei, X., Yang, S., Zhang, L., & Qu, L. (2024). Early Diagnosis of Tumorigenesis via Ratiometric Carbon Dots with Deep-Red Emissive Fluorescence Based on NAD+ Dependence. Molecules, 29(22), 5308. https://doi.org/10.3390/molecules29225308