Facile Synthesis of Fluorescent Carbon Quantum Dots with High Product Yield Using a Solid-Phase Strategy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis of the Produced CQDs
2.2. Optical Properties of the Obtained CQDs
3. Materials and Methods
3.1. Materials
3.2. Production of CQDs
3.3. Characterizations
3.4. Fluorescence Testing of CQDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, J.; Bawendi, M.G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef] [PubMed]
- Mocci, F.; Engelbrecht, L.V.; Olla, C.; Cappai, A.; Casula, M.F.; Melis, C.; Stagi, L.; Laaksonen, A.; Carbonaro, C.M. Carbon nanodots from an in silico perspective. Chem. Rev. 2022, 122, 13709–13799. [Google Scholar] [CrossRef] [PubMed]
- Caires, A.J.; Mansur, A.A.P.; Carvalho, I.C.; Carvalho, S.M.; Mansur, H.S. Green synthesis of ZnS quantum dot/biopolymer photoluminescent nanoprobes for bioimaging brain cancer cells. Mater. Chem. Phys. 2020, 244, 122716. [Google Scholar] [CrossRef]
- Wareing, T.C.; Gentile, P.; Phan, A.N. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 2021, 15, 15471–15501. [Google Scholar] [CrossRef]
- Dong, Z.; Qi, J.; Yue, L.; Zhou, H.; Chen, L.; Gu, J.; He, Y.; Wu, H. Biomass-based carbon quantum dots and their agricultural applications. Plant Stress 2024, 11, 100411. [Google Scholar] [CrossRef]
- Consoli, G.M.L.; Giuffrida, M.L.; Zimbone, S.; Ferreri, L.; Maugeri, L.; Palmieri, M.; Satriano, C.; Forte, G.; Petralia, S. Green light-triggerable chemo-photothermal activity of cytarabine-loaded polymer carbon dots: Mechanism and preliminary in vitro evaluation. ACS Appl. Mater. Interfaces 2023, 15, 5732–5743. [Google Scholar] [CrossRef]
- Wang, B.; Waterhouse, G.I.N.; Lu, S. Carbon dots: Mysterious past, vibrant present, and expansive future. Trends Chem. 2023, 5, 76–87. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Yang, Y.; Liu, X.; Qiu, J.; Tian, Y. Tunable full-color solid-state fluorescent carbon dots for light emitting diodes. Carbon 2022, 190, 22–31. [Google Scholar] [CrossRef]
- Muthamma, K.; Sunil, D.; Shetty, P. Carbon dots as emerging luminophores in security inks for anti-counterfeit applications-An up-to-date review. Appl. Mater. Today 2021, 23, 101050. [Google Scholar] [CrossRef]
- Yuan, T.; Yuan, F.; Sui, L.; Zhang, Y.; Li, Y.; Li, X.; Tan, Z.; Fan, L. Carbon Quantum Dots with Near-Unity Quantum Yield Bandgap Emission for Electroluminescent Light-Emitting Diodes. Angew. Chem. Int. Ed. 2023, 135, e202218568. [Google Scholar] [CrossRef]
- Li, Z.; Ai, J.; Wu, D.; Yu, Y.; Xie, L.; Ke, H.; Wang, Q.; Zhang, K.; Lv, P.; Wei, Q. Robust integration of light-driven carbon quantum dots with bacterial cellulose enables excellent mechanical and antibacterial biodegradable yarn. Int. J. Biol. Macromol. 2024, 257, 128741. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, X.; Pan, Q.; Zhang, Y.; Deng, W.; Zou, G.; Hou, H.; Ji, X. A review of carbon dots in synthesis strategy. Coord. Chem. Rev. 2024, 498, 215468. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Z.; Yu, J.; Waterhouse, G.I.N.; Lu, S.; Yang, B. Cross-linking enhanced room-temperature phosphorescence of carbon dots. SmartMat 2022, 3, 337–348. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Yin, L.; Liu, Y.; Guo, H.; Lai, J.; Han, Y.; Li, G.; Li, M.; Zhang, J.; et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772. [Google Scholar] [CrossRef]
- Zhu, Z.; Niu, H.; Li, R.; Yang, Z.; Wang, J.; Li, X.; Pan, P.; Liu, J.; Zhou, B. One-pot hydrothermal synthesis of fluorescent carbon quantum dots with tunable emission color for application in electroluminescence detection of dopamine. Biosens. Bioelectron. 2022, 10, 100141. [Google Scholar] [CrossRef]
- Li, H.; Deng, C.; Yan, S.; Dou, S.; Zhao, W. Fluorescence of CQDs synthesized by hydrothermal method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 774, 012013. [Google Scholar] [CrossRef]
- Perumal, S.; Atchudan, R.; Edison, T.N.J.I.; Lee, Y.R. Sustainable synthesis of multifunctional carbon dots using biomass and their applications: A mini-review. J. Environ. Chem. Eng. 2021, 9, 105802. [Google Scholar] [CrossRef]
- Ding, Z.; Li, F.; Wen, J.; Wang, X.; Sun, R. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 2018, 20, 1383–1390. [Google Scholar] [CrossRef]
- Li, Y.; Hu, M.; Liu, K.; Gao, S.; Lian, H.; Xu, C. Lignin derived multicolor carbon dots for visual detection of formaldehyde. Ind. Crops Prod. 2023, 192, 116006. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, J.H.; Wang, G.; Zhang, Z.; Wu, J.; Zhang, B.; Zhang, H.; Liu, E.; Wang, L.; Liu, T.M. Toward strong near-infrared absorption/emission from carbon dots in aqueous media through solvothermal fusion of large conjugated perylene derivatives with post-surface engineering. Adv. Sci. 2022, 9, 2202283. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Labidi, A.; Gao, T.; Padervand, M.; Liang, X.; Wang, C. Efficient conversion of bio-waste lignin into high-value fluorescent nitrogen-modified carbon quantum dots for live-cell imaging. Ind. Crops Prod. 2024, 216, 118832. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Xu, T.; She, M.; Chen, J.; Jia, X.; Liu, P.; Liu, X.; Li, J. Red emissive carbon dots as a fluorescent sensor for fast specific monitoring and imaging of polarity in living cells. J. Mater. Chem. A 2023, 11, 2679–2689. [Google Scholar] [CrossRef]
- Yang, Y.; Sreekumar, S.; Chimenti, R.V.; Veksler, M.; Song, K.; Zhang, S.; Rodas, D.; Christianson, V.; O’Carroll, D.M. Polypropylene-derived luminescent carbon dots. ACS Mater. Lett. 2024, 6, 1968–1976. [Google Scholar] [CrossRef]
- Xue, S.; Li, P.; Sun, L.; An, L.; Qu, D.; Wang, X.; Sun, Z. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: A review. Small 2023, 19, 2206180. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem. Int. Ed. 2018, 57, 6216–6220. [Google Scholar] [CrossRef]
- Kalluri, A.; Dharmadhikari, B.; Debnath, D.; Patra, P.; Kumar, C.V. Advances in Structural Modifications and Properties of Graphene Quantum Dots for Biomedical Applications. ACS Omega 2023, 8, 21358–21376. [Google Scholar] [CrossRef]
- He, M.; Zhang, J.; Wang, H.; Kong, Y.; Xiao, Y.; Xu, W. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett. 2018, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Bazylewski, P.; Wong, V.; Shah, H.; Fanchini, G. Solvent-free growth of carbon dots by sputter-plasma assisted chemical vapour deposition over large areas. Carbon 2019, 146, 28–35. [Google Scholar] [CrossRef]
- Chen, G.; Wu, S.; Hui, L.; Zhao, Y.; Ye, J.; Tan, Z.; Zeng, W.; Tao, Z.; Yang, L.; Zhu, Y. Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Sci. Rep. 2016, 6, 19028. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.F.; Chen, S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem. Int. Ed. 2012, 51, 9297. [Google Scholar]
- Lee, S.C.; Lee, J.-W.; Jeong, S.W.; Kim, C.H.; Lee, Y.-C.; Huh, Y.S.; Lee, J. Photoluminescent green carbon nanodots from food-waste-derived sources: Large-scale synthesis, properties, and biomedical applications. ACS Appl. Mater. Interfaces 2014, 6, 3365–3370. [Google Scholar]
- Chae, A.; Choi, Y.; Jo, S.; Paoprasert, P.; Park, S.Y.; In, I. Microwave-assisted synthesis of fluorescent carbon quantum dots from an A2/B3 monomer set. RSC Adv. 2017, 7, 12663–12669. [Google Scholar] [CrossRef]
- Choi, Y.; Thongsai, N.; Chae, A.; Jo, S.; Kang, E.B.; Paoprasert, P.; Park, S.Y.; In, I. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J. Ind. Eng. Chem. 2017, 47, 329–335. [Google Scholar] [CrossRef]
- Shehab, M.; Ebrahim, S.; Soliman, M. Graphene quantum dots prepared from glucose as optical sensor for glucose. J. Lumin. 2017, 184, 110–116. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, Y.; Ren, L.; Li, S.; Feng, M.; Zhang, Q.; Qi, R.; Qin, Z.; Zhang, J.; Jiang, L. The Enhanced Photoluminescence Properties of Carbon Dots Derived from Glucose: The Effect of Natural Oxidation. Nanomaterials 2024, 14, 970. [Google Scholar] [CrossRef]
- Khan, A.; Ezati, P.; Rhim, J.-W. pH Indicator Integrated with Carbon Quantum Dots of Glucose to Monitor the Quality of Fish and Shrimp. Food Bioprocess Technol. 2024, 17, 554–569. [Google Scholar] [CrossRef]
- Nallayagari, A.; Sgreccia, E.; Pizzoferrato, R.; Cabibbo, M.; Kaciulis, S.; Bolli, E.; Pasquini, L.; Knauth, P.; Di Vona, M.L. Tunable properties of carbon quantum dots by different synthetic methods. J. Nanostruct. Chem. 2022, 12, 565–580. [Google Scholar] [CrossRef]
- Simões, E.; da Silva, J.; Leitão, J. Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal. Chim. Acta 2014, 852, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Weng, S.; Su, S.; Wang, W. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Adv. 2023, 13, 19173–19194. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Hu, Y.; Wang, P.; Yang, L.; Awak, M.M.A.; Tang, Y.; Twara, F.K.; Qian, H.; Sun, Y.P. Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon 2017, 122, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, X.; Wu, Y.; Wei, C.; Zeng, H. Origin of green luminescence in carbon quantum dots: Specific emission bands originate from oxidized carbon groups. N. J. Chem. 2018, 42, 4603–4611. [Google Scholar] [CrossRef]
- Tang, X.; Yu, H.; Bui, B.; Wang, L.; Xing, C.; Wang, S.; Chen, M.; Hu, Z.; Chen, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact. Mater. 2021, 6, 1541–1554. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Wang, B.; Song, H.; Liu, Z.; Lu, S.; Yang, B. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chin. Chem. Lett. 2019, 30, 2323–2327. [Google Scholar] [CrossRef]
- Ren, H.; Yuan, Y.; Labidi, A.; Dong, Q.; Zhang, K.; Lichtfouse, E.; Allam, A.A.; Ajarem, J.S.; Wang, C. Green process of biomass waste derived fluorescent carbon quantum dots for biological imaging in vitro and in vivo. Chin. Chem. Lett. 2023, 34, 107998. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Zhang, W.; Xiao, Y.; Shi, Y.; Kong, F.; Xu, W. Modulation of red-light emission from carbon quantum dots in acid-based environment and the detection of chromium (III) ions. J. Mater. Sci. Technol. 2021, 83, 58–65. [Google Scholar] [CrossRef]
- Jing, S.; Zhao, Y.; Sun, R.C.; Zhong, L.; Peng, X. Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition. ACS Sustain. Chem. Eng. 2019, 7, 7833–7843. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Su, Y.; Jiang, T.; Li, D.; Ma, X. Green synthesis of carbon quantum dots from wasted enzymatic hydrolysis lignin catalyzed by organic acids for UV shielding and antioxidant fluorescent flexible film. Ind. Crops Prod. 2022, 188, 11556. [Google Scholar] [CrossRef]
- Yang, L.; Fu, B.; Li, X.; Chen, H.; Li, L. Poly (vinylidene fluoride)-passivated CsPbBr3 perovskite quantum dots with near-unity photoluminescence quantum yield and superior stability. J. Mater. Chem. C 2021, 9, 1983–1991. [Google Scholar] [CrossRef]
Precursor | Material | Synthetic Method | Wavelength/nm | Production Yield/% | Refs. |
---|---|---|---|---|---|
Ethanolamine, phosphoric acid | N, P-CQDs | Microwave hydrothermal | 340/417 | 15.00 | [29] |
Fructose | N, S-CQDs | Micro-plasma treatment | 370/450 | 16.60 | [30] |
Fresh lemon juice | CQDs | Hydrothermal treatment | 410/482 | 0.10 | [31] |
Ethylene gas | CQDs | Plasma assisted deposition | 360/420 | 10.00 | [32] |
C60 | CQDs | Thermal decomposition | 400/510 | 15.00 | [33] |
Egg | N-CQDs | Plasma-induced method | 360/420 | 5.96 | [34] |
Food waste, ethanol | CQDs | Ultrasound irradiation | 330/400 | 0.12 | [35] |
Succinic acid, trisamine | N-CQDs | Microwave-assisted synthesis | 340/422 | 17.30 | [36] |
Lysine | N-CQDs | Microwave pyrolysis | 360/432 | 30.00 | [37] |
Glucose | CQDs | One-step solid-phase method | 358/455 | 78.0 | This work |
Material | Synthetic Method | Wavelength/nm | Mean Size/nm | Quantum Yield/% | Refs. |
---|---|---|---|---|---|
GQDs | Pyrolysis at 250 °C for 25 min | 350/426 | 8.5 | NA | [38] |
CQDs | Ultrasonic treatment at 400 W for 4 h | 350/435 | 3.0 | 4.26 | [39] |
CQDs | Hydrothermal treatment at 200 °C for 8 h | 360/440 | 3.5 | NA | [40] |
CQDs | Microwave method at 800 W for 4 min | 355/450 | 2.4 | 4.5 | [41] |
N-CQDs | Microwave method at 700 W for 5 min | 370/457 | 4.0 | 12.4 | [42] |
CQDs | Hydrothermal approach at 200 °C for 12 h | 370/505 | 3.8 | 1.38 | [19] |
CQDs | Hydrothermal treatment at 220 °C for 10 h | 320/420 | 3.0 | NA | [20] |
CQDs | One-step solid-phase method | 358/455 | 4.1 | 6.21 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Qi, F.; Feng, X.; Liu, J.; Zhao, Y. Facile Synthesis of Fluorescent Carbon Quantum Dots with High Product Yield Using a Solid-Phase Strategy. Molecules 2024, 29, 5317. https://doi.org/10.3390/molecules29225317
Ren H, Qi F, Feng X, Liu J, Zhao Y. Facile Synthesis of Fluorescent Carbon Quantum Dots with High Product Yield Using a Solid-Phase Strategy. Molecules. 2024; 29(22):5317. https://doi.org/10.3390/molecules29225317
Chicago/Turabian StyleRen, Haitao, Fan Qi, Xiangbo Feng, Jiaxiang Liu, and Yuzhen Zhao. 2024. "Facile Synthesis of Fluorescent Carbon Quantum Dots with High Product Yield Using a Solid-Phase Strategy" Molecules 29, no. 22: 5317. https://doi.org/10.3390/molecules29225317
APA StyleRen, H., Qi, F., Feng, X., Liu, J., & Zhao, Y. (2024). Facile Synthesis of Fluorescent Carbon Quantum Dots with High Product Yield Using a Solid-Phase Strategy. Molecules, 29(22), 5317. https://doi.org/10.3390/molecules29225317