The Identification of Six Estrogen Preparations by Combining Thin-Layer Chromatography with Micro-Raman Imaging Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of Estrogens by TLC
2.2. Correlation Between Raman Spectra of Estrogens Reference Standards and the Spectra by TLC-RIM
2.3. Similarities and Differences of the Six Estrogens in Raman Spectra
2.4. Simulated Positive Sample Test
2.5. Precision Inspection
2.6. Determination of the Limit of Detection (LOD)
2.7. Stability Test
2.8. Detection of Real Samples
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Solutions Preparation
3.3.1. Reference Solution
3.3.2. Mixed Reference Solution
3.3.3. Sample Solution
3.3.4. Negative Sample Solution
3.3.5. Simulated Positive Sample Solution
3.4. TLC Detection Method
3.5. Micro-Raman Imaging Spectroscopy of Estrogens Based on TLC Spots
3.6. Determination of Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serge, R.; Victoria, D.P.; Jean, V.; Christine, G. Menopausal hormone therapy and breast cancer risk. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101577. [Google Scholar] [CrossRef]
- Eleni, A.; Stavroula, A.P.; Dimitrios, G.G.; Irene, L. Hormone therapy regimens for managing the menopause and premature ovarian insufficiency. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101561. [Google Scholar] [CrossRef]
- Menopause Subgroup; Chinese Society of Obstetrics and Gynecology; Chinese Medical Association. Chinese guideline on menopause management and menopause hormone therapy. Med. J. PUMCH 2018, 9, 512–525. [Google Scholar] [CrossRef]
- Pharmacopoeia of The People’s Republic of China, 2020 ed.; China Medical Science Press: Beijing, China, 2020; Volume II, pp. 216–1783.
- Xinyue, X.; Zhenxi, Y. Atlas of Chemical Drug Reference Substance-Infrared, Raman and Ultraviolet Spectra, 1st ed.; China Medical Science Press: Beijing, China, 2015; pp. 12–523. [Google Scholar]
- The United States Pharmacopeia (USP 44-NF 39). Available online: https://www.drugfuture.com/Pharmacopoeia/usp32/ (accessed on 10 June 2024).
- Mihail, S.B.; Romain, K.; Maria-Virginia, C. Simultaneous Determination of Four Nonsteroidal Anti-Inflammatory Drugs and Three Estrogen Steroid Hormones in Wastewater Samples by Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet and HPLC. J. AOAC Int. 2020, 103, 392–398. [Google Scholar] [CrossRef]
- Barbora, L.; Daniela, C.; Miroslav, O.; Stanislav, M. The TLC-Bioautography as a Tool for Rapid Enzyme Inhibitors detection—A Review. Crit. Rev. Anal. Chem. 2022, 52, 275–293. [Google Scholar] [CrossRef]
- Krzesimir, C.; Szymon, D.; Joanna, N.; Michał, J.M. Thin layer chromatography in drug discovery process. J. Chromatogr. A 2017, 1520, 9–22. [Google Scholar] [CrossRef]
- Marina, S.; Scott, S. Thin Layer Chromatography. Methods Enzymol. 2013, 533, 303–324. [Google Scholar] [CrossRef]
- Pierre, B.S.; Colin, F.P. Instrument platforms for thin-layer chromatography. J. Chromatogr. A 2015, 1421, 184–202. [Google Scholar] [CrossRef]
- Siegfried, W.; Reinhard, H.H.N. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv. Drug Deliv. Rev. 2005, 57, 1144–1170. [Google Scholar]
- Kevin, V.H.; Joseph, S.M.; Didem, P.A.; Luis, R.S. Vibrational Spectroscopy for Identification of Metabolites in Biologic Sam-ples. Molecules 2020, 25, 4725. [Google Scholar] [CrossRef]
- Andrei, A.B.; Vu, D.H.; Hassan, Y.A.E. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review. Crit. Rev. Anal. Chem. 2017, 47, 194–203. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G.; Zheng, J.; Xu, L.; Wang, S.; Li, L.; Qi, F. Temporally resolved two dimensional temperature field of acoustically excited swirling flames measured by mid-infrared direct absorption spectroscopy. Opt. Express 2018, 26, 31983–31994. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Li, Y.; Du, S.; Geng, Y.; Su, M.; Liu, H. Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Res. Int. 2022, 161, 111805. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2976. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Cheng, N.N.; Liu, J.C.; Li, L.; Jia, S.S. Rapid on-site TLC-SERS Detection of Four Sleep Problems Drugs Used as Adulterants in Health-Care Food. Spectrosc. Spect. Anal. 2018, 38, 1122–1128. [Google Scholar] [CrossRef]
- Bin, B.Z.; Yi, S.; Hui, C.; Qing, X.Z.; Feng, L.; Ying, W.L. A separable surface-enhanced Raman scattering substrate modified with MIL-101 for detection of overlapping and invisible compounds after thin-layer chromatography development. Anal. Chim. Acta 2018, 997, 35–43. [Google Scholar] [CrossRef]
- Fang, F.; Qi, Y.; Lu, F.; Yang, L. Highly sensitive on-site detection of drugs adulterated in botanical dietary supplements using thin layer chromatography combined with dynamic surface enhanced Raman spectroscopy. Talanta 2016, 146, 351–357. [Google Scholar] [CrossRef]
- Zhu, Q.X.; Cao, Y.B.; Cao, Y.Y.; Lu, F. Rapid Detection of Four Antipertensive Chemicals Adulterated in Traditional Chinese Med-icine for Hypertension Using TLC-SERS. Spectrosc. Spect. Anal. 2014, 34, 990–993. [Google Scholar] [CrossRef]
- Lv, D.; Cao, Y.; Lou, Z.; Li, S.; Chen, X.; Chai, Y.; Lu, F. Rapid on-site detection of ephedrine and its analogues used as adulterants in slimming dietary supplements by TLC-SERS. Anal. Bioanal. Chem. 2015, 407, 1313–1325. [Google Scholar] [CrossRef]
- Li, L.; Xin, L.; Tao, X.; Feng, X.; Wei, D. Rapid Detection of Six Glucocorticoids Added Illegally to Dietary Supplements by Combining TLC with Spot-Concentrated Raman Scattering. Molecules 2018, 23, 1504. [Google Scholar] [CrossRef]
- Silke, B.L.; Siavash, S.; Agnieszka, S.; Sabine, S.; Heike, R.; Pin, D.; Maxim, E.D.; Roland, B.; Alexa, P.; Gaith, Z.; et al. Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy. Eur. J. Pharm. Biopharm. 2017, 116, 102–110. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Q.; Guo, J.; Wu, B.; Kong, X. Review of Thin-Layer Chromatography Tandem with Surface-Enhanced Raman Spectroscopy for Detection of Analytes in Mixture Samples. Biosensors 2022, 12, 937. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2004; pp. 83–133. [Google Scholar]
- Jayson, V.; Elmer-Rico, E.M.; Ruel, Z.B.D. Raman Spectroscopic Discrimination of Estrogens. Vib. Spectrosc. 2018, 96, 93–100. [Google Scholar] [CrossRef]
Compounds and Structures | Raman Shifts of Reference Standard/cm−1 (Relative Peak Intensity) | Raman Shifts of Spectra by TLC-RIM/cm−1 (Relative Peak Intensity) | Assignments |
---|---|---|---|
Estriol (E3) | 3060 (1.0) 2940, 2913 (2.4, 1.7) 2845, 2823 (1.5, 0.7) 1614 (Singlet: 0.9) 1460~1426 (Triplet: 0.7~0.2) 1245 (0.7) 735, 721 (1.2, 0.7) | 3059 (1.0) 2940, 2919 (2.4, 1.8) 2843, 2825 (1.6, 0.8) 1611 (Singlet: 0.7) 1456~1422 (Triplet: 0.8~0.7) 1246 (0.7) 732, 722 (1.2, 0.7) | ν=CH within phenyl rings νasCH3, νasCH2 νsCH3, νsCH2 νC=C δ-CH3, δ-CH2 νc-c (ring stretch shift) γ=C-H within phenyl rings |
Estradiol (E2) | 3060 (1.0) 2939, 2913 (3.9, 4.2) 2858, 2815 (2.5, 2.0) 1619, 1612 (0.7, 0.6) 1457~1423 (Triplet: 0.9~0.5) 1261 (0.9) 732, 725 (1.2, 0.6) | 3060 (1.0) 2936, 2915 (3.6, 3.8) 2855, 2813 (1.9, 1.4) 1622, 1609 (0.7, 0.5) 1456~1422 (Triplet: 0.9~0.5) 1264 (0.8) 732, 722 (1.0, 0.5) | ν=CH within phenyl rings νasCH3, νasCH2 νsCH3, νsCH2 νC=C δCH3, δCH2 νc-c (ring stretch shift) γ=C-H within phenyl rings |
Estradiol valerate (EV) | 3057 (1.0) 2937, 2921 (3.2, 2.3) 2874, 2857 (2.3, 1.7) 1697 (0.4) 1621 (0.7) 1444 (0.9) 1243 (0.9) 734, 710 (1.2, 0.7) | 3056 (1.0) 2938, 2925 (3.1, 2.4) 2874, 2855 (1.8, 1.3) 1697 (0.5) 1620 (0.6) 1445 (0.6) 1241 (0.6) 734, 710 (1.0, 0.7) | ν=CH within phenyl rings νasCH3, νasCH2 νsCH3, νsCH2 νC=O νC=C δCH3, δCH2 νc-c (ring stretch shift) γ=C-H within phenyl rings |
Estradiol benzoate (EB) | 3073 (1.0) 2959, 2927 (0.9, 0.7) 2854, 2829 (0.6, 0.5) 1727 (1.1) 1603 (1.3) 1432 (0.2) 1269–1164 (Quartet: 1.1~0.2) 1009 (1.5) | 3069 (1.0) 2956, 2928 (0.9, 0.7) 2851, 2830 (0.6, 0.5) 1721 (1.3) 1608 (1.9) 1435 (0.2) 1274~1169 (Quartet: 1.1~0.2) 1004 (1.5) | ν=CH within phenyl rings νasCH3, νasCH2 νsCH3, νsCH2 νC=O νC=C δCH3, δCH2 νc-c (ring stretch shift) δ-CH within phenyl rings |
Nilestriol (CEE) | 3054 (1.0) 2966, 2933 (3.5, 4.2) 2860, 2845 (2.1, 1.7) 2115 (1.7) 1618, 1574 (Doublet: 1.3, 0.6) 1452~1441 (Doublet: 0.9, 0.8) 1261~1242(Doublet: 1.0, 0.7) | 3058(1.0) 2962, 2930 (3.5, 4.2) 2863, 2850 (2.2, 2.2) 2113 (1.3) 1616 (Singlet: 0.8) 1454~1441 (Doublet: 1.0, 0.8) 1259~1247 (Doublet: 1.0, 1.0) | ν=CH within phenyl rings νasCH3, νasCH2 νsCH3, νsCH2 νC≡C νC=C δCH3, δCH2 νc-c (ring stretch shift) |
Ethinylestradiol (EE2) | 3058(1.0) 2941, 2924 (2.7, 2.4) 2868, 2860 (1.6, 1.7) 2113, 2102 (Doublet: 1.4, 1.5) 1617, 1602 (Doublet: 0.7, 0.5) 1439 (Doublet: 0.7, 0.9) 1241 (Doublet: 0.8, 0.9) 735, 713 (1.1, 1.4) | 3061 (1.0) 2937, 2919 (3.0, 2.3) 2870, 2864 (2.0, 2.4) 2111 (Singlet: 1.7) 1615, 1601 (Doublet: 0.6, 0.5) 1452~1437 (Doublet: 0.7, 0.9) 1259~1244 (Doublet: 0.7, 1.1) 733, 716 (1.0, 1.4) | ν=CH within phenyl rings νasCH3, νasCH2 νsCH3, νsCH2 νC≡C νC=C δCH3, δCH2 νc-c (ring stretch shift) γ=C-H within phenyl rings |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Liang, X.; Li, M.; Wang, X.; Cui, H.; Dong, Y.; Bu, H.; Dong, W.; Sui, H.; Xu, F.; et al. The Identification of Six Estrogen Preparations by Combining Thin-Layer Chromatography with Micro-Raman Imaging Spectroscopy. Molecules 2024, 29, 5328. https://doi.org/10.3390/molecules29225328
Zhu W, Liang X, Li M, Wang X, Cui H, Dong Y, Bu H, Dong W, Sui H, Xu F, et al. The Identification of Six Estrogen Preparations by Combining Thin-Layer Chromatography with Micro-Raman Imaging Spectroscopy. Molecules. 2024; 29(22):5328. https://doi.org/10.3390/molecules29225328
Chicago/Turabian StyleZhu, Wenquan, Xin Liang, Mengjiao Li, Xinrui Wang, Hongxia Cui, Yan Dong, Hongzhou Bu, Wei Dong, Huimin Sui, Feng Xu, and et al. 2024. "The Identification of Six Estrogen Preparations by Combining Thin-Layer Chromatography with Micro-Raman Imaging Spectroscopy" Molecules 29, no. 22: 5328. https://doi.org/10.3390/molecules29225328
APA StyleZhu, W., Liang, X., Li, M., Wang, X., Cui, H., Dong, Y., Bu, H., Dong, W., Sui, H., Xu, F., Fang, Y., & Ma, C. (2024). The Identification of Six Estrogen Preparations by Combining Thin-Layer Chromatography with Micro-Raman Imaging Spectroscopy. Molecules, 29(22), 5328. https://doi.org/10.3390/molecules29225328